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Figure 1: Two agents learn to successfully navigate through a previously unseen environment to find, and jointly lift, a heavy

TV. Without learned communication, agents attempt many failed actions and pickups. With learned communication, agents

send a message when they observe or when they intend to interact with the TV. The agents also learn to grab the opposite

ends of the TV and coordinate to do so.

Abstract

Collaboration is a necessary skill to perform tasks that

are beyond one agent’s capabilities. Addressed extensively

in both conventional and modern AI, multi-agent collabo-

ration has often been studied in the context of simple grid

worlds. We argue that there are inherently visual aspects

to collaboration which should be studied in visually rich

environments. A key element in collaboration is commu-

nication that can be either explicit, through messages, or

implicit, through perception of the other agents and the vi-

sual world. Learning to collaborate in a visual environment

entails learning (1) to perform the task, (2) when and what

to communicate, and (3) how to act based on these com-

munications and the perception of the visual world. In this

paper we study the problem of learning to collaborate di-

rectly from pixels in AI2-THOR and demonstrate the bene-

fits of explicit and implicit modes of communication to per-

form visual tasks. Refer to our project page for more de-

tails: https://prior.allenai.org/projects/

two-body-problem

∗indicates equal contributions.
†work partially done as an intern at Allen Institute for AI

1. Introduction

Developing collaborative skills is known to be more cog-

nitively demanding than learning to perform tasks inde-

pendently. In AI, multi-agent collaboration has been stud-

ied in more conventional [32, 43, 9, 58] and modern set-

tings [53, 28, 79, 35, 56, 61]. These studies have mainly

been performed on grid-worlds and have factored out the

role of perception in collaboration.

In this paper we argue that there are aspects of collabo-

ration that are inherently visual. Studying collaboration in

simplistic environments does not permit to observe the in-

terplay between perception and communication, which is

necessary for effective collaboration. Imagine moving a

piece of furniture with a friend. Part of the collaboration is

rooted in explicit communication through exchanging mes-

sages, and some part of it is done through implicit com-

munication through interpreting perceivable cues about the

other agents behavior. If you see your friend going around

the furniture to grab it, you would naturally stay on the op-

posite side to avoid toppling it over. Additionally, commu-

nication and collaboration should be considered jointly with

the task itself. The way you communicate, either explicitly

or implicitly, in a soccer game is very different from when

you move furniture. This suggests that factoring out per-
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ception and studying collaboration in isolation (grid-world)

might not result in an ideal outcome.

In short, learning to perform tasks collaboratively in a

visual environment entails joint learning of (1) how to per-

form tasks in that environment, (2) when and what to com-

municate, and (3) how to act based on implicit and explicit

communication. In this work, we develop one of the first

frameworks that enables the study of explicitly and im-

plicitly communicating agents collaborating together in a

photo-realistic environment.

To this end we consider the problem of finding and lifting

bulky items, ones which cannot be lifted by a single agent.

While conceptually simple, attaining proficiency in this task

requires multiple stages of communication. The agents

must search for the object of interest in the environment

(possibly communicating their findings to each other), po-

sition themselves appropriately (for instance, opposing each

other), and then lift the object simultaneously. If the agents

position themselves incorrectly, lifting the object will cause

it to topple over. Similarly, if the agents pick up the object

at different time steps, they will not succeed.

To study this task, we use the AI2-THOR virtual envi-

ronment [48], a photo-realistic, physics-enabled environ-

ment of indoor scenes used in past work to study single

agent behavior. We extend AI2-THOR to enable multiple

agents to communicate and interact.

We explore collaboration along several modes: (1) The

benefits of communication for spatially constrained tasks

(e.g., requiring agents to stand across one another while

lifting an object) vs. unconstrained tasks. (2) The abil-

ity of agents to implicitly and explicitly communicate to

solve these tasks. (3) The effect of the expressivity of the

communication channel on the success of these tasks. (4)

The efficacy of these developed communication protocols

on known environments and their generalizability to new

ones. (5) The challenges of egocentric visual environments

vs. grid-world settings.

We propose a Two Body Network, or TBONE, for mod-

eling the policies of agents in our environments. TBONE

operates on a visual egocentric observation of the 3D world,

a history of past observations and actions of the agent, as

well as messages received from other agents in the scene.

