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Figure 1: Robustness to variations. Sample part segmentation obtained by SCOPS on different types of image collections:

(left) unaligned faces from CelebA [29], (middle) birds from CUB [44] and (right) horses from PASCAL VOC [11] dataset

images, showing that SCOPS can be robust to appearance, viewpoint and pose variations.

Abstract

Parts provide a good intermediate representation of ob-

jects that is robust with respect to the camera, pose and ap-

pearance variations. Existing works on part segmentation

is dominated by supervised approaches that rely on large

amounts of manual annotations and can not generalize to

unseen object categories. We propose a self-supervised

deep learning approach for part segmentation, where we

devise several loss functions that aids in predicting part seg-

ments that are geometrically concentrated, robust to object

variations and are also semantically consistent across dif-

ferent object instances. Extensive experiments on different

types of image collections demonstrate that our approach

can produce part segments that adhere to object bound-

aries and also more semantically consistent across object

instances compared to existing self-supervised techniques.

1. Introduction

Much of the computer vision involves analyzing objects

surrounding us, such as humans, cars, furniture, and so

on. A major challenge in analyzing objects is to develop

a model that is robust to the multitude of object transforma-

tions and deformations due to changes in camera pose, oc-

*This work is done when the author was doing internship at NVIDIA.

clusions, object appearance, and pose variations. Parts pro-

vide a good intermediate representation of objects that is ro-

bust with respect to these variations. As a result, part-based

representations are used in a wide range of object analysis

tasks such as 3D reconstruction [55], detection [12], fine-

grained recognition [25], pose estimation [20], etc.

Several types of 2D part representations have been used

in the literature, with the three most common ones being

landmarks, bounding boxes, and part segmentations. A

common approach to the part analysis is to first manually

annotate large amounts of data and then leverage fully-

supervised approaches to recognize parts [9, 29, 2, 4, 5].

However, these annotations, especially part segmentation,

are often quite costly. The annotations are also specific to a

single object category and usually do not generalize to other

object classes. Consequently, it is difficult to scale the fully-

supervised models to unseen categories and there is a need

for weakly supervised techniques for part recognition that

only rely on very weak supervision or no supervision at all.

Part representations, once obtained, are robust to vari-

ations and help in high-level object understanding. How-

ever, obtaining part segmentations is challenging due to the

above mentioned intra-class variations. An image collec-

tion of a single object category, despite having the same

category objects, usually have high variability regarding

pose, object appearances, camera viewpoint, the presence
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of multiple objects, etc. Figure 1 shows some sample im-

ages from three different image collections. Notice the vari-

ability across different object instances. Any weakly or un-

supervised technique for part segmentation needs to reason

about correspondences between different images which is

challenging in such diverse image collections.

In this work, we propose a self-supervised deep learn-

ing framework for part segmentation. Given only an image

collection of the same object category, our model can learn

part segmentations that are semantically consistent across

different object instances. Our learning technique is class

agnostic, i.e., can be applied to any type of rigid or non-rigid

object categories. And, we only use very weak supervision

in the form of ImageNet pre-trained features [26, 39, 17],

which are readily available. Contrary to recent deep learn-

ing techniques [42, 41, 50], which learn landmarks (key-

points) in a weakly or un-supervised manner, our network

predicts part segmentation which provides much richer in-

termediate object representation compared to landmarks or

bounding boxes.

To train our segmentation network, we consider several

properties of a good part segmentation and encode that prior

knowledge into the loss functions. Specifically, we consider

four desirable characteristics of a part segmentation:

• Geometric concentration: Parts are concentrated geo-

metrically and form connected components.

• Robustness to variations: Part segments are robust

with respect to object deformations due to pose

changes as well as camera and viewpoint changes.

• Semantic consistency: Part segments should be seman-

tically consistent across different object instances with

appearance and pose variations.

• Objects as union of parts: Parts appear on objects (not

background) and the union of parts forms an object.

