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Figure 1: Results using feedback adversarial learning on various generative adversarial learning tasks. Our model learns to

utilize the feedback signal from the discriminator and iteratively improve the generation quality with more generation steps.

Abstract

We propose feedback adversarial learning (FAL) frame-

work that can improve existing generative adversarial net-

works by leveraging spatial feedback from the discrimina-

tor. We formulate the generation task as a recurrent frame-

work, in which the discriminator’s feedback is integrated

into the feedforward path of the generation process. Specif-

ically, the generator conditions on the discriminator’s spa-

tial output response, and its previous generation to im-

∗Authors contributed equally.

prove generation quality over time – allowing the genera-

tor to attend and fix its previous mistakes. To effectively

utilize the feedback, we propose an adaptive spatial trans-

form (AST) layer, which learns to spatially modulate feature

maps from its previous generation and the feedback sig-

nal from the discriminator. We demonstrate that one can

easily adapt our method to improve existing adversarial

learning frameworks on a wide range of tasks, including

image generation, image-to-image translation, and voxel

generation. The project website can be found at https:

//minyoungg.github.io/feedbackgan.
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1. Introduction

A masterpiece is not created in a day. Even with count-

less hours of training, an expert can still make a mistake and

learn how to improve. The key to success is an endless cy-

cle of feedback and revision between an artist and a critic,

where the artist can refine its existing work together with

the critic’s feedback – something that is missing in the cur-

rent generative adversarial network (GAN) training frame-

works. In traditional GAN setting, the discriminator acts

as a critic, providing only gradient signals to the genera-

tor; however, the generator does not get the second chance

to look at its own generation along with the feedback from

the discriminator to improve upon. The generation task be-

comes notoriously difficult with increasing data complexity

(e.g. image dimension, data variations). Therefore, to alle-

viate the difficulty of the generation task, we propose feed-

back adversarial learning (FAL) framework for integrating

the discriminator’s feedback in the feed-forward path of the

generation process, allowing the generator to iteratively im-

prove its generation.

A generative adversarial network consists of 2 networks:

a generator (G) and a discriminator (D), where the goal

of the generator G is to generate a sample ŷ from a latent

noise vector z ∈ R
zd sampled from a known distribution

(e.g. N (0, I)). These generated samples ŷ should be indis-

tinguishable to the discriminator from real samples y. Since

the introduction of GANs, there has been extensive interest

in improving generation quality. Due to the instability of

training GANs, different optimization methods [3, 19], nor-

malization [53], and advanced training techniques such as

progressive generation [28] have been proposed.

For all adversarial learning paradigms, the discrimina-

tor provides gradients as a learning signal for the generator

and is discarded during testing time. To successfully train

a model, the designer has to find the right equilibrium be-

tween the discriminator being too powerful and being an in-

formative signal. Even in successfully trained models, the

discriminator easily outperforms the generator, an indica-

tion that there exists information in the discriminator that

the generator could still utilize. This motivates the idea of

allowing the generator to leverage additional information

from the discriminator during generation. As shown in Fig-

ure 2, the generator looks at the previous generation and

the discriminator’s response to drive the generation for the

next time step. In fact, the idea of using the feedback orig-

inates from well-established control theory, where one uses

the error signals to propagate adjustments for the input sig-

nal. Similarly, we demonstrate that using the discriminator

signal as an error propagation signal allows the generator

to attend to the regions that look unrealistic and iteratively

generate higher quality samples over time.

To effectively leverage the discriminator’s feedback, we

propose adaptive spatial transform (AST) module, which

allows the generator to spatially modulate input features

based on the feedback signal. We demonstrate the fea-

sibility and effectiveness of applying feedback adversarial

learning to several frameworks on a wide range of tasks, in-

cluding image generation, image-to-image translation, and

voxel generation, as well as provide qualitative and quanti-

tative results on various datasets. As shown in Figure 1, the

models trained with FAL learn to improve their generation

using the discriminator’s feedback. We extensively evaluate

the generated samples with a variety of metrics, including

FID, segmentation score, depth prediction, LPIPS, and clas-

sification accuracy.