At each time step, agents go through two rounds of commu-

nication, akin to sending a message each and then replying

to messages that are received in the first round. TBONE is

trained with a warm start using a variant of DAgger [70],

followed by a minimization of a sum of an A3C loss and

a cross entropy loss between the agents actions and the ac-

tions of an expert policy.

We perform a detailed experimental analysis of the im-

pact of communication using metrics including accuracy,

number of failed pickup actions, and episode lengths. Fol-

lowing our above research questions, our findings show

that: (1) Communication clearly benefits both constrained
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Figure 2: A schematic depicting the inputs to the policy

network. An agent’s policy operates on a partial observation

of the scene’s state and a history of previous observations,

actions, and messages received.

and unconstrained tasks but is more advantageous for con-

strained tasks. (2) Both explicit and implicit communica-

tion are exploited by our agents and both are beneficial,

individually and jointly. (3) For our tasks, large vocabu-

lary sizes are beneficial. (4) Our agents generalize well to

unseen environments. (5) Abstracting our environments to-

wards a grid-world setting improves accuracy, confirming

our notion that photo-realistic visual environments are more

challenging than grid-world like settings. This is consistent

with findings by past works for single agent scenarios.

Finally we interpret the explicit mode of communication

between agents by fitting logistic regression models to the

messages to predict the values such as oracle distance to

target, next action, etc., and find strong evidence matching

our intuitions about the usage of messages between agents.

2. Related Work

We now review related work in the directions of visual

navigation, navigation and language, visual multi-agent re-

inforcement learning (RL), and virtual learning environ-

ments employed in past works to evaluate algorithms.

Visual Navigation: A large body of work focuses on

visual navigation, i.e., locating a target using only vi-

sual input. Prominent early map-based navigation meth-

ods [47, 6, 7, 64] use a global map to make decisions.

More recent approaches [76, 87, 23, 85, 46, 71] reconstruct

the map on the fly. Simultaneous localization and map-

ping [84, 74, 24, 12, 67, 77] consider mapping in isolation.

Upon having obtained a map of the environment, planning

methods [13, 44, 52] yield a sequence of actions to achieve

the goal. Combinations of joint mapping and planning have

also been discussed [27, 50, 49, 31, 3]. Map-less meth-

ods [38, 54, 69, 72, 66, 92, 36] often formulate the task

as obstacle avoidance given an input image or reconstruct

a map implicitly. Conceptually, for visual navigation, we
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Figure 3: Overview of our TBONE architecture for collaboration.

must learn a mapping from visual observations to actions

which influence the environment. Consequently the task is

well suited for an RL formulation, a perspective which has

become popular recently [62, 1, 16, 17, 33, 42, 86, 59, 5,

8, 90, 25, 36, 91, 37]. Some of these approaches compute

actions from observations directly while others attempt to

explicitly/implicitly reconstruct a map.

Following recent techniques, our proposed approach also

uses RL for visual navigation. While our proposed ap-

proach could be augmented with explicit or implicit maps,

our focus is upon multi-agent communication. In the spirit

of factorizing out orthogonal extensions from the model, we

defer such extensions to future work.

Navigation and Language: Another line of work has

focused on communication between humans and virtual

agents. These methods more accurately reflect real-world

scenarios since humans are more likely to interact with an

agent using language rather than abstract specifications. Re-

cently Das et al. [19, 21] and Gordon et al. [34] proposed to

combine question answering with robotic navigation. Chap-

lot et al. [15], Anderson et al. [2] and Hill et al. [39] propose

to guide a virtual agent via language commands.

While language directed navigation is an important task,

we consider an orthogonal direction where multiple agents

need to collaboratively solve a specified task. Since visual

multi-agent RL is itself challenging, we refrain from intro-

ducing natural language complexities. Instead, in this paper,

we are interested in developing a systematic understanding

of the utility and character of communication strategies de-

veloped by multiple agents through RL.

