This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Depth Coefficients for Depth Completion

Saif Imran Yunfei Long

Xiaoming Liu

Daniel Morris

Michigan State University
428 S. Shaw Ln, EB 2120, East Lansing, MI 48824

{imransai, longyunf, liuxm, dmorris}@msu.edu

Abstract

Depth completion involves estimating a dense depth im-
age from sparse depth measurements, often guided by a
color image. While linear upsampling is straight forward,
it results in artifacts including depth pixels being interpo-
lated in empty space across discontinuities between objects.
Current methods use deep networks to upsample and ”com-
plete” the missing depth pixels. Nevertheless, depth smear-
ing between objects remains a challenge. We propose a new
representation for depth called Depth Coefficients (DC) to
address this problem. It enables convolutions to more easily
avoid inter-object depth mixing. We also show that the stan-
dard Mean Squared Error (MSE) loss function can promote
depth mixing, and thus propose instead to use cross-entropy
loss for DC. With quantitative and qualitative evaluation
on benchmarks, we show that switching out sparse depth
input and MSE loss with our DC representation and cross-
entropy loss is a simple way to improve depth completion
performance, and reduce pixel depth mixing, which leads to
improved depth-based object detection.

1. Introduction

Active depth sensing has achieved significant gains in
performance and demonstrated its utility in numerous appli-
cations over the last two decades. High-resolution depth es-
timation contributes towards 3D scene understanding [28],
object detection [25], classification and tracking [9], and ob-
ject shape estimation [6]. Important sensors include Intel
RealSense and Microsoft Kinect 2 for indoor applications,
and Lidars such as the Velodyne VLP-64 for longer-range
outdoor applications such as automotive safety and auton-
omy. While performance in range and resolution are im-
proving, the cost for higher-resolution Lidars remains pro-
hibitive for numerous applications. As a result there is sig-
nificant ongoing effort into improving the resolution, while
lowering the cost of 3D sensors [33, 24, 14].

Our application goal is high-resolution shape analysis
and object detection using an inexpensive, low-resolution
Lidar, complemented with a high-resolution camera. The
key step of using a color image to guide depth super-

Figure 1: Our depth completion uses (a) a color image and
the subsampled (16-row) Lidar points projected into im-
age plane to estimate (b), a dense depth image. (c-e) are
zoomed-in view of input color image, super-resolved depth
of Ma et al. [19] and ours respectively. (f-h) are bird’s eye
view of input sparse Lidar data, (d), and (e), respectively.
Colors in the bird’s eye view show the number of height
pixels in each cell/pixel. So a smeared object shape has
height pixels spread out around the object boundary. Notice
the smearing of depth at the object boundaries in (g) com-
pared to (h). These depth-mixing pixels impact qualitative
appearance as well as subsequent tasks, such as object de-
tection and pose estimation.

resolution is called depth completion. Current state-of-the-

art methods [20, 4, 19], rely on deep convolutional networks

and perform well at up-sampling within-object depths.
While these methods score well on Root-Mean-Square
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Error (RMSE), nevertheless they still generate mixed-depth
pixels. We define mixed-depth pixels as those pixels whose
estimated depth places them at neither the foreground nor
background object, but in-between the objects. Since
mixed-depth pixels occur primarily at depth discontinuities,
they typically constitute a small fraction of the total pixel
count and various loss measures. Nevertheless, their im-
pact on the quality of depth maps and projected point-clouds
is significant including spurious points in mid-air and con-
necting surfaces between separate objects.

This paper aims to investigate the cause of the mixed-
depth pixels and propose a solution. We investigate how
current depth-image representation leads to depth mixing,
and propose an alternative representation called Depth Co-
efficients (DC) to avoid this. We also examine how loss
functions, such as MSE, favor mixed-depth pixels in certain
cases. Using our newly proposed DC representation, we
leverage cross-entropy loss to avoid promoting depth mix-
ing. Finally we propose a pair of evaluation metrics that can
be used in place of, or to complement, RMSE and MAE.
Unlike RMSE and MAE, our new metrics penalize mixed-
depth pixels and so may be better quality measures for eval-
uating depth completion. Sample output is shown in Fig. 1.

