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Abstract

Many recent works have shown that deep learning mod-

els are vulnerable to quasi-imperceptible input perturba-

tions, yet practitioners cannot fully explain this behavior.

This work describes a transfer-based blackbox targeted ad-

versarial attack of deep feature space representations that

also provides insights into cross-model class representa-

tions of deep CNNs. The attack is explicitly designed for

transferability and drives feature space representation of

a source image at layer L towards the representation of

a target image at L. The attack yields highly transferable

targeted examples, which outperform competition winning

methods by over 30% in targeted attack metrics. We also

show the choice of L to generate examples from is impor-

tant, transferability characteristics are blackbox model ag-

nostic, and indicate that well trained deep models have sim-

ilar highly-abstract representations.

1. Introduction

Many researchers have shown how to intentionally fool

well trained deep learning algorithms with adversarial at-

tacks [23, 5, 2, 20, 8]. The focus of most works is to have a

maximally devastating effect on the model, while introduc-

ing minimal perturbation to the data. In the case of image-

based data, the attacker works to disrupt the classification

ability of the network with imperceptible perturbations to

the image [23, 5, 1, 16, 15]. These attacks are of even

greater concern because we as a community do not have a

firm understanding of what is happening inside these largely

uninterpretable deep models. However, attacks may also

provide a way to study the inner-workings of such models.

One of the more difficult threat models for an adversary

operating on CNNs is a blackbox targeted attack. In this

scenario, the adversary only has access to inputs and out-

puts, with no working knowledge of the underlying weights

or architecture. Even more, the adversary may choose the

target class the oracle network misclassifies to. In this work,

we design a black-box targeted adversarial attack for deep

Figure 1: Illustration of Activation Attack. Given that the

whitebox model (fw) and blackbox model (fb) are initially

correct, the attack drives the layer L activations of the dog

image towards the layer L activations of the plane. After

attack, the dog’s activations are similar to the plane’s and

the perturbed image is classified as a plane to fw and fb.

CNN models. We design the attack using the property of

adversarial transferability, in which examples that are ad-

versarial to one model will often be adversarial to other

models [11, 18, 13]. The unique aspect of this attack is

that it explicitly perturbs the feature space of a deep model

with the intentions of creating more transferable adversar-

ial examples. The intuition comes from the observation that

intermediate features of well trained models are transferable

[26]. Thus, perturbations of intermediate features may also

be transferable.

To test this hypothesis, we design the Activation Attack

(AA), as shown in Fig. 1. By perturbing the source im-

age, the algorithm drives the layer L activations of a white-

box model on the source image, towards the layer L ac-

tivations of that model for a target image. The net effect

is perturbations in feature space. We test the transferabil-

ity of the perturbed features by feeding the perturbed image

7066



into the blackbox model. These perturbations then have a

not-directly-observable effect on the layer of the blackbox

model that has learned those same features.

This work makes several contributions to adversarial at-

tack and model interpretability research. First, we show that

constructing adversarial examples with feature space per-

turbations yields transferable adversarial examples. Also,

the layer at which features are perturbed has a large im-

pact on the transferability of adversarial examples. Next,

we use canonical CNN architectures to show the efficacy of

the attack to powerful algorithms, rather than custom mod-

els for simple tasks (i.e. MNIST classifiers). For model

interpretability, we show that blackbox model architecture

does not affect the characteristics of layer-wise transferabil-

ity. We also provide evidence for why a particular layer

produces more transferable examples than another. Finally,

this work gives testimony that intermediate feature repre-

sentations of deep learning models with fundamentally dif-

ferent architectures are similar. Also, those well trained

models have similar decision boundaries with similar class-

wise orientations in feature space.

2. Related Work

One area of related work is adversarial attack research.

The goal of many attacks is to introduce imperceptible per-

turbations to the input image that have devastating impacts

to the classifiers performance, but have no impact to hu-

man recognition. Szegedy et al. [23] and Goodfellow et al.

[5] were among the first to show that adversarial examples

generated on one model may also transfer to other models.

However, the transferability was not designed for, rather it

was a consequence of the method and the nature of well

trained models. Papernot et al. [18] developed a method

to train a substitute model using reservoir sampling so that

the substitute model generated more transferable examples.