Visual Multi-Agent Reinforcement Learning: Multi-

agent systems result in non-stationary environments posing

significant challenges. Multiple approaches have been pro-

posed over the years to address such concerns [82, 83, 81,

30]. Similarly, a variety of settings from multiple coopera-

tive agents to multiple competitive ones have been investi-

gated [51, 65, 57, 11, 63, 35, 56, 29, 61].

Among the plethora of work on multi-agent RL, we want

to particularly highlight work by Giles and Jim [32], Kasai

et al. [43], Bratman et al. [9], Melo et al. [58], Lazaridou

et al. [53], Foerster et al. [28], Sukhbaatar et al. [79] and

Mordatch and Abbeel [61], all of which investigate the dis-

covery of communication and language in the multi-agent

setting using maze-based tasks, tabular setups, or Markov

games. For instance, Lazaridou et al. [53] perform exper-

iments using a referential game of image guessing, Foer-

ster et al. [28] focus on switch-riddle games, Sukhbaatar

et al. [79] discuss multi-turn games on the MazeBase envi-

ronment [80], and Mordatch and Abbeel [61] evaluate on a

rectangular environment with multiple target locations and

tasks. Most recently, Das et al. [20] demonstrate, especially

in grid-world settings, the efficacy of targeted communi-

cation where agents must learn to whom they should send

messages.

Our work differs from the above body of work in that

we consider communication for visual tasks, i.e., our agents

operate in rich visual environments rather than a grid-like

maze, a tabular setup or a Markov game. We are partic-

ularly interested in investigating how communication and

perception support each other.

Reinforcement Learning Environments: As just dis-

cussed, our approach is evaluated on a rich visual environ-

ment. Suitable environment simulators are AI2-THOR [48],

House3D [88], HoME [10], MINOS [73] for Matter-

port3D [14] and SUNCG [78]. Common to these envi-

ronments is the goal of modeling real world living envi-

ronments with substantial visual diversity. This is in con-

trast to other RL environments such as the arcade environ-

ment [4], Vizdoom [45], block towers [55], Malmo [41],

TORCS [89], or MazeBase [80]. Of these environments,

we chose AI2-THOR as it was easy to extend, provides high

fidelity images, and has interactive physics enabled scenes,

opening up interesting multi-agent research directions be-

yond this current work.

3. Collaborative Task Completion

We are interested in understanding how two agents can

learn, from pixels, to communicate so as to effectively and

collaboratively solve a given task. To this end, we develop a
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Figure 4: Communication and belief refinement module for

the talk stage (marked with the superscript of (T )) of ex-

plicit communication. Here our vocab. is of size K = 2.

task for two agents which consists of two components, each

tailored to a desirable skill for indoor agents. The compo-

nents are: (1) visual navigation, which the agents may solve

independently, but which may also benefit from some col-

laboration; and (2) jointly synchronized interaction with the

environment, which typically requires collaboration to suc-

ceed. The choice of these components stems from the fact

that navigating to a desired position in an environment or

to locate a desired object is a quintessential skill for an in-

door agent, and synchronized interaction is fundamental to

understanding any collaborative multi-agent setting.

We first discuss the collaborative task more formally,

then detail the components of our network, TBONE, used

to complete the task.

3.1. Task: Find and Lift Furniture

We task two agents to lift a heavy target object in an en-

vironment, a task that cannot be completed by a single agent

owing to the weight of the object. The two agents as well

as the target object are placed at random locations in a ran-

domly chosen AI2-THOR living room scene. Both agents

must locate the target, approach it, position themselves ap-

propriately, and then simultaneously lift it.

To successfully complete the task, both agents perform

actions over time according to the same learned policy

(Fig. 2). Since our agents are homogeneous, we share the

policy parameters for both agents. Previous works [35, 61]

have found this to train agents more efficiently. For an

agent, the policy operates on (1) an ego-centric observa-

tion of the environment as well as a previous history of

(a) observations, (b) actions taken by the agent, and (c)

messages sent by the other agent. At each time step, the

two agents process their current observations and then per-

form two rounds of explicit communication. Each round of

communication involves each of the agents sending a sin-

gle message to the other. The agents also have the ability to

watch the other agent (when in view) and possibly even rec-

ognize their actions over time, thereby using implicit com-

munication as a means of gathering information.