The contributions of this paper are: (1) an analysis of
the cause of mixed-depth pixels, (2) a novel depth repre-
sentation that reduces depth mixing, (3) a new use of cross
entropy as a depth loss function, (4) two evaluation metrics
that penalize mixed-depth pixels, and (5) demonstration of
improved object detection from super-resolved depth.

2. Related Work

Depth completion The substantially lower resolution of
depth sensors compared to color cameras has been a mo-
tivator for depth completion. Early work by Diebel and
Thrun [7] used markov random fields to guide upsampling,
and this was followed by a variety improvements including
bilateral filters [34], robust regularization [24], hand-crafted
filters [8] and image segmentation [ | 8]. More recently deep
convolutional neural networks (CNNs) have taken the lead
and moved on from the Middlebury dataset [27] to larger
datasets, NYU?2 [23] and KITTI [10]. Leading contenders,
including [20, 4, 19], perform well on these datasets with
both regular and irregularly sampled data. Our work uses a
similar network as [19], but with focus on the depth repre-
sentation and loss function, instead of the architecture.

Depth representation Measurements of 3D shape can be
represented multiple ways, each with its own advantages
and drawbacks. 3D point clouds are widely used in ob-
ject detection [25], segmentation [3] and surface normal
estimation [22]. Their advantages include being precise,
straight from sensors, and that euclidean distances can be
calculated between point cloud clusters. However, direct
convolutions are not possible with point clouds; object sur-

faces are not fully represented by point clouds since they
are sparse and unorganized. Voxels can provide a regu-
lar grid for object detection [35], object classification and
orientation estimation [26], but can be memory intensive
at high resolutions. Depth images, sometimes considered
2.5D representations, have been used for RGBD fusion and
instance segmentation [30, 13]. They naturally encode sen-
sor viewing rays and adjacency between points. They are
compact representations and with their regular grids can
be processed with CNN in an analogous way to color im-
age super-resolution [31, 32]. This is the representation of
choice for colorization techniques and fusion [23] as well
as depth completion.

While depth images are popular for depth completion,
we will examine an important drawback: the tendency to
generate mixed-depth pixels between surfaces. One goal of
our DC representation is to remedy this drawback.

Loss function for depth completion A key component
of depth completion is the choice of loss function. Re-
cent work has explored loss functions including L2 [4, 19],
L1 [20], inverse-L1 [14], and softmax losses on depth [16].
While these loss functions can achieve low error on mea-
sures including RMSE, MAE, iMAE, often it comes at the
cost of smoothing out depth estimate at object boundaries.
In this way, the sharp boundaries are lost/smeared and ob-
ject shapes are distorted. We propose to impose cross-
entropy on our probabilistic representation, and show this
gives both high performance and sharp boundaries.

3. Mixed-depth Pixels

Depth completion aims to estimate unknown depths at
image pixels using surrounding depth pixels plus the color
image. This is particularly challenging at depth disconti-
nuities; here a foreground object occludes the background
and the unknown pixel depths typically belong to either the
foreground or background (see Fig. 2). In this section we
consider three contributing factors to depth mixing: depth
ambiguity, the loss function, and depth representation.

3.1. Depth Ambiguity

Depth completion often faces an ambiguity problem for
pixels at object boundaries: do these pixels belong to the
foreground or background object. To address this ambigu-
ity, we first define the learning task: find model parameters
0 that best predict depth d;, given sparse depth and color
image data x;, with distribution pgq¢4:

0= argénax Ep,oro [108 Dimoder (di|xi; 0)] - €}

Here the expectation is performed over training data with
distribution pgyatq. The term p,,o4e; 1S @ probabilistic model
for how well depth d; is predicted by data ;.