The work showed results across a spectrum of machine

learning algorithms such as SVMs, decision trees, DNNs,

and was less focused on the implication in modern CNNs.

More recently, Tramér et al. [25] explored transferable

adversarial examples in more detail, and studied why trans-

ferability occurs through small custom MNIST models and

untargeted attacks. Specifically, they found model decision

boundaries are similar in arbitrary directions and adversar-

ial examples span a low-dimensional subspace of the input.

They also discuss perturbations of feature maps in direc-

tions of class-means, but results on CNNs are poor and not

conclusive. Finally, the authors provide evidence that in

some cases, well trained models for the same task, that both

exhibit vulnerability to simple attacks, are likely to trans-

fer adversarial examples. Our work differs in that the at-

tacks are targeted, we perform extensive experimentation of

layer-wise transferability on canonical CNNs for non-trivial

problems, and we further analyze why examples transfer.

Also related, Sabour et al. [21] were among the first to ex-

plicitly describe a whitebox only attack in feature space.

They use an expensive L-BFGS perturbation method and

show that examples of different classes can be forced very

near each other in feature space but still maintain their orig-

inal image structure. However, the authors briefly mention

that the perturbed examples do not transfer well to blackbox

models as targeted attacks and the attack is quite expensive.

In 2017 there was a competition for adversarial at-

tacks and defenses [11] in which the goal of the attack-

ers was to defeat a blackbox model with both non-targeted

and targeted-attacks. Most of the top performing attacks

[4, 11, 13, 14] generated and transferred adversarial exam-

ples from an ensemble of whitebox models, as introduced

in [13, 24]. The winners also used a momentum gradi-

ent denoising technique [4], which is incorporated in this

work. Most of the attacks were direct extensions of existing

attacks to operate with an ensemble. We will not use en-

sembles here, but will rather focus on a new technique for

perturbation that may be extended with ensembles as future

work.

Another area of related work is in model interpretabil-

ity, specifically in terms of shared feature representations

of deep models. Yosinski et al. [26] showed that deep fea-

ture representations of models trained with data from sim-

ilar distributions are transferable. They also measured the

transition from generalized features to highly class specific

(i.e. specialized) features as a function of layer depth. This

now serves as a seminal work in transfer learning. Although

[26] is not an adversarial attack, it does provide intuition as

to why feature space attacks may transfer.

3. Transferability Metrics

In this work we will define success through four met-

rics: error rate (error), untargeted transfer rate (uTR),

targeted success rate (tSuc), targeted transfer rate (tTR).

Importantly, we assume that all of the examples are cor-

rectly classified by the whitebox and blackbox model,

and an attack strength of ǫ = 0 means no attack.

We will denote the whitebox model as the function fw
and the blackbox model as fb, both of which output a

classification prediction. We define our original dataset

Dorig = {(x(1), y
(1)
true), . . . , (x

(N), y
(N)
true)} as a set of

N data/label pairs for which fb(x
(i)) = fw(x

(i)) =

y
(i)
true. For each attack, we create an adversarial dataset

Dadv = {(x
(1)
adv, y

(1)
target, y

(1)
true), . . . , (x

(N)
adv , y

(N)
target, y

(N)
true)}

where each data in Dorig has been perturbed by a targeted

attack method on fw, making it an adversarial example.

The error rate (error), or fooling rate of an attack is the

percentage of adversarial examples generated with fw that

are misclassified by fb. In other words, error is the per-

centage of examples in Dadv for which fb(xadv) 6= ytrue.
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Larger error indicates more effective attacks.

The untargeted transfer rate (uTR) is the rate at which

the particular examples that fool the whitebox model also

fool the blackbox model. Note, fooling in this context

means the prediction does not equal the true label. To mea-

sure uTR, we define DuTR ⊆ Dadv which contains only

the elements of Dadv that are misclassified by fw. Thus,

uTR =
1

|DuTR|

∑

(xadv,ytrue)
∈DuTR

✶[(fb(xadv)) 6= ytrue)], (1)

where ✶ is the indicator function that is 1 if the condition

is true and 0 otherwise. This metric intuitively encodes the

likelihood that a successful untargeted adversarial example

to the attacker’s whitebox model will also be adversarial to

the blackbox model.