We devise loss functions that favor part segmentations

that has above-mentioned qualities and use these loss func-

tions to train our part segmentation network. We discuss

these loss functions in detail in Section 3. We call our part

segmentation network “SCOPS” (Self-Supervised Co-Part

Segmentation). Figure 1 shows sample image collections

and the corresponding part segmentations that SCOPS pre-

dicts. These visual results indicate that SCOPS can estimate

part segmentations that are semantically consistent across

object instances despite large variability across object in-

stances.

When compared to recent unsupervised landmark de-

tection approaches [42, 41, 50], our approach is relatively

robust to appearance variations while also handling occlu-

sions. Moreover, our approach can handle multiple ob-

ject instances in an image which is not possible via land-

mark estimation with a fixed number of landmarks. When

compared to the recent Deep Feature Factorization (DFF)

approach [10], ours can scale to larger datasets, can pro-

duce sharper part segments that adhere to object bound-

aries and also more semantically consistent across object

instances. We quantitatively evaluate our part segmenta-

tion results with an indirect measure of landmark estima-

tion accuracy on unaligned CelebA [29], AFLW [22] and

CUB [44] dataset images, and also with foreground seg-

mentation accuracy on the PASCAL VOC dataset [11]. Re-

sults indicate that SCOPS consistently performs favorably

against recent techniques. In summary, we propose a self-

supervised deep network that can predict part segmenta-

tions that are semantically consistent across object instances

while being relatively robust to object pose and appearance

variations, camera variations and occlusions.

2. Related Works

Object concept discovery CNNs have shown impressive

generalization capabilities across different computer vision

tasks [45, 35, 1]. As a result, several works try to in-

terpret and visualize the intermediate CNN representations

[49, 52, 3]. While some recent works [14, 3] demonstrate

the presence of object part information in pre-trained CNN

features, we aim to train a CNN that can predict consis-

tent part segmentations in a self-supervised manner. Some-

what similar to our objective, class activation maps (CAMs)

based methods [53, 34] propose to localize the dense re-

sponse on image with respect to a trained classifier. How-

ever, without a learned part classifier, CAMs cannot be di-

rectly applied to our problem setting. Recently, Collins et

al. [10] propose deep feature factorization (DFF) to estimate

the common part segments in images through Non-negative

Matrix Factorization (NMF) [27] on the ImageNet CNN

features. However, DFF requires joint optimization during

inference time, and it is costly to impose other constraints or

loss functions on part maps since there is no standalone in-

ference module. By posing as neural network inference, the

proposed SCOPS can readily leverage the wealth of neural

network loss functions developed in recent years. Any ad-

ditional constraints can be jointly optimized during training

time on large scale datasets, and the trained segmentation

network could be applied on a single image during infer-

ence.

Landmark detection Recently, several techniques have

been proposed to learn landmarks with weak or no super-

vision. Most of these works rely on geometric constrains

and landmarks equivariance to transformations. Thewlis

et al. [42] relied on geometric priors to learn landmarks

that are invariant to affine and spline transformations.

Zhang et al. [50] added reconstruction loss by reconstruct-

ing a given input image with predicted landmarks and local

features. Honari et al. [18] used a subset of labeled images

and sequential multitasking to improve final landmark es-

timation. Simon et al. [38] used multi-view bootstrapping
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to improve accuracy of hand landmark estimation. Suwa-

janakorn et al. [40] used multiple geometry aware losses

to discover 3D landmarks. In order to obtain unsupervised

landmarks, most of these works rely on simplified problem

settings such as using cropped images with only a single ob-

ject instance per image and allowing only minor occlusions.

We aim to predict part segments which provide richer rep-

resentation of objects compared to landmarks.

Dense image alignment Part segmentation is also related

to the task of dense alignment, where the objective is to

densely match pixels or landmarks from an object to an-

other object instance. While conventional approaches uti-

lize off-the-shelf feature descriptors matching to tackle the

problem, e.g., SIFT flow based methods [28, 21, 6], recent

works [16, 46, 47, 48, 15] utilize annotated landmark pairs

and deep neural networks to learn a better feature descrip-

tor or matching function. To avoid the cost of dense anno-

tation, recent works propose to learn the dense alignment

under the weakly supervised setting where only image pairs

are required. Rocco et al. [30, 31] propose to jointly train

the feature descriptor and spatial transformation by maxi-

mizing the inlier count, while Shu et al. [37] propose De-

forming Autoencoder to align faces and disentangle expres-

sions. However, these weakly supervised methods assume

a certain family of spatial transforms, e.g., affine or thin

plate spline grid, to align objects with similar poses. We ar-

gue that part segmentation is a more natural representation

for semantic correspondences since matching each pixel be-

tween different instances would be an ill-posed problem.