Initially let’s consider that the image data x; consist
only of sparse depth values and no color images. Given
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Figure 2: An example of depth mixing, and how DC avoids it.
(a) A slice through a depth image showing a depth discontinuity
between two objects. (b) An example sparse depth representation:
each pixel either has a depth value or a zero. (c) The result of a
1D convolution, shown in (d), applied to the sparse depth. This
estimates the missing pixel, but generates a mixed-depth pixel be-
tween the two objects. (e) A DC representation of the sparse depth.
Each pixel with a depth measurement has three non-negative co-
efficients that sum to 1 (shown column-wise). (f) The result of
applying the same filter (d) to DC in (e). Missing depths are inter-
polated and notably there is no depth mixing between the objects.

a sparsely sampled object, we can ask whether a pixel near
a depth discontinuity boundary belongs to the foreground
or background. If the boundary is unknown, it will be am-
biguous whether it is foreground or background. What this
means in terms of Eq. 1 is that given the same data x;, there
are at least two compatible depths: d*) for foreground and
d® for background. If a color image is available, it may be
possible to exactly infer the boundary between objects, and
resolve this ambiguity. However, often this is not the case;
the boundary is not clear and hence the ambiguity persists.
In this paper we show that how this ambiguity is addressed
has important implications for depth estimation.

3.2. Depth Loss Functions with Ambiguity

One of the more popular loss functions is Mean Squared
Error (MSE). In part this is because the MSE gives the max-
imum likelihood solution to Eq. 1 when py,oqe1(d; |24 0) is
Gaussian. Here we consider the implications of using MSE
when there are depth ambiguities. First we address explicit
ambiguities: there are two examples of data x;, one having
depth dV) and the other d(®. The MSE loss is:

1
MSE(d) = 5 (lld = dV|? +|ld = d®]1?) . @)
which is minimum when

d= %(d(l) +d®?). 3)
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Figure 3: (a) shows MSE and MAE loss functions. These
perform an expectation over the probability of the data.
Now consider an ambiguous case where a pixel’s depth has
equal probability being d(*) or d(®), shown as black squares
in (b). Minimum MSE estimate, cZ, is the mid-point, while
MAE has equal loss for all points between these two depths.
This illustrates why MSE prefers mixed-depth pixels, and
MAE fails to penalize them.

And so the estimated point is a mixed-depth pixel falling
half-way between the foreground and background objects.
An illustration of this is in Fig. 3(b).

The same issue can occur even without explicit ambigu-
ities. Assume we have a perfectly trained model that gives
minimum MSE, and there are ambiguous situations as de-
fined in Sec. 3.1. Then as shown above, the minimum MSE
solution will be for the model to predict mixed-depth pixels.

Mean Absolute Error (MAE), has a similar issue, yet not
as severe. As in Fig. 3, in the pairwise ambiguity case, the
MAE loss of mixed-depth pixels is equal to the loss at the
actual values. Thus while MAE loss does not prefer mixed-
depth pixels like MSE, nevertheless mixed-depth solutions
may not be sufficiently penalized to avoid them.

3.3. Depth Evaluation

RMSE ! and MAE are used to evaluate depth comple-
tion. This is concerning if there are depth ambiguities, since
RMSE favors solutions with mixed-depth pixels. MAE,
while not favoring these, may only penalize them weakly.
Thus we need alternative evaluation metrics that properly
penalize mixed-depth pixels.

3.4. Depth Representation

An important factor impacting depth mixing, is how
depth is represented when input into a depth completion
CNN. The usual representation, which we call a sparse
depth image, is to project known depth points into the image
plane, setting the pixel value at that location to the depth,
and setting the remaining pixels to zero. The CNN applies
a sequence of convolutions and non-linear operations to the
sparse depth image eventually predicting a dense depth im-
age. To understand the tendency of CNNs to generate mixed
depths, consider a slice through a simple two-object scene
illustrated in Fig. 2(a-d). Applying a smoothing convolution

'RMSE has the same parametric minimum as MSE.
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Figure 4: An overview of our method. Sparse depth is con-
verted into Depth Coefficients with multiple channels, each
channel holding information of a certain depth range. This,
along with color, is input to the neural network. The output
is a multi-channel dense depth density that is optimized us-
ing cross entropy with a ground-truth DC. The final depth
is reconstructed based on the predicted density.

from (d) generates the dense depth estimate in (c). Notice
the predicted center pixel depth is an intermediate of the
two object depths — an example of depth mixing creating a
spurious point in empty space.