More formally, an agent perceives the scene at time t

in the form of an image ot and chooses its action at ∈

A by computing a policy, i.e., a probability distribution

⇡θ(at|ot, ht−1), over all actions at ∈ A. In our case,

the images ot are first-person views obtained from AI2-

THOR. Following classical recurrent models, our policy

leverages information computed in the previous time-step

via the representation ht−1. The set of available actions A
consists of the five options MOVEAHEAD, ROTATELEFT,

ROTATERIGHT, PASS, and PICKUP. The actions MOVEA-

HEAD, ROTATELEFT, and ROTATERIGHT allow the agent

to navigate. To simplify the complexities of continuous time

movement we let a single MOVEAHEAD action correspond

to a step of size 0.25 meters, a single ROTATERIGHT ac-

tion correspond to a 90 degree rotation clockwise, and a

single ROTATELEFT action correspond to a 90 degree ro-

tation anti-clockwise. The PASS action indicates that the

agent should stand-still and PICKUP is the agent’s attempt

to pick up the target object. Critically, the PICKUP action

has the desired effect only if three preconditions are met,

namely both agents must (1) be within 1.5 meters of the ob-

ject and be looking directly at it, (2) be a minimum distance

away from one another, and (3) carry out the PICKUP action

simultaneously. Note that asking agents to be at a minimum

distance from one another amounts to adding specific con-

straints on their relative spatial layouts with regards to the

object and hence requires the agents to reason about such

relationships. This is akin to requiring the agents to stand

across each other when they pick up the object. The motiva-

tion to model spatial constraints with a minimum distance

constraint is to allow us to easily manipulate the complexity

of the task. For instance, setting this minimum distance to

0 loosens the constraints and only requires agents to meet

two of the above preconditions.

In our experiments, we train agents to navigate within

and interact with 30 indoor environments. Specifically, an

episode is considered successful if both agents navigate to

a known object and, jointly, lift it within a fixed number of

time steps. As our focus is the study of collaboration and

not primarily object recognition, we keep the sought object,

a television, constant. Importantly, environments as well

as the agents’ start locations and the target object location

are randomly assigned at the start of each episode. Conse-

quently, the agents must learn to (1) search for the target

object in different environments, (2) navigate towards it, (3)

stay within the object’s vicinity until the second agent ar-

rives, (4) coordinate that both agents are apart from each

other by at least the specified distance, and (5) finally and

jointly perform the pickup action.

Intuitively, we expect the agents to perform better on this

task if they can communicate with each other. We conjec-

ture that explicit communication will allow them to both

signal when they have found the object and, after naviga-
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Data Accuracy Reward
Missed

pickups

Unsuccess.

pickups

Visual 59.0 ±4.0 -2.7 ±0.3 0.3 ±0.09 2.9 ±0.8

Visual+depth 65.7 ±3.9 -2.0 ±0.3 0.4 ±0.1 3.2 ±0.9

Grid-world 78.2 ±3.4 -0.6 ±0.2 0.1 ±0.05 0.7 ±0.1

Table 1: Effect of adding oracle depth as well as moving to

a grid-world setting on unseen scenes, Constrained task.

tion, help coordinate when to attempt a PICKUP, whereas

implicit communication will help to reason about their rel-

ative locations with regards to each other and the object. To

measure the impact of explicit and implicit means of com-

munication in the given task, we train models with and with-

out message passing as well as by making agents (in)visible

to one another. Explicit communication would seem to be

especially important in the case where implicit communi-

cation isn’t possible. Without any communication, there

seems to be no better strategy than for both agents to in-

dependently navigate to the object and then repeatedly try

PICKUP actions in the hope that they will be, at some point,

in sync. The expectation that such a policy may be forth-

coming gives rise to one of our metrics, namely the count

of failed pickup events among both agents in an episode.

We discuss metrics and results in Section 4.

3.2. Network Architecture

In the following we describe the learned policy (actor)

⇡θ(at|ot, ht−1) and value (critic) vθ(ot, ht−1) functions for

each agent in greater detail. See Fig. 3 for a high level

visualization of our network structure. Let ✓ represent a

catch-all parameter encompassing all the learnable weights

in TBONE. At the t-th timestep in an episode we obtain

as an agent’s observation, from AI2-THOR, a 3 × 84 × 84
RGB image ot which is then processed by a four layer CNN

cθ into the 1024-dimensional vector cθ(ot). Onto cθ(ot) we

append an 8-dimensional learnable embedding e which, un-

like all other weights in the model, is not shared between

the two agents. This agent embedding e gives the agents

the capacity to develop distinct complementary strategies.