Part segmentations can also provide complex object defor-

mations without heavily parameterized spatial transforms.

Image co-segmentation Co-segmentation approaches pre-

dict the foreground pixels of the specific object given an

image collection. Most existing works [24, 32, 19, 43, 33]

jointly consider all images within the collection to gener-

ate the final foreground segments via energy maximization,

and thus not suitable for testing on standalone images. In

contrast, we propose an end-to-end trainable network that

takes single image as input and outputs part segmentation

which is more challenging but provides more information

compared to foreground segmentation.

3. Self-Supervised Co-Part Segmentation

Given an image collection of the same object category,

we aim to learn a deep neural network that takes a single

image as input and outputs part segmentations. As out-

lined in Section 1, we focus on the important characteris-

tics of part segmentation and devise loss functions that en-

dorse these properties: geometric concentration, robustness

to variations, semantic consistency, and objects as the union

of parts. Here, we first describe our overall framework fol-

lowed by the description of different loss functions and how

they encourage the above-mentioned properties. Along the

Part Segmentation Network

Input Image
Geometric

(Sec. 3.2)

Equivariance

(Sec. 3.3)

Semantic 

Consistency

(Sec. 3.4)

Self-Supervised Constraints

Part Segmentation

Figure 2: SCOPS framework. Our network takes single

image as input and predicts part segmentation. Geomet-

ric, Equivariance and Semantic Consistency constraints are

used to train the network in a self-supervised manner.

way, we also comment on how our loss functions are related

and different to existing loss functions in the literature.

3.1. Overall Framework

Figure 2 shows the overall framework of our proposed

method. Given an image collection {I} of the same object

category, we train a part segmentation network F param-

eterized by θf , which is a fully convolutional neural net-

work (FCN [36]) with a channel-wise softmax layer in the

end, to generate the part response maps R = F(I; θf ) ∈
[0, 1](K+1)×H×W , where K denotes the number of parts

and H × W is the image resolution. Our network pre-

dicts K + 1 channels with an additional channel indicat-

ing the background. To obtain the final part segmenta-

tion results, we first normalize each part map with it maxi-

mum response value in the spatial dimensions R̂(k, i, j) =
R(k, i, j)/maxu,v(R(k, u, v)), and we set the background

map as constant with value 0.1. The purpose of this nor-

malization is to enhance weak part responses. Then the

part segmentation is obtained with the argmax function

along the channel dimension. We use DeepLab-V2 [8] with

ResNet50 [17] as our part segmentation network.

Since we do not assume the availability of any ground

truth segmentation annotations, we formulate several con-

straints as differentiable loss functions to encourage the

above mentioned desired properties of a part segmenta-

tion, such as geometry concentration and semantic consis-

tency. The overall loss function for part segmentation net-

work is a weighted sum of different loss functions which

we describe next. Contrary to several co-segmentation ap-

proaches [24, 32, 19, 43, 33], which require multiple images

during test-time inference, our network only takes a single

image as input during the test time resulting in better porta-

bility of our trained model to unseen test images.

3.2. Geometric Concentration Loss

Pixels belonging to the same object part are usually

spatially concentrated within an image and form a con-

nected component unless there are occlusions or multiple

instances. To this end, we first impose the geometric con-
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Figure 3: Equivariance loss. We transform a given image

with a random spatial transform and color jittering. We also

transform the part segmentation of the given image using

the same spatial transform to compare against the part seg-

mentation of the transformed image via equivariance loss.

centration on the part response maps to shape the part seg-

ments. Specifically, we utilize a loss term that encourages

all the pixels belonging to a part to be spatially close to the

part center. The part center for a part k along axis u is cal-

culated as

cku =
∑

u,v

u ·R(k, u, v)/zk, (1)

where zk =
∑

u,v R(k, u, v) is the normalization term to

transform the part response map into a spatial probability

distribution function. Then, we formulate the geometric

concentration loss as

Lcon =
∑

k

∑

u,v

||〈u, v〉 − 〈cku, c
k
v〉||

2 ·R(k, u, v)/zk, (2)

and it is differentiable with respect to cku, R(k, u, v), and zk.