To avoid depth mixing, the mid-pixel in Fig. 2(c) should
be predicted purely from the (foreground or background)
object to which it belongs. In 1D it is simple to find convo-
lutions that avoid depth mixing, e.g., averaging to the right
or left. But for 2D depth images with unevenly distributed
measurements, it is much more complicated to avoid mix-
ing, as depth boundaries can have many shapes with respect
to known depth pixels. At the very least, doing so requires
learning a complex network. The simple alternative, pre-
sented next, is to use a representation where convolutions
can directly generate hypotheses without depth mixing.

4. Methodology

This section proposes a new representation for depth that
can be used by broad class of CNN architectures for depth
completion. The required modifications to a standard depth-
completion CNN are small: just the input, the output and the
loss function. Using this depth representation has potential
to overcome the depth-mixing issues described in Sec. 3.
Fig. 4 shows the overview of our approach, and how the
input and output of a CNN are reinterpreted.

4.1. Depth Coefficients

We seek a depth representation that not only can eas-
ily avoid pixel depth mixing, but also enables interpolation
between depths within objects. One solution is to use a dis-
crete one-hot depth representation. Despite enabling convo-
lutions without depth mixing, its drawback is the trade-off
between a loss in depth accuracy and a very large number of
channels to represent depth. Here we propose an alternative
that has the benefits of one-hot encoding, but requires far
fewer channels and eliminates the accuracy loss issue.

To represent a dense or sparse depth image we create a
multi-channel image of the same size, with each channel
representing a fixed depth, D = {D1, ..., Dy}. The depth
values increase in even steps of size b. In choosing the num-
ber of channels (or bins) we trade-off memory vs. precision.
For our applications, we chose 80 bins to span the full depth
being modeled, and this determines the bin width, b. Thus
each pixel ¢ has a vector of values, ¢; = {c;1,...,cin}s
which we call Depth Coefficients (DC), that represents its
depth, d;. Note that multi-channel representations have
been used before [29] for intensity images. But one of our
novelty lies in applying the discrete-channel representations
for depth images so that the continuity of depth values are
preserved. The following describes the DC representation
in more detail.

We constrain these coefficients to be non-negative, sum
to 1, and give the depth as the inner product with the channel

depths:
di = Zciij' (4)
J

Note this representation is not unique as many combinations
of coefficients may produce the same depth.

So we use the following simple, sparse representation
with three non-zero coefficients to represent depth. Let k
be the index of the depth channel closest to pixel depth d;
and § = di_bD L Since b is the spacing between adjacent bin
depths, the Dy, and Dy bins can be expressed in terms
of the center bin as D1 = Dy —band Dy41 = Dy + b
respectively. With this substitution all the terms cancel on
the right-hand side of Eq. 5 leaving d;. The DC vector for
pixel ¢ is:

0.5—-9
2

0.5+6
2

¢, =(0,...,0, ,0.5, ,0,...,0), (9
where three non-zero terms are (¢;(;—1), Cik, Ci(k+1))- This
is unique for each d;, satisfies Eq. 4, and sums to 1.