Since the attacks considered are all targeted, we measure

the targeted success rate (tSuc). tSuc is the rate at which

adversarial examples generated with fw are classified by fb
as the target label. In other words, tSuc is the percentage of

examples in Dadv for which fb(xadv) = ytarget. The larger

tSuc, the more effective the attack at generating targeted

examples for the blackbox model.

The final metric is targeted transfer rate (tTR), which

measures the rate at which successful targeted adversarial

examples measured on the whitebox model are also suc-

cessful targeted examples on the blackbox model. For this,

we define DtTR ⊆ Dadv (also a subset of DuTR) which

contains all elements of Dadv that are misclassified by fw
as the specified target label. Formally,

tTR =
1

|DtTR|

∑

(xadv,ytarget)
∈DtTR

✶[(fb(xadv)) = ytarget)].

(2)

tTR encodes a likelihood that a successful targeted exam-

ple observed on the whitebox model will be a successful

targeted example to the blackbox model. Current targeted

attack literature commonly measures error and tSuc. We in-

troduce uTR and tTR as new metrics for attacks that are use-

ful if the attacker wants to maximize his chance of success

in a limited number of attempts. Also note, even though the

attacks are targeted, we also measure untargeted statistics

as they are still relevant to the power of the attacks.

4. Activation Attack Methodology

The Activation Attack (AA) is a blackbox targeted attack

designed for transferability. We can think of the Activation

Attack methodology as being split into two segments, which

mimic that of many deep learning attack practices. First, we

specify a loss function to optimize for. Then, we establish

the attack algorithm and perturbation method to adjust the

data based on the loss.

4.1. Loss Function

The AA loss function is defined as the Euclidean dis-

tance between the vectorized source image activations and

vectorized target image activations at some layer L. Let

fL be a truncated version of fw (the whitebox model) that

takes an image as input and outputs the activations at layer

L. So AL
s = fL(Is) are the source image (Is) activations

and AL
t = fL(It) are the target image (It) activations at L.

The loss function JAA between two images is then,

JAA(It, Is) = ‖fL(It)− fL(Is)‖2 =
∥

∥AL
t −AL

s

∥

∥

2
. (3)

The intuition behind the AA loss function is to make the

source image closer to an image of the target class in fea-

ture space. The implications/assumptions of this loss are

three-fold. First, adjustments of deep feature space repre-

sentations have a sizable impact on the classification result.

Since we are not explicitly optimizing on classification loss,

we rely on a byproduct of feature space perturbations be-

ing significant classification disruption. Because the feature

space representation is so large and uninterpretable, it is not

immediately obvious that this will be the case. Also, due to

the size (i.e. number of parameters) of the feature space, we

must assume that constrained image domain perturbations

will be able to move the original sample to be close enough

to the target sample (in feature space), as to be within re-

gions of the target class.

The second major assumption made with this loss func-

tion is: since intermediate layer features of deep models

have shown to be transferable [26], explicit attacks in fea-

ture space will yield transferable adversarial examples. Be-

cause modern deep models are unintelligible, there is no

way of measuring exactly what features are captured and

learned in each layer of a model. Thus, there is no way

of definitively knowing if two models have learned similar

feature sets, especially in deep and highly abstract layers.

This attack principally assumes that deep layers of different

deep models have learned similar features, and thus perturb-

ing these highly abstract features in one model will perturb

the same features in the other model. This is a reasonable

assumption because in transferability attacks, we train the

whitebox model on data from the same distribution as the

blackbox model’s training data. Thus, we expect that the

models have learned similar hierarchical feature sets in or-

der to properly model the classes of data. Since each model

architecture differs in complexity, number of layers, and

overall architecture, finding the layers at which features are

most transferable is left to experimentation.

The third major assumption is in regards to the learned

decision boundaries, and class orientations in feature space.
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Specifically, we assume that two different models trained

with data from the same distribution learn similar decision

boundaries and class orientations. This is particularly rel-

evant for the targeted attacks because in order for a trans-

ferred targeted example to be successful, the regions of that

target class in feature space must have the same orientation

w.r.t. the source image. In other words, if we start with the

source example’s feature space representation in the white-

box model and move it in the direction of the target sample,

this assumption states that the direction of movement is the

same (or at least similar) in the blackbox model.

