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Abstract

Recently, graph convolutional neural networks have

been widely studied for graph-structured data represen-

tation and learning. In this paper, we present Graph

Diffusion-Embedding networks (GDENs), a new model for

graph-structured data representation and learning. GDENs

are motivated by our development of graph based feature d-

iffusion. GDENs integrate both feature diffusion and graph

node (low-dimensional) embedding simultaneously into a u-

nified network by employing a novel diffusion-embedding

architecture. GDENs have two main advantages. First, the

equilibrium representation of the diffusion-embedding oper-

ation in GDENs can be obtained via a simple closed-form

solution, which thus guarantees the compactivity and effi-

ciency of GDENs. Second, the proposed GDENs can be

naturally extended to address the data with multiple graph

structures. Experiments on various semi-supervised learn-

ing tasks on several benchmark datasets demonstrate that

the proposed GDENs significantly outperform traditional

graph convolutional networks.

1. Introduction

Compact feature representation of data is a fundamen-

tal problem in computer vision and machine learning area.

Convolutional Neural Networks (CNNs) have been widely

applied for data representation and learning in many com-

puter vision applications, in which the underlying data gen-

erally have a grid-like structure. However, in some real

problems, data are not coming with grid-like structure but

instead have some irregular structures. Such data are usu-

ally represented in the form of graphs. Traditional CNNs

generally fail to directly address graph-structured data and

the convolution operation on graph data is generally not as

well-defined as on grid structure data. To solve this prob-

lem, early works aim to use Recursive Neural Network-

s (RNNs) [7, 29] to deal with directed acyclic graph data.

As an extension of RNNs, Graph Neural Networks (GNNs)
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[9, 27] have also been introduced to address the general

cyclic graph data.

Recently, there is an increasing attention in generalizing

neural networks to deal with arbitrary graph-structured data

[22, 10, 30, 30]. For example, Bruna et al. [3] propose a

CNN-like neural architecture on graphs in the Fourier do-

main by employing eigen-decomposition of graph Lapla-

cian. To reduce high computational complexity of graph

Laplacian eigen-decomposition, Defferrard et al. [4] pro-

pose to approximate the filters by using recurrent Cheby-

shev polynomials. Kipf and Welling [15] further propose

a simplified Graph Convolutional Network (GCN) based

on the first-order approximation of spectral filters. Similar

work has also been proposed in [6]. Atwood and Towsley

[1] propose Diffusion-Convolutional Neural Networks (D-

CNNs) by employing a random walk diffusion process to

include contextual information for data feature representa-

tion. Monti et al. [22] present mixture model CNNs (MoN-

et) which provides a kind of unified generalization of CNN

architecture on graphs. Veličković et al. [30] present Graph

Attention Networks (GAT) by designing an attention layer

that aggregates the feature information of the neighboring

nodes for data representation.

In this paper, we propose Graph Diffusion-Embedding

Networks (GDENs) for graph data representation and learn-

ing. GDENs are motivated by our development on graph

based feature diffusion to explore contextual information

for graph node representation. Our GDENs follow the gen-

eral network structure of recent GCNs [15], but compute

the hidden representation of each node by employing a nov-

el ‘diffusion-embedding’ architecture. The main benefits

of the proposed diffusion-embedding architecture are two

aspects. First, the equilibrium representation of the pro-

posed diffusion-embedding operation can be obtained via

a simple closed-form solution, which guarantees the com-

pactivity and efficiency of GDENs. Second, the proposed

diffusion-embedding architecture can be naturally extended

to address the data with multiple graph structures. Overall,

the main contributions are summarized as follows:

• We propose Graph Diffusion-Embedding Networks

(GDENs) which integrate graph feature diffusion and
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embedding together for graph data representation and

semi-supervised learning.

• We propose a general mechanism of graph based fea-

ture diffusion which can provide a compact contextu-

al representation for graph node by jointly employing

both unary feature information of each node and con-

textual feature information from its neighboring nodes

simultaneously.