2. Related Works

Generative adversarial networks Generative adversar-

ial networks [18] use a discriminator to model the data dis-

tribution, which acts as a loss function to provide the gen-

erator a learning signal to generate realistic samples. GANs

have continued to show impressive results in various ap-

plications such as image generation [46, 15, 63, 8], text to

image synthesis [47, 26], future frame prediction [40, 55],

image editing [67], novel view synthesis [52, 43], domain

adaptation [7, 51], 3D modeling [59, 27], video genera-

tion [66], video re-targeting [4], text generation [61, 20],

audio generation [16, 17, 22], etc.

Image generation Synthesizing images using convolu-

tional neural networks has been popularized by GANs but

the history goes far back. The community has explored

variational auto-encoders [29], auto-regressive models [1],

etc. More recently, [12] demonstrated that using perceptual-

loss and coarse-to-fine generation can be used to synthesize

photo-realistic images without having a discriminator.

Image-to-image translation [25] demonstrated GANs

can also be applied on paired image-to-image translation.

This sparked the vision and graphics community to ap-

ply adversarial image translation on various tasks. With

the difficulty of collecting interesting paired data, many

works [68, 35, 60, 34, 6, 48] have proposed alternative

methods to translate images. This task is now known as

unpaired image-to-image translation — a task of learning

a mapping from two arbitrary domains without having any

paired images.

Optimization and training frameworks With the diffi-

culty that arises when training GANs, the community has

been trying to improve GANs through different methods

of optimization and normalization. Few to mention are

least-squares [37] and Wasserstein-distance loss [3] and its

follow-up work using gradient penalty [19]. Beyond op-

timization, many have also found that weight normaliza-

tion [53, 50] helps stabilize training and generate better re-

sults. Moreover, many training paradigms have been pro-

posed to stabilize training, where the use of coarse-to-fine
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Figure 2: Feedback adversarial learning: On the left is a typical GAN setup, and on the right we have our feedback

adversarial learning setup. At each time step, the generator generates a single image. Our method uses the discriminator

output decision map and the previously generated image to drive the generation for the next time step. The discriminator

manifold is a visualization of the discriminator’s belief of whether a sample looks generated or real. The blue circle indicates

the generated image in the discriminator’s manifold. The trailing empty blue circles are previous generations and the curved

lines indicate the discriminator’s decision boundary. For the task of generating images from latent vector, input x is replaced

with latent code z.

and unrolled predictions [41, 64, 58, 28, 20, 24] have shown

promising results.

Feedback learning Leveraging feedback to iteratively

improve the performance has been explored on classifica-

tion [62], object recognition [32], and human pose estima-

tion [9, 5].

In our approach, we propose a simple yet effective

method that uses the discriminator’s spatial output and the

previous generation as a signal for the generator to improve.

The output of the discriminator indicates which regions of

a sample look real or fake; hence, the generator can attend

to those unrealistic regions and improve them. Our method

can be applied to any existing architectures and optimiza-

tion methods to generate higher quality samples.

3. Generative Adversarial Networks

A generative adversarial network (GAN) consists of 2

networks: a generator G and a discriminator D. The goal of

the generator is to generate realistic samples from a noise

vector z, G : z → ŷ, such that the discriminator cannot

disambiguate a real sample y from a generated sample ŷ.

An unconditional GAN can be formulated as:

ŷ = G(z). (1)

In conditional GANs, the generator conditions its gener-

ation on additional information x, G : (z, x) → ŷ, where x
is a conditional input such as an image (e.g. segmentation

map, depth map) or class information (e.g. ImageNet class,

face attributes); in the latter case the task is called class-

conditional image generation. When the input and the out-

put domains are images, this task is referred to as image-to-

image translation. In image-to-image translation, we have

the following formulation, although the latent noise vector

z is often not used:

ŷ = G(z, x). (2)

The goal of the discriminator is to discriminate generated

samples from real samples. Hence, the objective function of

the generator is to maximize the log-likelihood of fooling

the discriminator with the generated samples. The overall

objective can be written as:

min
G

max
D

Ey∼qdata
[logD(y)] +Ez∼pz [log(1−D(G(z))], (3)

where qdata is the real data distribution and pz is the sam-

ple distribution such as the normal distribution N (0, I). For

the task of image-to-image translation, the sample distribu-

tion comes from x ∼ px and an additional reconstruction

loss on ŷ is incurred on the generator: Lrec = ‖ŷ − y‖p for

some norm p. Other works have explored using perceptual

loss or cycle-consistency loss instead.