The concatenation of cθ(ot) and e is fed, along with his-

torical embeddings from time t− 1, into a long-short-term-

memory (LSTM) [40] cell resulting in a 512-dimensional

output vector eht capturing the beliefs of the agent given its

prior history and most recent observation. Intuitively, we

now would like the two agents to refine their beliefs via

communication before deciding on a course of action. We

consider this process in several stages (Fig. 4).

Communication: We model communication by allowing

the agents to send one another a d-dimensional vector de-

rived by performing soft-attention over a vocabulary of a

fixed size K. More formally, let Wsend ∈ R
K×512, bsend ∈

R
512, and Vsend ∈ R

d×K be (learnable) weight matri-

ces with the columns of Vsend representing our vocabulary.

Then, given the representation eht described above, the agent

computes soft-attention over the vocabulary producing the

message msend = Vsend softmax(Wsend
eht + bsend) ∈ R

d,

which is relayed to the other agent.

Belief Refinement: Given the agents’ current beliefs eht and

the message mreceived from the other agent, we model the

process of refining one’s beliefs given new information us-

ing a two layer fully connected neural network with a resid-

ual connection. In particular, eht and mreceived are concate-

nated, and new beliefs ĥt are formed by computing ĥt =
eht+ReLU(W2 ReLU(W1[eht ; mreceived]+b1)+b2), where

W1 ∈ R
512×(512+d), b1, b2 ∈ R

512, and W2 ∈ R
512×512

are learnable weight matrices. We set the value of d to 8.

Reply and Additional Refinement: The above step is fol-

lowed by one more round of communication and belief re-

finement by which the representation ĥt is transformed into

ht. These additional stages have new sets of learnable pa-

rameters including a new vocabulary matrix. Note that, un-

like in the standard LSTM framework where eht−1 would be

fed into the cell at time t, we instead give the LSTM cell the

refined vector ht−1.

Linear Actor and Critic: Finally the policy and

value functions are computed as ⇡θ(at|ot, ht−1) =
softmax(Wactor ht+bactor), and vθ(ot, ht−1) = Wcritic ht+
bcritic where Wactor ∈ R

5×512, bactor ∈ R
5, Wcritic ∈

R
1×512, and bcritic ∈ R

1 are learned.

3.3. Learning

Similar to others [19, 36, 18, 22], we found training

of our agents from scratch to be infeasible when using a

pure reinforcement learning (RL) approach, e.g., with asyn-

chronous actor critic (A3C) [60], even in simplified settings,

without extensive reward shaping. Indeed, often the agents

must make upwards of 60 actions to navigate to the object

and will only successfully complete the episode and receive

a reward if they jointly pick up the object. This setting of

extremely sparse rewards is a well known failure mode of

standard RL techniques. Following the above prior work,

we use a “warm-start” by training with a variant of DAg-

ger [70]. We train our models online using imitation learn-

ing for 10,000 episodes with actions for episode i sampled

from the mixture (1− ↵i)⇡θi−1
+ ↵i⇡

∗ where ✓i−1 are the

parameters learned by the model up to episode i, ⇡∗ is an ex-

pert policy (described below), and ↵i decays linearly from

0.9 to 0 as i increases. This initial warm-start allows the

agents to learn a policy for which rewards are far less sparse,

allowing traditional RL approaches to be applicable. Note

that our expert supervision only applies to the actions, there

is no supervision for how agents should communicate. In-

stead the agents must learn to communicate in such a way

that would increase the probability of expert actions.