This loss function encourages geometric concentration of

parts and tries to minimize the variance of spatial probabil-

ity distribution function R(k, u, v)/zk. This loss is closely

related to ones used in recent unsupervised landmark esti-

mation techniques [50, 42]. While Zhang et al. [50] ap-

proximate the landmark response maps with Gaussian dis-

tributions, we apply concentration loss mainly for penaliz-

ing part responses away from the part center.

Besides concentration loss, [50] and [42] propose a form

of separation (diversity) loss that maximizes the distance

between different landmarks. However, we do not employ

such constraint as this constraint would results in separated

part segments with background pixels in between.

3.3. Equivariance Loss

The second property that we want to advocate is that part

segmentation should be robust to the appearance and pose

variations. Figure 3 illustrates how we employ the equivari-

ance constraints to encourage the robustness to variations.

For each training image, we draw a random spatial trans-

form Ts(·) and appearance perturbation Ta(·) from a pre-

defined parameter range. The detailed transform parame-

ters are present in the supplementary material. Then we

pass both the input image I and transformed image I ′ =
Ts(Ta(I)) through the segmentation network and obtain the

corresponding response maps R and R
′. Given these part

response maps, we compute the part centers 〈cku, c
k
v〉 and

〈ck
′

u , ck
′

v 〉 using Eqn. 1. Then, the equivariance loss is de-

fined as

Leqv = λs
eqvDKL(R

′||Ts(R))

+ λc
eqv

∑

k

||〈ck
′

u , ck
′

v 〉 − Ts(〈c
k
u, c

k
v〉)||

2, (3)

where DKL(·) is the Kullback–Leibler divergence distance,

and λs
eqv, λ

c
eqv are the loss balancing coefficients. The first

term corresponds to the part segmentation equivariance, and

the second term denotes the part center equivariance. We

use random similarity transformations (scale, rotation, and

shifting) for spatial transforms. We also experimented with

more complex transformations such as projective and thin-

plate-spline transformations, but did not observe any im-

provements in part segmentation.

Recent works on unsupervised landmark estimation [50,

42] use the above-mentioned equivariance loss on land-

marks (part centers). In this work, we extend the equivari-

ance loss to part segmentation, and our experiments indicate

that using only equivariance on part centers is not sufficient

to obtain good part segmentation results.

3.4. Semantic Consistency Loss

Although equivariance loss favor part segmentations that

are robust to some object variations, the synthetically cre-

ated transformations would not be sufficient to produce con-

sistency across different instances since the appearance and

pose variations between images are too high to be modeled

by any artificial transformations (See Figures 1 and 4 for

some sample instances). To encourage semantic consistency

across different object instances, we would need to explic-

itly leverage different instances in our loss function.

A key observation that we make use of is that the infor-

mation about objects and parts is embedded in intermediate

CNN features of classification networks [3, 14, 10]. We

devise a novel semantic consistency loss function that taps

into this hidden part information of ImageNet trained fea-

tures [26, 39, 17], which are readily available these days.

Following the observation in [10], we assume that we can
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Figure 4: Semantic consistency loss. We enforce seman-

tic consistency of parts across instances by learning a se-

mantic part basis that is shared across all images. We use

orthonormal constraint to learn distinct part basis, and we

use saliency constraint to encourage parts to appear on fore-

ground objects.

find representative feature clusters in the given classification

features that are corresponding to different part segments.