More than representing a continuous value as weighted
sum of discrete bins [15], we claim that using DC to repre-
sent depth provides a much simpler way for CNNs to avoid
depth mixing. The first step of a CNN is typically an image
convolution with N;,, input channels. For sparse depth in-
put, N;, = 1, and so all convolutions apply equally to all
depths, resulting mixing right from the start. For DC input,
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Figure 5: An illustration of P4, modeled as the sum of
the DC of the two points from Fig. 3. The estimated ¢&;;
with minimum cross-entropy loss, Eq. 6, will exactly match
Pjata, providing a multi-modal density. A pixel depth esti-
mate using Eq. 7 will find the depth of one of the peaks, and
not a mixed-depth value.

depths are divided over N;,, = N input channels, result-
ing in two important capabilities. First, CNNs can learn to
avoid mixing depths in different channels as needed. This
is similar to voxel-based convolutions [12, 21] which avoid
mixing spatially-distant voxels. This effect is illustrated in
Fig. 2(e-f), where a multi-channel input representation, (e),
allows convolutions to avoid mixing widely spaced depths.
Second, since convolutions apply to all channels simulta-
neously, depth dependencies, like occlusion effects, can be
modeled and learned by neural networks.

4.2. Loss Function

As shown in Sec. 3, MSE leads to depth mixing when
there is depth ambiguity. One way to avoid this is, rather
than estimate depth directly, to estimate a more general
probabilistic representation of depth. Now DC can provide
a probabilistic depth model, both for piuta and Proder in
Eq. 1. Minimizing the cross entropy of the predicted output
¢, representing pdam((ii |;; 6), is equivalent to minimizing
the KL divergence with c. In this way, we can learn to es-
timate py,odel(d;|2;; 0) parameterized with DC. Our cross-
entropy loss for pixel 7 is defined as:

N
Lfe(cij) = — Z Cij lOg éija (6)
j=1

where ¢;; terms are the DC elements of the ground truth
obtained using Eq. 5. Training a network to predict ¢;; that
minimizes L§¢ is equivalent to maximizing Eq. 1.

Use of cross-entropy loss has two main advantages. The
first is that depth ambiguities no longer result in a prefer-
ence for mixed-depth pixels. As illustrated in Fig. 5, DC
models multi-modal densities, and as we show in the next
section our depth estimate will find the location of the max-
imum peak at one of the depths. Second, optimizing cross
entropy leads to much faster convergence than MSE, which
suffers from gradients going to zero near the solution.

4.3. Depth Reconstruction

There are a number of options for depth reconstruction.
We can use Eq. 4, and substitute ¢;; for c¢;; for pixel ¢. How-
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Figure 6: (a) tRMSE and tMAE with threshold ¢ = 1, com-
pare to MSE and MAE in Fig. 3(a). (b) When there is a
depth ambiguity of at least ¢, in each case the minima will
be at the true depth and the ambiguous depth, while the
mixed-depth region between them will be penalized equally
to other large-error regions.

ever, the predicted coefficients may be multi-modal as in
Fig. 5, and it may be preferable to estimate the maximum
likelihood solution. We can estimate the depth for the peak
via the maximum coefficient c;;, € ¢; and its two neighbors:
J - éi(k—l)D(k—l) + ¢ Dy + éi(k+1)D(k+1)

T

)

Ci(k—1) T Cik + Cirt1)

A third way is for the network to directly predict depth in
addition to DC.

4.4. New Evaluation Metrics

While RMSE and MAE are useful metrics for overall
depth completion performance, we showed in Sec. 3 that
these encourage, or at least do not sufficiently penalize,
depth mixing. Thus we propose two complementary met-
rics that focus on depth surface accuracy and penalize depth
mixing equally to other large errors. These metrics are Root
Mean Squared Thresholded Error (tRMSE) and Mean Ab-
solute Thresholded Error (tMAE), defined as follows:

P ., A
tRMSE = Zmln((yz-—yi)at‘z) "

, i ’
i=1

P . ~ ~

=1

Here P is the number of pixels, ¢ the threshold distance dis-
tinguishing within-surface variation from inter-object sepa-
ration, y; the ground-truth value and §; the estimated value.