After the warm-start period, trajectories are sampled

purely from the agent’s current policy and we train our

agents by minimizing the sum of an A3C loss, and a cross

entropy loss between the agents’ actions and the actions of
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Figure 5: Unseen scenes metrics (Constrained task): (a) Failed pickups (b) Missed pickups (c) Relative ep. len (d) Accuracy.

an expert policy. The A3C and cross entropy losses here are

complementary, each helping correct for a deficiency in the

other. Namely, the gradients from an A3C loss tend to be

noisy and can, at times, derail or slow training; the gradients

from the cross entropy loss are noise free and thereby stabi-

lize training. A pure cross entropy loss however fails to suf-

ficiently penalize certain undesirable actions. For instance,

diverging from the expert policy by taking a MOVEAHEAD

action when directly in front of a wall should be more

strongly penalized than when the area in front of the agent

is free as the former case may result in damage to the agent;

both these cases are penalized equally by a cross entropy

loss. The A3C loss, on the other hand, accounts for such

differences easily so long as they are reflected by the re-

wards the agent receives.

We now describe the expert policy. If both agents can

see the TV, are within 1.5 meters of it, and are at least a

given minimum distance apart from one another then the

expert action is to PICKUP for both agents. Otherwise given

a fixed scene and TV position we obtain, from AI2-THOR,

the set T = {t1, . . . , tm} of all positions (on a grid with

square size 0.25 meters) and rotations within 1.5 meters of

the TV from which the TV is visible. Letting `ik be the

length of the shortest path from the current position of agent

i ∈ {0, 1} to tk we then assign each (tj , tk) ∈ T × T

the score sjk = `0j + `1k. We then compute the lowest

scoring tuple (s, t) ∈ T × T for which s and t are at least a

given minimum distance apart and assign agent 0 the expert

action corresponding to the first navigational step along the

shortest path from agent 0 to s (and similarly for agent 1

whose expert goal is t).

Note that our training strategy and communication

scheme can be extended to more than two agents. We de-

fer such an analysis to future work, a careful analysis of the

two-agent setting being an appropriate first step.

Implementation Details. Each model was trained for

100,000 episodes. Each episode is initialized in a random

train (seen) scene of AI2-THOR. Rewards provided to the

agents are: 1 to both agents for a successful pickup action,

constant -0.01 step penalty to discourage long trajectories, -

0.02 for any failed action (e.g., running into a wall) and -0.1

for a failed pickup action. Episodes run for a maximum of

500 steps (250 steps for each agent) after which the episode

is considered failed.

4. Experiments

In this section, we present our evaluation of the effect

of communication towards collaborative visual task com-

pletion. We first briefly describe the multi-agent extensions

made to AI2-THOR, the environments used for our anal-

ysis, the two tasks used as a test bed and metrics consid-

ered. This is followed by a detailed empirical analysis of

the tasks. We then provide a statistical analysis of the ex-

plicit communication messages used by the agents to solve

the tasks, which sheds light on their content. Finally we

present qualitative results.

Framework and Data. We extend the AI2-THOR envi-

ronment to support multiple agents that can each be inde-

pendently controlled. In particular, we extend the existing

initialization action to accept an agentCount parameter

allowing an arbitrarily large number of agents to be speci-

fied. When additional agents are spawned, each is visually

depicted as a capsule of a distinct color. This allows agents

to observe each other’s presence and impact on the environ-

ment, a form of implicit communication. We also provide

a parameter to render agents invisible to one another, which

allows us to study the benefits of implicit communication.

Newly spawned agents have the full capabilities of a single

agent, being able to interact with the environment by, for ex-

ample, picking up and opening objects. These changes are

publicly available with AI2-THOR v1.0. We consider the

30 AI2-THOR living room scenes for our analysis, since

they are the largest in terms of floor area and also contain a

large amount of furniture. We train on 20 and test on the 20

seen scenes as well as the remaining 10 unseen ones.

Tasks. We consider two tasks, both requiring the two agents

to simultaneously pick up the TV in the environment: (1)

Unconstrained: No constraints are imposed here with re-

gards to the locations of the agents with respect to each

other. (2) Constrained: The agents must be at least 8 steps

from each other (akin to requiring them to stand across each

other when they pick up the object). Intuitively, we expect

the Constrained setting to be more difficult than the Un-

constrained, since it requires the agents to spatially reason
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Figure 6: Reward vs. training episodes on the Constrained

task. (left) Seen scenes (right) Unseen scenes.

about themselves and objects in the scene. For each of the

above tasks, we train 4 variants of TBONE, resulting from

switching explicit and implicit communication on and off.