Formally, given C-dimensional classification features

V ∈ RC×H×W , we like to find K representative part fea-

tures wk ∈ RC , k ∈ {1, 2, ...,K}. We simultaneously

learn part segmentation R and these representative part fea-

tures {wk} such that the classification features V(u, v) of

an (u, v) pixel belonging to kth part is close to wk i.e.,

||V(u, v) − wk||
2 → 0. Since the number of parts K

is usually smaller than feature dimensionality C, we can

see the representative part features {wk} as spanning a K-

dimensional subspace in a C-dimensional space. We call

these representative part features as part basis vectors.

Figure 4 illustrates the semantic consistency loss. Given

an image I, we obtain its part response map R. We also pass

I into a pre-trained classification network and obtain feature

maps of an intermediate CNN layer. The feature map is bi-

linearly up-sampled to have the same spatial resolution of I

and R, resulting in V ∈ RC×H×W . We learn a set of part

basis vectors {wk} that are globally shared across differ-

ent object instances (training images) using the following

semantic consistency loss:

Lsc =
∑

u,v

||V(u, v)−
∑

k

R(k, u, v)wk||
2, (4)

where V(u, v) ∈ RC is the feature vector sampled at spa-

tial location (u, v). We learn both the part segmentation R

and the basis vectors {wk} at the same time using standard

back-propagation. To ensure that different part basis vec-

tors do not cancel each other out, we enforce non-negativity

on both features V and basis vectors {wk} by passing them

through a ReLU layer. The part segmentation R is naturally

non-negative as it is the output of a softmax function.

We view the semantic consistency loss as a linear sub-

space recovery problem with respect to the embedding

space provided by the feature extractor on the input im-

age collection. As the training progresses, the part bases

can gradually converge to the most representative direction

of each part in the embedding space provided by the pre-

trained deep features, and the recovered subspace can be

described as the span of the basis {wk}. Furthermore, the

non-negativity ensures that the weights R(k, u, v) could be

interpreted as part responses. With the proposed semantic

consistency loss, we explicitly enforce the cross-instance

semantic consistency through the learned part basis {wk}
since the same part response would have similar semantic

feature embedding in the pre-trained feature space.

Orthonormal Constraint When training with the seman-

tic consistency loss, it is possible for the different basis to

have similar feature embedding, especially when K is large

or the underlying rank of the subspace is smaller than K.

Having similar part basis, the part segmentation could be-

come noisy since the response from multiple channels could

all represent the same part segment. Therefore, we pro-

pose to impose an additional orthonormal constraint on the

part basis wk to push the part bases apart. Let Ŵ denotes

the matrix with each row as a normalized part basis vector

ŵk = wk/||wk||, and we formulate the orthonormal con-

straint as a loss function on W :

Lon = ||ŴŴ
T − IK ||2F , (5)

where ||·||2F is Frobenius norm and IK is the identity matrix

of size K × K. The idea is to minimize the correlation

between different basis vectors, and thus we can obtain a

more concise basis set resulting in better part responses.

Saliency Constraint We observe that, when the input im-

age collection is small, or the number of parts K is large,

the proposed method tends to pick up some common back-

ground regions as object parts. To tackle this issue, we

utilize an unsupervised saliency detection method [54] to

suppress the background features in V so that the learned

part basis do not correspond to background regions. To this

end, for a given image and the unsupervised saliency map

D ∈ [0, 1]H×W , we soft-mask the feature map V as D◦V,

where ◦ is the Hadamard (entry-wise) product, before pass-

ing it into the semantic consistency loss function. Consider-

ing the non-salient pixels where D(u, v) = 0, the semantic

consistency loss (Eqn. 4) can be interpreted as solving the

following equation:

R(k, u, v)wk = 0, (6)
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which is essentially projecting the non-salient background

regions into the null space of the learned subspace spanned

by {wk}. This saliency constraint encapsulates our prior

knowledge that parts appear on objects (not background)

and the union of parts forms an object. Several co-

segmentation techniques [32, 7, 13] also make use of

saliency maps to improve the segmentation result. How-

ever, to our best knowledge, we are the first work to impose

the saliency constraint in the feature reconstruction loss.