• Based on GDENs, we provide a novel graph neural net-

work (called as M-GDEN) to address multiple graph

data representation and learning.

As an application, we apply GDENs on various semi-

supervised classification tasks on graph data. Experimental

results on several widely used benchmarks demonstrate that

GDENs significantly outperform the state-of-the-art graph

neural network models on semi-supervised learning tasks.

2. Brief Review of GCN

As an extension of CNNs from regular grid to irregular

graph, Graph Convolutional Networks (GCNs) [4, 15] have

been widely studied for graph data representation and learn-

ing in recent years. Similar to the classic CNNs, GCNs con-

tain several convolutional hidden layers that take a feature

map matrix H(k) ∈ R
n×dk as the input and output a fea-

ture map H(k+1) ∈ R
n×dk+1 by using a graph convolution

operator. In general, we set dk+1 ≤ dk, and thus the con-

volution operation also provides a kind of low-dimensional

embedding for nodes on graph.

Given an input feature matrix H(0) ∈ R
n×d0 and graph

A ∈ R
n×n, GCN [15] conducts the following layer-wise

propagation as,

H(k+1) = σ
(

(I + D− 1
2 AD− 1

2 )H(k)W(k)
)

(1)

where k = 0, 1, · · ·K − 1 and I is an identity matrix.

D = diag(d1,d2 · · · dn) is a diagonal matrix with di =
∑n

j=1 Aij . W(k) ∈ R
dk×dk+1 is a layer-specific trainable

weight matrix. σ(·) denotes an activation function, such as

ReLU(·) = max(0, ·).
Remark. To alleviate the problem of numerical instabilities

and vanishing gradients, it is suggested to use the following

re-normalization trick in above propagation (Eq.(1)) as [15],

I + D− 1
2 AD− 1

2 → D̃
− 1

2 ÃD̃
− 1

2 (2)

where Ã = A + I and D̃ii =
∑n

j=1 Ãij .

The last layer of GCN outputs the final representation

H(K) of graph nodes, which can be widely utilized for

graph data analysis, such as graph classification [4], graph

link prediction [16] or graph node (semi-supervised) classi-

fication [15], etc. In this paper, we focus on semi-supervised

classification. For this task, a softmax activation function

is further conducted on each row of the final output fea-

ture map matrix H(K). Let Z = softmax(H(K)) ∈ R
n×c

be the final output, where c denotes the number of class.

Then Z provides a kind of label prediction for graph n-

odes. The weight parameters of GCN network W =
{W0,W1, · · ·W(K)} are trained by minimizing the cross-

entropy loss over all the labeled nodes L, i.e.,

LSemi-GCN = −
∑

i∈L

∑c

j=1
Yij lnZij (3)

where L indicates the set of labeled nodes and each row

Yi·, i ∈ L of Y denotes the corresponding label indication

vector for the i-th labeled node [15].

3. Graph Diffusion-Embedding Networks

3.1. Motivation

In this section, we propose Graph Diffusion-Embedding

Networks (GDENs). Our GDENs are motivated by our ob-

servation on layer-wise propagation rule of GCN [15]. Intu-

itively, the propagation rule Eq.(1) in GCN can be decom-

posed into two operations, i.e.,

F(k) = (I + D− 1
2 AD− 1

2 )H(k) (4)

H(k+1) = σ
(

F(k)W(k)
)

(5)

where Eq.(4) provides a kind of feature diffusion on graph

A and Eq.(5) presents a non-linear transformation (embed-

ding) for feature F(k) via projection matrix W(k) and non-

linear activation function σ(·).
Here, we focus on diffusion operation Eq.(4), which is

further analyzed as follows. For simplicity, we rewrite up-

date Eq.(4) as

F = (I + D− 1
2 AD− 1

2 )H (6)

Let F = (f1 · · · fn) and H = (h1 · · · hn), then we can note

that the representation fi of each node is updated as

fi =
∑

j,j ̸=i
Âijhj + hi (7)

where Â = D− 1
2 AD− 1

2 . From Eq.(7), we can note that GC-

N indeed employs an one-step feature diffusion on normal-

ized graph Â (biased by feature itself) to obtain contextual

feature representation in layer-wise propagation. Obviously,

this one-step diffusion does not return the equilibrium rep-

resentation of feature diffusion which thus may lead to weak

contextual feature representation. This motivated us to pro-

pose a general diffusion-embedding network. In the follow-

ing, we first propose our general feature diffusion models.