4.2. Attack Algorithm

The perturbation mechanism is similar to that of the L∞

constrained iterative gradient sign attack with momentum

(TMIFGSM)[4]. Our attack algorithm iteratively perturbs

the source image using the sign of the momentum term,

where momentum is calculated as the weighted accumula-

tion of gradients. The difference here is that gradients are

not computed against classification loss. Rather, they are

computed against (3). Also, gradients flow backward start-

ing from layer L. Thus, momentum is calculated as

mk+1 = mk +
∇IkJAA(It, Ik)

||∇IkJAA(It, Ik)||1
, (4)

where m0 = 0 and Ik is the perturbed source image at it-

eration k. Note, I0 = Is. The perturbation method for this

targeted L∞ constrained Activation Attack is

Ik+1 = Clip(Ik − α ∗ sign(mk+1), 0, 1). (5)

Notice, the perturbed image is always clipped to range

[0, 1], as to maintain the distribution of the original image.

The intrinsic meaning of (5) is that we are slightly adjusting

each pixel of the image in the direction that will minimize

our JAA loss. The momentum term is used to intuitively

denoise or smooth the gradient directions, and is described

in [4] as an accumulation of a velocity vector in the gradient

direction. Also, keep in mind, we are perturbing the image

with the explicit intentions of altering the feature space rep-

resentation at some layer L. Thus any effects on classifica-

tion are implicit, as we are not specifically accounting for

classification loss.

There are also some hyperparameters to set for the algo-

rithm. Since this is an iterative algorithm, we must choose

the number of iterations K to perturb for, the total perturba-

tion amount ǫ, and the per-iteration perturbation amount α.

In all tests, we set K = 10, vary the ǫ, and set α = ǫ/K.

5. Experimental Setup

As observed in [25], examples tend to transfer between

models that achieve low error for a source task. Thus, we

choose CIFAR-10 [9] as our primary testing dataset, as it is

non-trivial, but state of the art models can achieve less than

10% test error [12]. For the primary experiment, we select

and train three canonical CNN model architectures of dif-

ferent design complexities that are capable of achieving low

error on CIFAR-10. We use ResNet-50 [6] which achieves

6.62% top-1 test error, DenseNet-121 [7] which achieves

4.72% error, and VGG19bn [22] which tests at 6.48% er-

ror. All models were trained in PyTorch [19] using code

from [12]. For completeness, we also extend some exper-

iments to ImageNet [3] trained models. We use pretrained

DenseNet-121 and ResNet-50 from PyTorchs Torchvision

Models. These models incur significantly higher error for

the source task, where DenseNet-121 has 25.35% top-1 er-

ror and ResNet-50 has 23.85% error.

For CIFAR-10 tests we measure the four primary metrics

over the full 10k test set. First, we use DenseNet-121 as a

whitebox model and evaluate transferability to VGG19bn

and ResNet-50 blackbox models, separately. Next, we use

VGG19bn as a whitebox model and evaluate transferabil-

ity to DenseNet-121 and ResNet-50 blackbox models, sep-

arately. This allows us to see trends across whitebox mod-

els and blackbox models together. For ILSVRC2012 tests,

we run one primary experiment on a 15k randomly sampled

subset of the full 50k test set. Here, we test a DenseNet-121

whitebox model and a ResNet-50 blackbox model.

A note about the setup is in regards to the selection of

the target image in the AA. For each dataset, we keep a li-

brary of examples from each class which have all been ran-

domly sampled from the test splits. In the case of CIFAR-

10, we keep 100 examples of each class and for ImageNet,

20 examples of each class. For a given source image, we

randomly select a target class, then choose the target im-

age from the library as the one with the furthest layer L
activations (as measured by Euclidean distance) from the

source image activations. Also, note that layer depth in the

following experiments is relative, i.e. layer 2 refers to a

layer closer to the input than layer 10. Also, in all tests the

deepest layer tested is the final FC layer which produces the

output class logits, and the sampled layers are evenly dis-

tributed across the model. A table decoding the layers for

each model is in the Supplemental Materials.