Related to our semantic consistency loss, a recent

work [10] proposed a deep feature factorization (DFF) tech-

nique for part discovery. Instead of learning a part basis,

DFF proposes to directly factorize features V into response

maps R and basis matrix W using non-negative matrix fac-

torization (NMF); V → RW. Although DFF alleviates the

need for learning a part basis and also training segmentation

network, our learning strategy has several advantages com-

pared to DFF. First, we can make use of mini-batches and

standard gradient descent optimization techniques for learn-

ing part basis, whereas DFF performs NMF over the entire

image collection at once during inference time. This makes

our learning technique scalable to learning on large image

collections and can be applied on single test image. Sec-

ond, learning the part segmentation and basis using neural

networks enables easy incorporation of different constraints

on the part basis (e.g., orthonormal constraint) as well as the

incorporation of other loss functions such as concentration

and equivariance. Our experiments indicate that these loss

functions are essential to obtain good part segmentations

that are semantically consistent across images.

4. Experiments

Throughout the experiments, we refer to our technique

as “SCOPS” (Self-supervised Co-Part Segmentation). Since

SCOPS is self-supervised, the segmentation does not nec-

essarily correspond to the human annotated object parts.

Therefore, we quantitatively evaluate SCOPS with two dif-

ferent proxy measures on different object categories, in-

cluding CelebA [29], AFLW [22] (human faces), CUB [44]

(birds), and PASCAL [11] (common objects) datasets.

On CelebA, AFLW, and CUB datasets, we convert our

part segmentation into landmarks by taking part centers

(Eqn. 1) and evaluate against groundtruth annotations. Fol-

lowing recent works [50, 42], we fit a linear regressor that

learns to map the detected landmarks to groundtruth land-

marks and evaluate the resulting model on test data. On

PASCAL, we aggregate the part segmentations and evalu-

ate them with the foreground segmentation IOU.

Implementation Details We implement SCOPS1 with Py-

Torch, and we train the networks with a single Nvidia GPU.

We use relu5 2 concatenated with relu5 4 from VGG-

1The code and models are available at https://varunjampani.

github.io/scops

Table 1: Landmark evaluation on unaligned CelebA.

Mean L2 distance comparing SCOPS to recent works (left)

and also ablation with different loss functions (right).

Method Error (%)

ULD (K=8) [50, 42] 40.82

DFF (K=8) [10] 31.30

SCOPS (K=4) 21.76

SCOPS (K=8) 15.01

SCOPS(K=8) Error (%)

only Lsc 23.53

w/o Lsc 28.49

w/o Lcon 21.85

w/o Leqv 18.60

w/o Saliency 22.11

Table 2: Landmark evaluation on unaligned AFLW.

Mean L2 distance comparing SCOPS to recent works.

Method ULD (K=8) [50, 42] DFF (K=8) [10] SCOPS (K=8)

Error (%) 25.03 20.42 16.54

19 [39] as the pre-trained features V for the semantic con-

sistency loss.

4.1. Faces from Unaligned CelebA/AFLW

The CelebA dataset contains around 20k face images,

each annotated with a tight bounding box around face and 5

facial landmarks. One of the main advantages of SCOPS is

that it is relatively robust to pose and viewpoint variations

compared to recent landmark estimation works [50, 42]. To

demonstrate this, we experiment with unaligned CelebA

images where we choose images with face covering more

than 30% of the pixel area. Following the settings in [50],

we also exclude MAFL [51] (subset of CelebA) test images

from the train set resulting in a total of 45609 images. We

use the MAFL train set (5379 images) to fit the linear re-

gression model and test on the MAFL test set (283 images).

In Table 1, we report the landmark regression errors in

terms of mean L2 distance normalized by inter-ocular dis-

tance. To compare with the existing unsupervised landmark

discovery works, we implement the loss functions, includ-

ing concentration, separation, landmark equivariance, and

reconstruction, as proposed in [50] and [42]. We train our

base network with these constraints and refer it as “ULD”.