Then, we present the details of our GDEN architecture.
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3.2. Graph based feature diffusion

Given a graph A ∈ R
n×n and feature descriptors H =

(h1, h2 · · · hn) ∈ R
n×d of graph nodes, the aim of our graph

based feature diffusion is to learn a kind of feature represen-

tation F = Fd(A,H) = (f1, f2 · · · fn) ∈ R
n×d for graph

nodes by incorporating the contextual information of their

neighboring nodes. In the following, we present three kinds

of graph based feature diffusion models. Note that, similar

diffusion models have been commonly used in ranking and

label propagation tasks [34, 35, 5, 20]. Differently, here we

propose to explore them for feature diffusion and represen-

tation problem.

(1) Graph random walk feature diffusion

One intuitive way to formulate the feature diffusion

Fd(A,H) is using random walk with restart (RWR) model

[35, 20, 12, 13] and obtain the equilibrium representation of

graph nodes based on the final equilibrium state of random

walk. First, we define a transition probability matrix as

P = AD−1 (8)

where D = diag(d1 · · · dn) with di =
∑

j Aij . Then, start-

ing from initial F(0) = H = (h1 · · · hn), we explore RWR

model to conduct diffusion as

f
(t+1)
i = λ

∑

j,j ̸=i
Pijf

(t)
j + (1− λ)hi (9)

where t = 0, 1, · · · and λ ∈ [0, 1]. 1 − λ is the jump prob-

ability. Each vector f
(t)
j denotes the j-th row of F(t). The

restart term is used to preserve the unary feature information

of each node during diffusion. It is known that, the above

iteration (Eq.(9)) will converge to the equilibrium state as,

F = (1− λ)(I− λP)−1H (10)

We use this converged F as the final equilibrium representa-

tion of graph nodes.

Remark. It is noted that, GCN update rule Eq.(4 or 7)

is similar to the one-step iteration (t = 0) of Eq.(9) with

α = 0.5 (on row normalize graph P). Therefore, from diffu-

sion aspect, the proposed diffusion Eq.(9 or 10) provides

an equilibrium and flexible contextual feature representa-

tion by exploring graph structure A and the input feature

H. We will incorporate this feature diffusion in our GDEN

layer-wise propagation, as shown in §3.3 in detail.

(2) Graph Laplacian feature diffusion

In additional to the above RWR model, we can also for-

mulate feature diffusion Fd(A,H) by employing Laplacian

regularization models [34]. In particular, we propose to

compute the optimal diffused representation F by minimiz-

ing the following Laplacian regularization problem,

min
F

1

2

n
∑

i,j=1

Aij∥fi − fj∥22 + λ
n
∑

i=1

∥fi − hi∥22 (11)

The first smoothness term conducts feature diffusion (or

propagation) on graph A while the second fitting term en-

courages to preserve the original feature information hi of

each node in diffusion process. It is known that, Eq.(11) has

a closed-form solution which is given by

F = λ(D− A + λI)−1H (12)

Similarly, we can also compute the optimal diffused repre-

sentation F by minimizing the following normalized Lapla-

cian regularization problem [35, 20],

min
F

1

2

n
∑

i,j=1

Aij∥
fi√
di

− fj
√

dj

∥22+λ
n
∑

i=1

∥fi−hi∥22 (13)

The optimal closed-form solution is given by

F = (1− γ)(I− γD− 1
2 AD− 1

2 )−1H (14)

where γ = 1
λ+1 .

Remark. Note that, the above Laplacian regularization

models have been explored for graph node ranking and la-

bel propagation [34, 35, 5, 11]. Here we propose to explore

them for feature diffusion task whose aim is to learn a con-

textual feature representation for graph node while preserve

the unary information of each node.