6. Experimental Results

To gain an understanding of whether or not the AA at-

tack is feasible, we will first do testing and gather empirical

results, then analyze our findings. There are two major axis

of parameters to test along: epsilon and depth. Epsilon tests

treat attacks from each layer separately and measure the im-

pacts of epsilon on transferability. Testing along the depth

axis involves fixing the strength of the attack and measuring

attack performance as a function of which layer we gener-

ate AA examples from. For these tests we use three base-

lines. The iterative targeted class method (ITCM) [10] is
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Figure 2: Transferability versus epsilon results for CIFAR-10 attacks transferring from different whitebox models to a

ResNet-50 blackbox model. DN and VGG represent DenseNet121 and VGG19bn whitebox models.

a targeted variant of the basic iterative method and repre-

sents a simple method. The targeted projected gradient de-

scent (TPGD) attack with random start from [14] represents

a more complex method which routinely performs between

the other baselines. And the targeted momentum iterative

fast gradient sign method (TMIFGSM) [4], which won the

2017 NIPS Attacks and Defences competition [11] for both

targeted and untargeted attacks, represents our most com-

plex method. The performance of each attack on the white-

box model is shown in the supplementals.

6.1. Epsilon Results

The epsilon tests are a result of two experiments with

a common goal, to fool a ResNet-50 classifier. First, we

measure the four transferability metrics when transferring

examples from DenseNet-121 to ResNet-50 (DN121 →
RN50), then run a VGG19bn → RN50 test. For both, ǫ is

swept as [0.0, 0.01, 0.03, 0.05, 0.07], where ǫ = 0 indicates

no attack. The results are shown in Fig. 2. The represented

AA attacks are from the best layers.

The first trend we see is that for all attacks across all

metrics, as ǫ increases the attack strength increases. We

also see the DenseNet-121 AA (DN-AA) is the most pow-

erful attack, while the ITCM attacks are the least effective,

and the TMIFGSM’s fall in-between. At ǫ = 0.07, DN-

AA achieves random accuracy on the blackbox model at

91.42% error with an improvement of 7.4% over the best

baseline. It outperforms the DN-TMIFGSM baseline in

terms of uTR, tSuc, and tTR by 7.2%, 32.6%, and 32.5%,

respectively. Also, both DN-AA and VGG-AA are higher

than all baselines in terms of tSuc and tTR, indicating that

both activation based attacks are better blackbox targeted at-

tacks than the baselines. The fact that DN-AA bests VGG-

AA indicates that whitebox model architecture does affect

AA performance. However, it is not intuitively surprising

that the more complex DN121 model is more transferable

to the RN50 blackbox model because both models are quite

deep in comparison to the relatively shallow VGG.

6.2. Depth Results

The most important results for our hypothesis are the

depth results. Here, we fix ǫ = 0.07 as this is where the

most powerful attack was able to achieve random accuracy

on the blackbox model, although our conclusions hold for

all tested epsilons. We then test the AA at different depths

of the models, running a full test step at each. Fig. 3 shows

the results of the depth sweep tests and Table 1 shows the

numerical results of the most powerful layer AA attack ver-

sus baselines. In Table 1, DN and VGG are CIFAR-10

trained whitebox models, and DNIN is ImageNet trained.

The first two rows of Fig. 3 are transfers from a

DN121 whitebox model, and the bottom two are from the

VGG19bn whitebox model. We see that layer-wise trans-

ferability characteristics are not dependent on blackbox

model. Meaning, the shape of the trendlines do not change

with the blackbox model. This is crucial to the feasibility

of the attack because it means the attacker may use their

own blackbox model to find the best transferring layer, then

use that knowledge to attack the true target blackbox model.

This limits the amount of queries to the target model. Fur-

ther, both DN121 whitebox tests show powerful transfer-

Table 1: Numerical Transfer Results (RN50 Blackbox)

Base Attack Error uTR tSuc tTR

DN ITCM 58.62 58.88 39.97 40.39

TPGD 61.33 61.52 35.84 36.15

TMIFGSM 84.12 84.32 42.53 42.90

AAL=21 91.49 91.48 75.13 75.38

VGG ITCM 53.72 54.94 37.40 41.88

TPGD 58.85 59.55 36.60 39.15

TMIFGSM 76.19 76.75 37.72 41.14

AAL=6 80.81 80.97 55.64 55.98

DNIN ITCM 21.14 21.18 0.99 1.01

TPGD 25.23 25.29 0.94 0.97

TMIFGSM 47.75 47.76 2.25 2.25

AAL=7 80.58 81.77 2.57 8.63
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Figure 3: Error, uTR, tSuc, and tTR rates versus depth for multiple transfer scenarios. The top two rows are transfers from a

DN121 whitebox model and the bottom two rows are transfers from a VGG19bn whitebox model. Dataset: CIFAR-10.

ability in the deeper layers, and both VGG19bn tests show

strong transferability in the middle layers. We also see that

AA’s from some layers yield less powerful attacks, indicat-

ing the choice of AA layer is critical.