To validate our implementation of ULD, we train it on the

align celebA images that yields 5.42% landmark estimation

error, which is comparable to the reported 5.83% in [42]

and 3.46% in [50]. However, when training and testing with

the unaligned images, we found that ULD has difficulty in

converging to semantically meaningful landmark locations,

resulting in high errors. We also compare with a recent self-

supervised part segmentation technique of DFF [10] by con-

sidering the part responses as landmark detections. We train

SCOPS to predict 4 and 8 parts with all the proposed con-

straints and show the comparison results in Table 1 (left).

The results show that SCOPS performs favorably against

other methods. The visual results of SCOPS (K = 8) in

Fig. 5 shows that SCOPS part segments are more semanti-
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Table 3: Landmark evaluation on CUB. Normalized L2

distance comparing SCOPS to recent techniques (K=4).

Method CUB-001 CUB-002 CUB-003

ULD [50, 42] 30.12 29.36 28.19

DFF [10] 22.42 21.62 21.98

SCOPS 18.50 18.82 21.07

cally consistent across different images compared to exist-

ing techniques. In addition, we train SCOPS on the AFLW

dataset [22], which contains 4198 face images (after filter-

ing) with 21 annotated landmarks. Following [50], we pre-

train the model on CelebA and finetune on AFLW. We show

the results in Table 2. Results indicate that SCOPS outper-

forms both ULD and DFF on this dataset images as well.

Even though the landmark prediction accuracy do not di-

rectly measure the learned part segmentation quality, these

results demonstrate that the learned part segmentations are

semantically consistent across instances under the challeng-

ing unaligned setting.

Ablation Study To validate the individual contribution of

the different constraints, we conduct a detailed ablation

study and show the results in Table 1 (right). The corre-

sponding visual results are shown in Figure 5. While re-

moving any of the constraints results in worse performance,

the semantic consistency loss Lsc is the most important con-

straint in the proposed framework, and removing it would

cause the most performance drop. Visual results in Fig-

ure 5 indicate that the learned parts would not have a seman-

tic meaning without Lsc. Results also indicate that train-

ing without geometric concentration loss Lcon would cause

some parts dominating large image areas, and no equivari-

ance loss Leqv makes the learned parts not consistent across

images. These results demonstrate that all our loss functions

are essential to learning good part segmentations.

4.2. Birds from CUB

We also evaluate the proposed method on a more chal-

lenging bird images from CUB-2011 dataset [44], which

consists of 11,788 images with 200 categories of birds and

15 landmark annotations. The dataset is challenging be-

cause of the various bird poses, e.g., standing, swimming,

or flying, as well as the different camera viewpoints. We

train SCOPS with K = 4 on first three bird categories and

compare to ULD and DFF. We show some qualitative re-

sults in Figure 6. With such level of object deformation,

we found that ULD has difficulty in localizing meaningful

parts. Compared to DFF, the part segments produced by

SCOPS has better boundary alignment within and outside

the object, and the learned part segmentation is also more

consistent across instances. Similar to previous Section 4.1,

we use the landmark detection as the proxy task through
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Figure 5: Visual results on CelebA face images. SCOPS

produce consistent part segments compared to existing tech-

niques. Also shown is the effect of different loss constraints.

considering the part centers as detected landmarks. To ac-

count for the varying bird sizes across images, we normal-

ize the landmark estimation error by the width and height of

the provided ground truth bounding boxes. Table 3 shows

the quantitative results of different techniques. For all the

three bird categories, SCOPS performs favorably against
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Figure 6: Visual results on CUB bird images. SCOPS

is robust to pose and camera variations while having better

boundary adherence compared to other techniques.

both the ULD [50, 42], and DFF [10] techniques. For the

CUB-2011 dataset, SCOPS as well as other techniques do

not distinguish between left-right symmetric parts. For in-

stance, the left-wing and right-wing are often predicted as

the same part. From a part segmentation perspective, such

behavior is reasonable. However, considering the landmark

regression task, the part center of the two fanned out wings

would be on the main body, resulting in less meaningful

landmarks. As a result, the landmark regression error may

not accurately reflect the co-part segmentation quality and

distinguishing the symmetric semantic parts remains a chal-

lenging problem on this dataset images.

4.3. Common Objects from PASCAL

We also apply SCOPS on the PASCAL VOC

dataset [11], which contains images with common objects

with various deformations, viewing angles, and occlusions.