4.5. Uses of Depth Completion

Ultimately the choice of algorithm and evaluation metric
should depend on the use of depth completion. We identify
two uses where depth mixing can have a significant impact.
The first is to create dense, pixel-colored, 3D environment
models from lower-resolution depth sensors. Now mixed-
depth pixels occurring in empty space between objects, il-
lustrated in Fig. 3, can create connecting surfaces and neg-
atively impact the visual quality of the 3D environment.
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Method RMSE | MAE REL | tMAE | tRMSE 01 02 03 04 05
Ma [20] 0.236 0.13 0.046 | 0.068 0.075 52.3 | 82.3 | 92.6 | 97.1 | 994
Bilateral [2] 0.479 - 0.084 - 29.9 | 58.0 | 77.3 | 924 | 97.6
SPN [17] 0.172 - 0.031 - 61.1 | 84.9 | 93.5 | 98.3 | 99.7
Unet [5] 0.137 | 0.051 | 0.020 - 781 | 91.6 | 96.2 | 98.9 | 99.8
CSPN [5] 0.162 - 0.028 - 64.6 | 87.7 | 949 | 98.6 | 99.7
CSPN+UNet [5] | 0.117 - 0.016 - 83.2 | 934 | 97.1 | 99.2 | 99.9
Ours-all 0.118 | 0.038 | 0.013 | 0.042 | 0.053 | 86.3 | 95.0 | 97.8 | 99.4 | 99.9
Ours-3coeff 0.131 | 0.038 | 0.013 | 0.040 | 0.054 | 86.8 | 95.4 | 97.9 | 99.3 | 99.8

Table 1: Quantitative results of NYU2 (Done on Uniform-500 Samples + RGB) (units in m).

Another use of depth completion is for data fusion and
subsequent tasks such as object detection. If effective, this
could enable low-cost, low-resolution sensors to be up-
graded when combined with a color camera. We compare
object detection performance with super-resolved depths
both with and without our contribution.

4.6. Architectures

We selected a standard network for depth comple-
tion [19], and modified the input and output. On the input,
80/48 channels of depth/color respectively were fed into the
initial convolutions and then concatenated for further prop-
agation into the network. On the output, 80 channels are
predicted (rather than a single channel) using a 1 x 1 con-
volution. This output is trained using cross entropy loss on
a DC representation of semi-dense depth. Using s similar
strategy, other depth completion networks can also leverage
the advantages of DC.

5. Experiments
5.1. Experimental Protocols

We evaluate DC representation by means of two publicly
available datasets: KITTI (outdoor scenes) and NYU2 (in-
door scenes) respectively to demonstrate the performance of
our algorithm. We use KITTI depth completion dataset [33]
for both training and testing. The dataset is created by ag-
gregating Lidar scans from 11 consecutive frames into one,
producing a semi-dense ground truth with roughly 30% an-
notated pixels. The dataset consists of 85, 898 training data,
1,000 selected validation data, and 1, 000 test data without
ground truth. We truncate the top 90 rows of the image dur-
ing training since it contains no Lidar measurements.

The NYU-Depth v2 dataset consists of RGB and depth
images collected from 464 different scenes. We use the
official split of data, where 249 scenes are used for train-
ing and we sample 50K images out of the training similar
to [20]. For testing, the standard labelled set of 654 im-
ages is used. The original image size is first downsampled
to half, and then center-cropped, producing a network input

Method MAE | RMSE | iMAE | iRMSE | tMAE | tRMSE

Ma [19] 65.2 | 174.3 - - 59.4 69.5

DC-all 38.6 | 142.3 | 1.55 2.23 36.1 50.9
DC-3coeff | 37.8 | 160.6 | 1.53 2.41 33.4 47.2

Table 2: Depth completion results on KITTI validation
benchmark with 16-row Lidar input (units cm).

spatial dimension of 304 x 208. For comparison purposes,
we choose the state of the arts in both outdoor [19] and in-
door scenes [20, 5] using RGBD depth sensors.