If we choose the single best layer to attack from, we can

compare numerical performance to the best baseline, which

in all cases is TMIFGSM (see Table 1). For the DN121

model the best AA is from L = 21, and for VGG19bn

the best AA is from L = 6. When transferring to RN50,

the DN121L=21 attack outperforms the best baseline by

7.4% in error, 7.2% in uTR, 32.6% in tSuc, and 32.5% in

tTR. Similarly, when transferring to RN50 from VGG19bn,

the V GG19L=6 attack outperforms the best baseline by

4.6%, 4.2%, 17.9%, 14.8% in error, uTR, tSuc, and tTR,

respectively. Notice, for DN121 whitebox, error rate and

untargeted transfer rate are both about 91.5% and targeted

success and transfer rate are both about 75.2%. Such high

numbers indicate that these deep and complex models have

learned similar feature sets and similar decision boundary

structures. Also, adversarial directions for one model are

adversarial in other models. The targeted transfer metrics

further indicate that the orientation of the decision bound-

aries in feature space and the directions to move from one

class to another in feature space are similar across models.

Finally, we can compare performance of AA attacks di-

rectly. When transferring to RN50, DN121L=21 outper-

forms V GG19L=6 by 10.6%, 10.5%, 19.5%, 19.4% in er-

ror, uTR, tSuc, and tTR, respectively. Thus, we again find

that the choice of whitebox model to transfer from is impor-

tant.

6.3. Analysis

The next natural question to ask is why are some lay-

ers better than others, and in particular, why DN121L=21

and V GG19L=6? Given that the transferability trends in

Fig. 3 do not change with the blackbox model, to answer

this question we only consider characteristics of the white-

box model and the perturbed data. The first experiment is

to measure the separability of the class representations in

feature space. Intuitively, we expect that an AA with good

transferability characteristics would come from a layer with

well separated class representations. Fig. 4 shows the av-

erage angular distance between examples of the same class

(intra-class) and examples of different classes (inter-class),
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Figure 4: Average angular distance between feature maps

of examples from the same class (intra-class) and examples

of different classes (inter-class) for DN121 and VGG19bn

CIFAR-10 trained models.

Figure 5: L2 distance between original and AA perturbed

images as measured in the image domain (red) and when

projected onto the first two principal component directions

of the clean data (blue). Examples generated from DN121

and VGG19bn CIFAR-10 trained models.

across layer depths. For well separated layers, we expect the

inter-class distance to be high and the intra-class distance to

be low, while the difference between the two is large. Fig.

4 shows that classes become well separated in later layers

for DN121, and earlier in VGG19bn. Thus, the best layers

to transfer from (DN121L=21 and V GG19L=6) have well

separated class representations. However, the layer with the

largest difference is not necessarily the most transferable.

Another experiment is to look purely at the data and mea-

sure the average distance between original and perturbed

examples from each layer. We measure Euclidean distance

in the image domain and in two dimensions. Here, we

project to the first two principal component directions of

the clean data to measure the attack’s effects along the di-

rections of greatest variance. Instinctively, we may expect

that layers with better transferability characteristics would

produce adversarial examples that are farther from the orig-

inal data, as they may be more likely to have crossed a deci-

sion boundary. Fig. 5 shows the results of these experiments

on the DN121 and VGG19 whitebox models for layers with

some amount of feature separability. For DN121, layers 16

through 21 produce perturbed examples that are further in

two dimensions from the original data, but closer in the im-

age domain. Even though L = 21 doesnt produce the fur-

thest examples, the trend in the two dimensional measure-

ments is similar to the DN121 transferability trends from

Fig. 3 where layers 16-21 have the best transferability char-

acteristics. Similarly, for the VGG19 test, L = 6 produces

examples that are furthest from the originals in two dimen-

sions, while in the image domain these perturbed examples

tend to be closer to the original data. The VGG19 trend in

two dimensions also mimics Fig. 3 trends.