We extract the images that contain the specific object cate-

gory while the object bounding box occupies at least 20%

of the whole image. To remove significant occlusions in the

images, we further exclude the images where only a small

portion of ground-truth parts are present in the PASCAL-

part dataset [9]. The models are trained separately for each

object category with K = 4. Although the PASCAL-

part dataset [9] provides the object parts annotation, a good

self-supervised part segmentation can produce semantically

consistent part segments that may not correspond to man-

ually annotated part segments. Therefore, we do not eval-

uate the results with the part-level Intersection over Union

(IoU) since it is not a good indicator. Instead, we evalu-

ate the results as co-segmentation by aggregating the part
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Figure 7: Visual results on the PASCAL VOC datset [11].

SCOPS is robust to pose and appearance variations.

Table 4: Evaluation on the PASCAL VOC dataset.

Cosegmentation IoU comparing SCOPS to DFF on 7 ob-

ject classes of VOC (K=4).

class horse cow sheep aero bus car motor

DFF [10] 49.51 56.39 51.03 48.38 58.63 56.48 54.80

DFF+CRF [10] 50.96 57.64 52.29 50.87 58.64 57.56 55.86

SCOPS 55.76 60.79 56.95 69.02 73.82 65.18 58.53

SCOPS+CRF 57.92 62.70 58.17 80.54 75.32 66.14 59.15

segments and computing the foreground object segmenta-

tion IoU. Since the co-segmentation metric only indicates

the overall object localization and not the part segmentation

consistency, this metric is only indicative of part segmenta-

tion quality. We show some visual results in Figure 7 and

the quantitative evaluations in Table 4. In terms of IoU,

SCOPS outperform DFF by a considerable margin, both

with and without the CRF post-processing [23]. The visual

results show that SCOPS is robust to various appearance

and pose articulations. We show additional visual results in

the supplementary material.

5. Concluding Remarks

We propose SCOPS, a self-supervised technique for co-

part segmentation. Given an image collection of an object

category, SCOPS can learn to predict semantically consis-

tent part segmentations without using any ground-truth an-

notations. We devise several constraints, including geomet-

ric concentration, equivariance, as well as semantic consis-

tency, to train a deep neural network to discover seman-

tically consistent part segments while ensuring decent ge-

ometric configurations and cross instance correspondence.

Results on different types of image collections show that

SCOPS is robust to different object appearances, camera

viewpoints, as well as pose articulations. The qualitative

and quantitative results show that SCOPS performs favor-

ably against existing methods. We hope that the proposed

method could serve as a general framework for learning co-

part segmentation.
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[23] Philipp Krähenbühl and Vladlen Koltun. Efficient inference

in fully connected crfs with gaussian edge potentials. In Ad-

vances in neural information processing systems, pages 109–

117, 2011.

[24] Jonathan Krause, Hailin Jin, Jianchao Yang, and Li Fei-Fei.

Fine-grained recognition without part annotations. In CVPR,

2015.

[25] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.

3d object representations for fine-grained categorization. In

Proceedings of the IEEE International Conference on Com-

puter Vision Workshops, 2013.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, 2012.

[27] Daniel D Lee and H Sebastian Seung. Learning the parts

of objects by non-negative matrix factorization. Nature,

401(6755):788, 1999.

[28] Ce Liu, Jenny Yuen, and Antonio Torralba. Sift flow: Dense

correspondence across scenes and its applications. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

2011.

[29] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. In ICCV, 2015.

[30] Ignacio Rocco, Relja Arandjelovic, and Josef Sivic. Convo-

lutional neural network architecture for geometric matching.

In CVPR, volume 2, 2017.

[31] Ignacio Rocco, Relja Arandjelovic, and Josef Sivic. End-to-

end weakly-supervised semantic alignment. In CVPR, 2018.

[32] Michael Rubinstein, Armand Joulin, Johannes Kopf, and Ce

Liu. Unsupervised joint object discovery and segmentation

in internet images. In CVPR, 2013.

[33] Jose C Rubio, Joan Serrat, Antonio López, and Nikos Para-
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