Sub-Sampling Depth completion on uniformly subsam-
pling tends to be easier than irregular subsampling; Ma et
al. [19] reported improved performance with uniform sub-
sampling. But in real scenarios, sparse sensors such as Li-
dar often generate non-uniform, structured patterns when
projected into the image plane. Since our application is to
estimate dense depth from inexpensive Lidars in outdoor
scenes, we simulate lower resolution Lidars by subsampling
32 and 16 rows from 64R Lidar (depth acquisition sensor
used by KITTI). We subsample the points based on select-
ing a subset of evenly spaced rows of 64R raw data pro-
vided by KITTI (splitted based on the azimuth angle in Li-
dar space) and then projecting the points into the image.

Error Metrics We use the standard error metrics: RMSE,
MAE, Mean Absolute Relative Error (MRE), and ;. §; is
the percentage of predicted pixels whose relative error is
within a relative threshold (higher being better), defined as:

card max(%, ) <di

T Gard({n))

We also include our proposed metrics: tMAE, and tRMSE.

Implementation Details The experiment is implemented
in Tensorflow 1.10 [1]. We use Adam optimizer for train-
ing with an initial learning rate of 10~* and decreased to
half every 5 epochs. We use a single GPU 1080 Ti with
32G RAM for training and evaluation. Since GPU memory
does not support full-sized KITTI images, we train it with
patches of size 224 x 224 and batch-size of 3. For NYU2

(10)
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Figure 7: Depth completion with 16-row Lidar. (a) scene, (b, e) show Ma et al. [19] with significant mixed pixels. (c, f)
show our 3-coefficient estimation, demonstrating very little depth mixing. (d, g) show our estimation with all coefficients.

(e) ) ()

(9)

Figure 8: Another depth completion example with 16-row Lidar, where all subfigures are defined the same as Fig. 7. Inter-
estingly, higher RMSE is reported on 3-coefficient estimation as opposed to all-coefficient estimation.

dataset, we select batch-size of 10 and continue the training
for 7 — 10 epochs.

5.2. Results

Table 1 shows a comparison on the NYU2 dataset. Our
method shows improvements in all metrics except RMSE.
And interestingly, unlike CSPN + Unet [5], our method re-
quires no fine-tuning networks (which increases the infer-
ence time) to sharpen boundaries.

Table 2 reports a quantitative comparison of our method
with our implementation of Ma et al. [19] performing depth
completion on 16-row Lidar. We select 16-row Lidar since
they are inexpensive and commercially feasible for au-
tomakers. Results are on KITTI’s validation set of 1,000

images. Due to GPU memory constraints, our patch sizes
and batch sizes were smaller and so our implementation per-
formance is lower than in [19]. However, from a compari-
son perspective, our network architecture is the same (more
discussion in sec 4.6), and so the improved results of our
method are due to using DC input and cross-entropy loss on
the output.

5.3. Ablation Studies

Table 3 shows depth completion performance as Lidar
sparsity increases. At each sparsity level results are shown
for depth estimated from 3 coefficients, see Eq. 7, and
all coefficients, Eq. 4. While they both have roughly the
same MAE, 3-coefficient prediction has smaller tMAE and

12452



Sparsity | MAE | RMSE | tMAE | (RMSE
64R-3coeff | 24.1 | 121.2 | 20.3 | 344
64R-all | 25.2 | 106.1 | 23.9 | 374
32R-3coeff | 31.0 | 1322 | 24.4 | 39.5
32R-all | 31.1 | 1158 | 27.6 | 42.2
16R-3coeff | 37.8 | 160.6 | 33.4 | 47.2
16R-all | 38.6 | 142.3 | 36.1 | 50.5

Table 3: Performance evaluation at different levels of Lidar
sparsity (KITTT dataset). 64R, 32R and 16R refers to 64-
row, 32-row, 16-row respectively. Units in cm.