4. Method

In a standard adversarial learning setting, the generator

only gets a single attempt to generate the image, and the dis-

criminator only provides gradients as a learning signal for

the generator. Instead, we propose a feedback adversarial

learning (FAL) framework which leverages the discrimina-

tor’s spatial output as feedback to allow the generator to

locally attend to and improve its previous generation. The

proposed method can be easily adapted to any GAN frame-

work on a variety of tasks. We introduce our method in

the following sections. First, we decompose the generation

procedure as a two-stage process, in Section 4.1. In Sec-

tion 4.2, we define the formulation of feedback adversarial
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learning. In Section 4.3, we propose a method that allows

the generator to effectively utilize the spatial feedback in-

formation.

4.1. Reformulation

To simplify describing the idea of feedback learning in

GANs, we first reformulate a generator G as a 2-part model:

an encoder Ge which encodes input information and a de-

coder Gd which then decodes the intermediate encoding

into the target domain. This is well demonstrated in condi-

tional image-to-image translation GANs where an encoder

network Ge maps information x (e.g. image) into some en-

coded features h, Ge : x → h, and a decoder Gd maps the

intermediate representation h back into the image space y,

Gd : h → y. Note that the choice of where to re-define the

generator as an encoder and decoder can be chosen arbitrar-

ily. We can write the generation process as:

ŷ = G(x) = Gd(Ge(x)), (4)

where ŷ denotes an output image. For the case of un-

conditional GANs, this can be described as ŷ = G(z) =
Gd(Ge(z)).

4.2. Feedback Adversarial Learning

We now define our feedback adversarial learning frame-

work, where the generator aims to iteratively improve its

generations by using discriminator’s feedback information.

To enable the generator to attend to specific regions of its

generation, we utilize local discriminators [30, 25] which

output a response map instead of a scalar, where each pixel

corresponds to the decision made from a set of input pix-

els in a local receptive field. We formulate the generation

task as a recurrent process, where the generator is trained to

fix the mistakes of its previous generation by leveraging the

discriminator’s response map and produce a better image.

We denote the generated image for some arbitrary time

step t as ŷt and the encoding at time step t as ht. Then, the

discriminator response map of the generated image at time

step t can be written as:

rt = D(ŷt), (5)

where rt ∈ R
H/c×W/c is the output of the discrimina-

tor with dimension scaling constant c corresponding to the

choice of the discriminator architecture. Here, H and W
indicate the original image height and width. This can be

generalized to other data domains such as voxels, where

rt ∈ R
H/c×W/c×Dep/c with Dep representing depth. This

response map is indicative of whether certain regions in the

image look fake or real to the discriminator.

To leverage the previous image generation ŷt−1 and its

discriminator response rt−1, we design a feedback network

Adaptive Spatial Transform

Concatenate

ht−1 ht

Fe Fd

ŷt−1

rt−1

γ, β

γ ◦ ht−1 + β

Figure 3: Adaptive Spatial Transform: We propose to uti-

lize feedback information by predicting affine parameters γ
and β to locally modulate the input feature ht1 . The pre-

viously generated image ŷt−1 and the discriminator’s re-

sponse rt−1 are passed through the feedback encoder Fe,

and is concatenated with ht−1 to predict affine parameters γ
and β using the feedback decoder Fd. The predicted affine

parameters have the same dimension as h and is used to

scale and bias the existing features per-element.

F , explained in the next section, to inject feedback infor-

mation into the input encoding ht. We now redefine the

generator Equation 4 for time step t as:

yt = Gd(F (ht−1, yt−1, rt−1)) = Gd(ht). (6)

At time step t = 1, the input embedding Ge(x) or Ge(z)
is computed once to initialize h0, while y0 and r0 are ini-

tialized as zero tensors. To train both the generator and the

discriminator, we compute the same loss in Equation 3 at

every time step and compute the mean across all the time

steps.