Table 1 summarizes the feature diffusion operators based

on the proposed three diffusion models. In additional to

these methods, some other diffusion models [5, 20] can al-

so be explored here. Generally, these models have three

main desired properties. First, they conduct feature diffu-

sion while preserving the information of original feature H

in feature diffusion process. Second, they all have an explic-

it equilibrium representation which can be computed via a

simple closed-form solution and thus can be computed ef-

ficiently. Third, they can be naturally extended to address

multiple graphs, as shown in §3.4 in detail.

Table 1. Summary of the proposed feature diffusion methods.

Model Diffusion operator Fd(A,H)
RWR Eq.(9) (1− λ)(I− λAD−1)−1H

LapReg Eq.(11) λ(D− A + λI)−1H

NLapReg Eq.(13) (1− γ)(I− γD− 1
2 AD− 1

2 )−1H

3.3. GDEN architecture

In this section, we present our Graph Diffusion-

Embedding Networks (GDENs) based on the proposed fea-

ture diffusion operators. Similar to the structure of GCN-

s [15], GDENs contain one input layer, several hidden lay-

ers and one final perceptron layer. For hidden layer, it takes

a feature matrix H(k) ∈ R
n×dk as the input and outputs a

feature map matrix H(k+1) ∈ R
n×dk+1 by using diffusion

and embedding operators. The diffusion operator aims to
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learn a contextual feature representation for graph nodes by

exploring graph structure while the embedding operator is

used to learn a low-dimensional representation for graph n-

odes.

Formally, given an input feature matrix H(0) ∈ R
n×d0

and graph A ∈ R
n×n, GDENs conduct the following layer-

wise propagation as,

H(k+1) = σ
(

Fd(A,H(k))W(k)
)

(15)

where k = 0, 1, · · ·K − 1 and Fd(A,H(k)) denotes the

contextual (diffused) feature representation based on graph

A and feature map matrix H(k). We can use any kind of

diffusion models Fd(A,H(k)) listed in Table 1. W(k) ∈
R

dk×dk+1 is a layer-specific trainable weight matrix to con-

duct linear embedding. Function σ(·) denotes an activation

function, such as ReLU(·) = max(0, ·).
The last layer of GDENs output the final representation

of graph nodes H(K), which can be used for graph classifi-

cation [4], graph link prediction [16] and graph node semi-

supervised classification task [15]. For semi-supervised

learning task, we add a softmax activation function on each

row of the final output feature map matrix H(K) as,

Zij = softmax(H(K)) =
exp(H

(K)
ij )

∑c

j=1 exp(H
(K)
ij )

(16)

where c denotes the number of class. The final obtained

output Z ∈ R
n×c gives the final label prediction for al-

l graph nodes in which each row Zi of matrix Z denotes

the corresponding label prediction vector for the i-th node.

The optimal weight parametersW = {W0,W1, · · ·W(K)}
of GDENs are obtained by minimizing the following cross-

entropy loss function over all the labeled nodes L, i.e.,

LSemi-GDEN = −
∑

i∈L

∑c

j=1
Yij lnZij (17)

where L indicates the set of labeled nodes and Yi·, i ∈ L
denotes the corresponding label indication vector for the i-
th labeled node, i.e.,

Yij =

{

1 if node i belongs to j-th class

0 otherwise

Figure 1 shows the training loss values across different

epochs. One can note that, GDENs obtain obviously low-

er cross-entropy loss values than GCN [15] at convergence,

which clearly demonstrates the higher predictive accuracy

of GDENs model. Also, the convergence speeds of GDEN-

s are faster than GCN, indicating the efficiency of GDENs.

Figure 2 demonstrates the 2D visualizations of the feature

map output by the first hidden layer of GCN and GDEN

(with normalized Laplacian diffusion), respectively. Differ-

ent colors denote different classes. Intuitively, one can ob-

serve that the data of different classes are distributed more

clearly in our GDEN representation, which demonstrates

the benefits of GDEN on conducting graph data represen-

tation and learning.
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Figure 1. Demonstration of cross-entropy loss values across differ-

ent epochs on Cora dataset.