Input | Loss | MAE | RMSE | tMAE | tRMSE
SP | MSE | 6.63 | 15.28 5.96 6.97
DC | MSE | 6.10 | 15.32 5.72 6.73
SP CE 9.53 | 17.81 6.75 7.56
DC CE | 3.82 | 11.85 | 4.24 5.37

Table 4: A comparison whether DC on the input or DC with
cross entropy (CE) on output has the dominant effect. It
turns out that individually their effect is small, but together
have a large impact (NYU2 dataset). Units in cm.

tRMSE but larger RMSE. Likely this is due to fewer mixed-
depth pixels, as can be seen in Figs. 7 and 8.

One interesting question is whether the gains we are see-
ing are coming from use of DC on the input or use of DC
plus cross-entropy on the output. Table 4 compares all four
combinations of inputs and outputs and finds that by far the
biggest gains are when DC is used in both input and out-
put. We ablate on how the number of DC channels affects
efficiency, in Tab. 5. In each of the variation, we create the
DC from 2.5D depth and recover the 2.5D depth from DC
on-the-fly. There is some computational penalty to DC, but
it is relatively small, and can be remedied by reducing the
number of channels.

Another application of depth completion is to improve
on object detection. While it might seem intuitive that at
higher resolution, estimated dense depth could give better
vehicle detection, often this is not the case, and we are not
aware of other past literature reporting this. Likely mixed-
depth pixels have a large negative impact on object detec-
tion. Indeed, Tab. 6 shows worse car detection on Ma’s
output than on the raw 16-row sparse data. However, our
method is able to outperform sparse depth, an important
step towards improving Lidar-based object detection.

6. Conclusion

Upsampling depth in a manner that respects object
boundaries is challenging. Deep networks have shown
progress in achieving this, but nevertheless still generate
mixed-depth pixels. Our work tackles this problem on both

Method MAE (cm) | RMSE (cm) | Infer. time (ms)
2.5D (SP)-1C. 65.2 174 130
DC-10C-3coeff 50.2 169 140
DC-20C-3coeff 45.4 165 145
DC-40C-3coeff 37.8 161 161
DC-80C-3coeff 38.4 167 202

Table 5: Performance and efficiency on KITTI validation
benchmark using 16R Lidar points.

3D Bounding Box Bird’s Eye View Box
Upsample: | Easy | Med. | Hard | Easy | Med. | Hard
Raw 16R 544 | 36.2 | 31.3 | 73.6 | 58.1 | 50.4

Ma [19] 36.7 | 23.0 | 185 | 56.2 | 33.8 | 29.7
DC-3coeft | 64.9 | 41.9 | 34.7 | 78.1 | 54.0 | 45.6

Table 6: Average precision (%) for 3D detection and pose
estimation of cars on KITTI [I1] using Frustum Point-
Net [25]. The baseline, Raw-16R, uses 16 rows from the
Lidar, while Ma’s method [19] and our method start by
densely upsampling these 16-row data. In each case, the
method is trained on 3, 712 frames and evaluated on 3, 769
frames, of the KITTI 3D object detection benchmark [11]
using an intersection of union (IOU) measure of 0.7. Only
our method improves on the baseline, and this is the most
significant for 3D bounding boxes.

the input and the output sides of a prediction network. On
the input, our Depth Coefficients represent depth without
loss in accuracy (unlike binning) while separating pixels by
depth so that it is simple for convolutions to avoid depth
mixing. On the output side, instead of directly predicting
depth, we predict a depth density using cross entropy on
the Depth Coefficients. This is a richer representation that
avoids depth mixing and can enable deeper levels of fusion
and object detection. Indeed we show that, unlike other up-
sampling methods, our dense depth estimates can improve
object detection compared to sparse depth. Including Depth
Coefficients on the input and output of networks is an easy
and simple way to achieve better performance.

We showed that in the case of ambiguities, MSE is
a flawed metric to evaluate depth completion. Now that
depth completion methods are producing high-quality dense
depths, our proposed metrics, tRMSE and tMAE, are
preferable as they reward high-probable depth estimates and
give equal penalty to large errors, which are mostly mixed-
depth pixels.
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