4.3. Adaptive Spatial Transform

We propose Adaptive Spatial Transform (AST) to effec-

tively utilize the information from the previous time step to

modulate the encoded features h. Our method is inspired

by [21, 23, 45, 56], which uses external information to pre-

dict scalar affine parameters γ and β per channel to linearly

transform the features:

ĥ = γ · h+ β, (7)

where γ, β ∈ R
C with C indicating the number of chan-

nels. These methods result in a global transformation on

the whole feature map. Instead, to allow the generator to

modulate features locally, we propose adaptive spatial trans-

form layer, which spatially scales and bias the individual el-

ements as shown in Figure 3. This allows for a controlled

spatial transformation. A similar idea has been explored in

a concurrent work [44].

To implement this idea, we decompose the feedback net-

work F into 2 sub-networks: a feedback encoder Fe and a

feedback decoder Fd. We first use the previously generated
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image and the discriminator decision map to predict feed-

back feature ft−1 using the feedback encoder Fe:

ft−1 = Fe(ŷt−1, rt−1). (8)

The encoded feedback information ft−1 ∈ R
H′

×W ′
×C

has the same dimension as the encoded input feature ht−1,

with H ′ and W ′ indicating the spatial dimension of the en-

coding ht−1. Note that the response map rt−1 is bilinearly

upsampled to match the dimension of the generated image

ŷt−1 and is concatenated to yt−1 across the channel dimen-

sion. Finally, the encoded input features and feedback fea-

tures are concatenated and used to predict transformation

parameters using the feedback decoder Fd:

γ, β = Fd(ht−1, ft−1). (9)

The predicted affine parameters γ, β have the same di-

mension as h (i.e. with spatial dimensions) and are used to

spatially scale and bias the input features:

ht = γ ◦ ht−1 + β, (10)

where ◦ and + denote the Hadamard product and an ele-

ment wise addition. The transformed encoding ht is then

used as an input to the decoder to produce an improved im-

age yt = Gd(ht). The scale parameter γ is one-centered

and the bias parameter β is zero-centered. We keep track

of the transformed input encoding for future feedback gen-

erations. We demonstrate the effectiveness of the proposed

adaptive spatial transform in Section 5.

5. Experiments

We demonstrate how to leverage the proposed feedback

adversarial learning technique on a variety of tasks to im-

prove existing GAN frameworks.

5.1. Experimental Setup

Image generation We first demonstrate our method on

the image generation task, where the goal of the genera-

tor is to generate an image from a latent vector sampled

from a known distribution. We take influences from the

recent state-of-the-art architecture BigGAN-deep [8] and

constructed our own GAN. We made some modification

to make the network feasible to fit on a commercial GPU.

Specifically, we removed self-attention layer [57, 63] and

reduced the generator and discriminator depth by half. We

use 64 filters for both the generator and the discrimina-

tor instead of 128, and use instance norm and adaptive in-

stance norm [23] instead of batch norm and conditional

batch norm [21]. Furthermore, we do not pool over the

last layer to preserve the spatial output of the discrimina-

tor. We train the model to optimize the hinge version of the

adversarial loss [33, 53, 54] with a batch size of 16. Further

architecture details can be found in the appendix.

Image-to-Image translation We further apply our

method to the image-to-image translation task, where the

goal of the generator is to map images from one domain

to another. We use a generator consisting of 9-Residual

blocks, identical to the one from [68]. We train the model to

optimize the least-squares loss proposed in [38] and scale

the reconstruction loss by 10. We made some modifications

to improve the overall performance, and further details can

be found in the appendix.

Voxel Generation To investigate if the proposed feed-

back adversarial learning mechanism can generalize beyond

2D images, we demonstrate our method on the task of voxel

generation [59, 14, 31]. The goal of the generator is to pro-

duce realistic voxels, represented by a binary occupancy

cube V ∈ R
H×W×Dep, from a randomly sampled latent

vector z. Similar to image-generation, the goal of the dis-

criminator is to distinguish between generated voxels from

real voxels.