From this analysis, we observe a few tendencies that are

indicative of layers that produce transferable adversarial ex-

amples. First, these layers have well separated class repre-

sentations in feature space. And second, these layers pro-

duce examples that are closer to the original data in the im-

age domain, but further in the first two principal component

directions. Unfortunately, none of these results have been

absolutely conclusive. Thus, we leave it to future work to

more thoroughly explore the reasons for layer-wise transfer-

ability characteristics. However, with these analysis tech-

niques, we may now make informed predictions about what

layers will be most transferable when using different data

and models, avoiding the expensive step of sweeping the

layer. See the Supplemental Materials for analysis-first ex-

periments on SVHN [17] trained models.

6.4. ImageNet Results

We now extend the experiments to ImageNet trained

classifiers. Here, we measure the transferability of a DN121

→ RN50 attack and do a similar analysis of results. Fig.

6 shows transferability results for a fixed ǫ = 0.07 at-

tack, and DNIN rows of Table 1 show numerical results.

Interestingly, we see several different trends here. First,

early and middle layer DN121 AAs are more transferable,

unlike the CIFAR-10 tests. Next, the targeted transfer
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Figure 6: Error, uTR, tSuc, and tTR rates versus depth for ImageNet trained DN121 → RN50 transfer scenario.

statistics, tSuc and tTR, are lower for all attacks. Con-

sider DN121L=7 which is arguably the best AA layer. As

compared to the best baseline, the DN121L=7 AA has

32.8%, 34.0%, 0.3%, 6.3% better error, uTR, tSuc, and tTR,

respectively. The drop in tSuc and tTR from the CIFAR-10

tests speaks to the dissimilarity in decision boundaries of

these less accurate models.

The AA achieves a large margin over the baselines in

terms of fooling rate and likelihood of misclassification (i.e.

uTR). This gives an indication that the direction from an ex-

ample to a nearby decision boundary is similar in some lay-

ers. However, the overall layout and orientation of classes

in feature space is not the same between models. This high-

lights a fundamental weakness of single-model transfer-

based targeted attacks. If the models are not well trained

for the source task, the decision boundaries in feature space

are not highly similar, so it is difficult to find a direction

to move toward target class regions. An interesting future

work would be to generate AA examples from an ensemble,

Figure 7: Analysis of ImageNet trained DN121 layer-

wise feature similarity (top) and distance between original

and adversarial examples generated with Activation Attack

from this whitebox model (bottom).

which may find a mean direction to move.

Fig. 7 (top) shows the analysis of layer separability and

distance between original (clean) and perturbed examples.

Not surprisingly from the tSuc and tTR results, none of the

layers in the DN121 ImageNet model appear to have well

separated classes in feature space. Thus, we would expect

that driving our source features towards features of a single

target example does not necessarily mean we are driving

towards large regions of that target class in feature space. A

potential future work is to drive towards a centroid of target

class examples, which may inflate the targeted performance

and boost AA’s tSuc rate.

We also see a changing trend in Fig. 7 (bottom) when

we look at layers with some amount of separability. Rather

than layers 16 through 21 producing examples that are fur-

ther in two dimensions, earlier layers (10 through 15) gen-

erate further examples. This is similar to the Fig. 6 findings,

where earlier layers transfer better than later ones. This is

further evidence that more transferable AA layers produce

perturbed examples that are further from the originals along

the principal component directions, yet closer to the origi-

nals in the image domain.

7. Conclusion

This work describes an adversarial attack using feature

space perturbations that also provides insights into how

deep learning models make decisions. We show for well

trained models, feature space perturbations are highly trans-

ferable and the layer at which perturbations are transferred

has a large impact on attack effectiveness. Also, the layer-

wise transferability characteristics of a whitebox model are

blackbox model agnostic. Through analysis we find layers

that are best to attack from have well separated class rep-

resentations and produce examples that are perturbed more

along the principal component directions. Towards inter-

pretability, we indicate deep CNNs of differing architec-

tures learn similar hierarchical representations of the data

by showing that perturbing features of one model also per-

turbs those features of other models.
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