Switching off implicit communication amounts to rendering

the other agent invisible.

Metrics. We consider the following metrics: (1) Reward,

(2) Accuracy: % successful episodes, (3) Number of Failed

pickups, (4) Number of Missed pickups: where both agents

could have picked up the object but did not, (5) Relative

episode length: relative to an oracle. These metrics are ag-

gregated over 400 random initializations (Unseen scenes:

10 scenes × 40 inits, Seen scenes: 20 scenes × 20 inits).

Note that accuracy alone isn’t revealing enough. Naı̈ve

agents that wander around and randomly pick up objects

will eventually succeed. Also, agents that correctly locate

the TV and then keep attempting a pickup in the hope of

synchronizing with the other agent will also succeed. Both

these cases will however do poorly on the other metrics.

Quantitative analysis. All plots and metrics referenced in

this section contain 90% confidence intervals.

Fig. 5 compares the four metrics: Accuracy, Failed pick-

ups, Missed pickups, and Relative episode length for unseen

scenes and the Constrained task. With regards to accuracy,

explicit+implicit communication fares only moderately bet-

ter than implicit communication, but the need for explicit

communication is dramatic in the absence of an implicit

one. But when one considers all metrics, the benefits of

having both explicit and implicit communication are clearly

visible. The number of failed and missed pickups is lower,

while episode lengths are a little better than just using im-

plicit communication. The differences between just explicit

vs. just implicit also shrink when looking at all metrics to-

gether. However, across the board, it is clear that communi-

cating is advantageous over not communicating.

Fig. 6 shows the rewards obtained by the 4 variants of

our model on seen and unseen environments for the Con-

strained task. While rewards on seen scenes are unsurpris-

ingly higher, the models with communication do general-

ize well to unseen environments. Adding the two means of

communication is more beneficial than either and far better

than not having any means of communication. Interestingly

Figure 7: Constrained vs. unconstrained task (on unseen

scenes): (left) Accuracy, (right) Relative episode length.

just implicit communication fares better than just explicit,

on accuracy.

Fig. 7 presents the accuracy and relative episode lengths

metrics for the unseen scenes and Unconstrained task in

contrast to the Constrained task. In these plots, for brevity

we only consider the extreme cases of having full commu-

nication vs. no communication. As expected, the Uncon-

strained setting is easier for the agents with higher accu-

racy and lower episode lengths. Communication is also ad-

vantageous in the Unconstrained setting, but its benefits are

lesser compared to the Constrained setting.

Table 1 shows a large jump in accuracy when we pro-

vide a perfect depth map as an additional input on the Con-

strained task, indicating that improved perception is benefi-

cial to task completion. We also obtained significant jumps

in accuracy (from 31.8 ± 3.8 to 37.2 ± 4.0) when we in-

crease the size of our vocabulary from 2 to 8. This analy-

sis was performed in the explicit-only communication and

Constrained environment setup. However, note that even

with a vocabulary of 2, agents may be using the full contin-

uous spectrum to encode more nuanced events.

Grid-world abstraction. In order to assess impact of learn-

ing to communicate from pixels rather than, as in most prior

work, from grid-world environments, we perform a direct

translation of our task into a grid-world and compare its

performance to our best model. We transform the 1.25m

× 2.75m area in front of our agent into a 5× 11 grid where

each square is assigned a 16 dimensional embedding based

on whether it is free space, occupied by another agent, oc-

cupied by the target object, otherwise unreachable, or un-

known (in the case the grid square leaves the environment).

The agents then move in AI2-THOR but perceive this par-

tially observable grid-world. Agents in this setting acquire

a large bump in accuracy on the Constrained task (Table 1),

confirming our claim that photo-realistic visual environ-

ments are more challenging than grid-world like settings.

Interpreting Communication. While we have seen, in

Section 4, that communication can substantially benefit our

task, we now investigate what these agents have learned

to communicate. We focus on the communication strate-

gies learned by agents with a vocabulary of two in the
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Single agent

failed pickup

Joint agent

failed pickup
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joint pickup

Red/green agent is looking at the TV

Weight of 1st comm. symbol in 

1st round for red/green agent

Red/green agent is ≤2m from the TV

Agents are ≥8 steps apart.