We adopt a similar architecture proposed in Voxel-

GAN [59], where G consists of 3D-deconvolutional layers

and D consists of a stack of 3D-convolutional layers. To

produce the spatial output as a feedback signal, the discrim-

inator does not globally pool over the spatial dimension, re-

sulting in a response cube of shape H/c × W/c × Dep/c.
We use Wasserstein loss with gradient penalty for both Vox-

elGAN trained with and without feedback. The details of

architectures and training can be found in the appendix.

5.2. Results

Image generation We train our model on CelebA

dataset [36], consiting of over 100K celebrity faces with

wide-range of attributes. We use a latent vector of dimen-

sion 128 to generate an image of size 128×128×3. The dis-

criminator outputs a response map of size 8×8. In Figure 4,

we show images sampled with and without feedback adver-

sarial learning. In Table 1, we compute the FID score [39]

on the last feature layer.

Image-to-image translation We use both the

Cityscapes [13] dataset and the NYU-depth-V2

dataset [42]. For Cityscapes, the goal of our network

is to generate photos from class segmentation maps. We

resize the images to 256 × 512. In Figure 5, we show

qualitative results and in Table 2, we use an image segmen-

tation model [11] to compute the segmentation score on the

generated images. We also provide the LPIPS [65] distance

from the ground truth image for both the training and

validation set. The perceptual score, although indicative

of the similarity between the generated image and the

ground truth, may penalize images that look realistic but is

perceptually different

For NYU-depth-V2, we train our model to generate in-

door images. We combine the depth-map, coarse class label
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Figure 5: Image-to-image translation: Results using feedback adversarial learning. We train the models on 256 × 512
Cityscapes images that map segmentation map to photos. For NYU-depth-v2, the models are trained to map 240×360 depth,

coarse-class, and edges to photo. We train our model with 3 generation steps and show our results on the last generation step.

map to construct a 2-channel input. To create this input data,

we labeled the top 37 most occurring classes (out of around

1000 classes) and mapped the classes to the first input chan-

nel, where the classes are equidistant from each other. Next,

we use the depth map as the second channel of the image.

The resulting image is of size 240×320×2. In Figure 5 we

visualize our results, and on Table 3 we quantify our result

using a network trained to predict depth from monocular
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Model CelebA-FID ↓

GAN 22.56

GAN w/ Feedback (t=1) 26.49

GAN w/ Feedback (t=2) 20.65

GAN w/ Feedback (t=3) 18.52

Table 1: Image generation (CelebA): FID score computed

between the generated and real CelebA images. We com-

pute the score using the pretrained Inception-V3 model.

Lower FID score is better.

Val Train

Model Cat IOU ↑ Cls IOU ↑ LPIPS ↓ LPIPS ↓

Ground Truth 76.2 0.21 0.0 0.0

Pix2Pix 0.380 0.655 0.428 0.320

Pix2Pix + Feedback (t=1) 0.383 0.646 0.431 0.265

Pix2Pix + Feedback (t=2) 0.417 0.687 0.428 0.254

Pix2Pix + Feedback (t=3) 0.418 0.692 0.429 0.254

Table 2: Image-to-image translation (Cityscapes): We

use a pretrained segmentation model trained on real images

to compute the segmentation score. The pretrained model

is trained on real image. We also provide LPIPS distance

score using the generated and the ground truth image.

RGB image [2]. We also provide the LPIPS distance to the

ground truth image.

Voxel Generation We train the VoxelGAN with and with-

out Feedback on ShapeNet [10]. ShapeNet consists of a

large number of synthetic objects where the voxels are gen-

erated from. We select three different object categories with

varying numbers of voxels: airplane (4k), car (8k), and ves-

sel (2k) and train a model for each category. The genera-

tor consists of 7 3D-deconvolutional layers, which produces

64× 64× 64 voxels from a sampled latent vector of dimen-

sion 100. The discriminator consists of 6 3D-convolutional

layers and outputs 4× 4× 4 response cube.

To quantitatively evaluate the quality of the generated

voxels, we train a voxel classifier – with the assumption that

realistically generated voxels will have a higher classifica-

tion probability, similar to the idea of Inception Score [49].

We use 10 object categories with a sufficient number of

voxels to train a 10-way classifier. The trained classi-

fier achieves an overall 95.9% accuracy on the testing set

(95.9% on airplanes, 99.6% on cars, and 98.8% on ves-

sels). The details on the voxel classifier can be found in

the appendix.

We randomly sample 1k generated voxels and measure

the accuracy of the voxels using the trained classifier. The

quantitative results are shown in Table. 4 and the qualitative

Val Train

Model REL↓ δ1 ↑ δ2 ↑ LPIPS ↓ LPIPS ↓

Ground Truth 0.191 0.846 0.974 0.0 0.0

Pix2Pix 0.191 0.892 0.961 0.483 0.337

Pix2Pix + Feedback (t = 1) 0.179 0.702 0.904 0.473 0.281

Pix2Pix + Feedback (t = 2) 0.178 0.706 0.906 0.469 0.275

Pix2Pix + Feedback (t = 3) 0.181 0.701 0.908 0.473 0.284

Table 3: Image-to-image translation (NYU Depth): Us-

ing a pre-trained monocular depth prediction model, we

compute the scores on the generated images. The depth

prediction model is trained on real images. We also provide

LPIPS distance score using the generated and the ground

truth image.

VoxelGAN
VoxelGAN + FAL

t=0 t=1 t=2

Airplane

Car

Vessel

Figure 6: Voxel generation (ShapeNet):. Voxels are col-

orized based on the depth using the Viridis colormap. Our

model is able to progressively generate better quality voxels

with compared to the baseline.

results are shown in Figure. 6. We demonstrate that the Vox-

elGAN trained with feedback outperforms the baseline by

progressively improving the generated voxels and achieving

higher accuracy with more feedback steps. The classifica-

tion accuracy on real testing voxels is shown in the first row.

5.3. Ablation Study

To investigate the essentials of utilizing both the discrim-

inator response map and previous generation as feedback,

we conduct an ablation study where only either of them is

fed back to the generator. Furthermore, to verify the effec-

tiveness of the proposed AST layer, we experiment with a

variety of ways to merge the input feature h and feedback

feature f . These ablation studies can be found in the ap-

pendix.
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Model Classification accuracy ↑
Airplane Car Vessel

Ground Truth 95.9% 99.6% 98.8%

VoxelGAN 93.0% 98.1% 89.2%

VoxelGAN + Feedback (t = 1) 93.0% 98.2% 91.0%

VoxelGAN + Feedback (t = 2) 94.0% 98.9% 96.2%

VoxelGAN + Feedback (t = 3) 95.6% 99.1% 97.1%

Table 4: Voxel Classification Scores: Classification score

on the generated voxels. The accuracy measures whether

the generated voxels are correctly classified to the category

that the generator was trained from.
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Figure 7: Fooling likelihood over-time: We plot the like-

lihood the discriminator believes the generated sample is

correct. We show that the likelihood of fooling the discrim-

inator increases over generation steps.

5.4. Discriminator response visualization

To visualize whether the generator can produce better re-

sults that can fool the discriminator, we visualize the dis-

criminator’s response across various generation time steps

in Figure 7. In Figure 8, we plot the likelihood of fooling

the discriminator across various generation time step.

5.5. Generalization to more generation steps

Although we trained our model with 3 generation steps,

our model can progressively improve the generation quality

with an increasing number of feedback steps. We quan-

tify the output of the discriminator by taking the mean of

the response. On Cityscapes, if we take the average of

the discriminator output across the whole training set, we

have the following fooling probabilities for 5 generation

steps (in increasing order of generation): 17.1%, 28.7%,

36.8%, 40.3%, 43.4%. This illustrates that the generator

has learned to continually leverage the discriminator output

beyond the trained generation steps.

Figure 8: Response visualization: We visualize the out-

put of the discriminator overtime for various datasets. Red

indicating fake and blue indicating real. We show that the

discriminator predicts more real regions over time.

6. Conclusion

We demonstrated that feedback adversarial learning –

leveraging discriminator information into the feed-forward

path of the generation process – is a simple yet effective

method to improve existing generative adversarial frame-

works. We demonstrated that our approach is not restricted

to a specific domain by applying it to the tasks of image gen-

eration, image-to-image translation, and voxel generation.

We extensively evaluated models trained with and without

feedback on a variety of datasets with various metrics to

verify the effectiveness of our proposed method.
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