Failed single agent pickup
Failed dual agent pickup
Successful pickup

Weight of 1st comm. symbol in 2st

round for red/green agent

!"1
(Ag 1)

!"1
(Ag 2)

!$1
(Ag 1)

!$1
(Ag 2)

(a) Constrained setting agent trajectories (b) Communication between agents

Figure 8: Single episode trajectory with associated agent communication.

�≤ �
≤
t �≤

r �see �see
t �see

r

Est. 0.35 1.23 -0.35 0.88 0.59 -1.1

SE 0.013 0.019 0.013 0.013 0.015 0.013

�pick �
pick
t,0 �

pick
r,0 �

pick
t,1 �

pick
r,1 �

pick
∨,r

Est 1.06 -0.01 -0.04 0 -0.03 -1.09

SE 0.012 0.007 0.006 0.007 0.006 0.021

Table 2: Estimates, and corresponding robust bootstrap

standard errors, of the parameters from Section 4.

Constrained setting. Fig. 8 displays one episode trajectory

of the two agents with the corresponding communication.

From Fig. 8(b) we generate hypotheses regarding commu-

nication strategies. Suppressing the dependence on episode

and step, for i ∈ {0, 1} let ti be the weight assigned by

agent i to the 1st element of the vocabulary in the 1st round

of communication, and similarly let ri be as ti but for the

2nd round of communication. When the agent with the red

trajectory (henceforth called agent 0 or A0) begins to see

the TV the weight t0 increases and remains high until the

end of the episode. This suggests that the 1st round of com-

munication may be used to signify closeness to or visibility

of the TV. On the other hand, the pickup actions taken by

the two agents are associated with the agents making r0 and

r1 simultaneously small.

To add evidence to these hypotheses we fit logistic re-

gression models to predict, from (functions of) ti and ri,

two oracle values (e.g., whether the TV is visible) and

whether or not the agents will attempt a pickup action. As

the agents are largely symmetric we take the perspective

of A0 and define the models �−1 P (A0 is ≤ 2m from the TV) =

�≤ + �
≤
t t0 + �≤

r r0, �−1 P (A0 sees TV and is ≤ 1.5m from it) =
�see + �see

t t0 + �see
r r0, and �−1 P (A0 attempts a pickup action) =

�pick+
P

i∈{0,1}(�
pick
t,i ti+�

pick
r,i ri)+�

pick
∨,r max(r0, r1) where

�−1 is the logit function. Details of how these models are

fit can be found in the appendix.

From Table 2, which displays the estimates of the above

parameters along with their standard errors, we find strong

evidence for the above intuitions. Note, for all of the esti-

mates discussed above, the standard errors are very small,

suggesting highly statistically significant results. The large

positive coefficients associated with �
≤
t and �see

t suggest

that, conditional on r0 being held constant, an increase in

the weight t0 is associated with a higher probability of A0

being near, and seeing, the TV. Note also that the estimated

value of �see
r is fairly large in magnitude and negative. This

is very much in line with our prior hypothesis that r0 is

made small when agent 0 wishes to signal a readiness to

pickup the object. Finally, essentially all estimates of co-

efficients in the final model are close to 0 except for �
pick
∨,r

which is large and negative. Hence, conditional on other

values being fixed, max(r0, r1) being small is associated

with a higher probability of a subsequent pickup action. Of

course r0, r1 ≤ max(r0, r1) again lending evidence to the

hypothesis that the agents coordinate pickup actions by set-

ting r0, r1 to small values.

5. Conclusion

We study the problem of learning to collaborate in visual

environments and demonstrate the benefits of learned ex-

plicit and implicit communication to aid task completion.

We compare performance of collaborative tasks in photo-

realistic visual environments to an analogous grid-world en-

vironment, to establish that the former are more challeng-

ing. We also provide a statistical interpretation of the com-

munication strategy learned by the agents.

Future research directions include extensions to more

than two agents, more intricate real-world tasks and scal-

ing to more environments. It would be exciting to enable

natural language communication between the agents which

also naturally extends to involving human-in-the-loop.
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