3.4. GDENs on multiple graphs

One important property of the proposed GDENs is that

they can naturally address the structured data with mul-

tiple graph representations. This is because we can ex-

tend Laplacian regularized diffusion models (Eq.(11) and

Eq.(13)) on multiple graphs to provide multiple graph fea-

ture diffusion operators. Formally, given an input feature

matrix H(0) ∈ R
n×d0 with multiple graph representations

A = {A(1) · · ·A(m)}, we can obtain an optimal feature d-

iffusion F = Fd(A
(1),A(2) · · ·A(m);H) on graph set A by

optimizing

min
F

1

2

m
∑

v=1

(

n
∑

i,j=1

αr
vA

(v)
ij ∥fi − fj∥22

)

+ λ
n
∑

i=1

∥fi − hi∥22

s.t.
∑m

v=1
αv = 1, αv ≥ 0 (18)

where α = (α1, α2 · · ·αm) denote the important weights

of different graphs which are learned adaptively. The pa-

rameter r > 1 is used to control the weight distribution, as

suggested in previous work [32]. First, we rewrite Eq.(18)

more compactly as

min
F

∑m

v=1
αr
vTr(FT L(v)F) + λTr(FT F− 2FT H)

s.t.
∑m

v=1
αv = 1, αv ≥ 0 (19)

where L(v) = D(v) − A(v) and D(v) = diag{d(v)
1 · · · d(v)

n }
and d

(v)
i =

∑

j A
(v)
ij . The equivalent Lagrangian form is

min
F

∑m

v=1
αr
vTr(FT L(v)F) + λTr(FT F− 2FT H)

+ ξ(
∑m

v=1
αv − 1) (20)

s.t. αv ≥ 0
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Figure 2. t-SNE [21] visualizations of the feature maps output by the first hidden layer of GCN and GDEN, respectively on the CIFAR10

dataset. Different classes are marked by different colors. Note that, the data distribution of different classes is demonstrated more clearly

in our GDEN representation.

where ξ is the Lagrangian multiplier. Fix α and obtain the

optimal F by setting the derivation w.r.t F to zero and obtain

F = λ
(

λI +
∑m

v=1
αr
vL(v)

)−1
H (21)

Fix F and we similarly obtain the optimal as α.

α =
(1/Tr(FT L(v)F))

1
r−1

∑m

v=1(1/Tr(FT L(v)F))
1

r−1

(22)

Therefore, the optimal F can be obtained by alternatively

updating F and α as follows until convergence,

F← λ
(

λI +
∑m

v=1
αr
vL(v)

)−1
H (23)

α← (1/Tr(FT L(v)F))
1

r−1

∑m

v=1(1/Tr(FT L(v)F))
1

r−1

(24)

Empirically, the algorithm converges quickly, generally less

than 10 iterations. Similarly, we can also derive multiple

graph feature diffusion based on normalized Laplacian reg-

ularization diffusion model (Eq.(13)).

Based on the above multiple graph feature diffusion oper-

ators, we can extend GDEN on multiple graphs and present

our Multiple GDENs (M-GDENs). Formally, given an in-

put feature matrix H(0) ∈ R
n×d0 and multiple graphs

A = {A(1) · · ·A(m)}, M-GDENs conduct the following

layer-wise propagation as,

H(k+1) = σ
(

Fd(A
(1) · · ·A(m);H(k))W(k)

)

(25)

where k = 0, 1, · · ·K − 1 and Fd(A
(1) · · ·A(m);H(k)) de-

notes the contextual (diffused) feature representation which

is obtained by computing the optimal solution of multiple

graph diffusion Eq.(18) via update algorithm Eqs.(23,24).

3.5. Comparison with related works

We provide the detail comparisons with some recent

works including Graph Convolutional Network (GCN) [15],

Diffusion Convolutional Neural Network (DCNN) [1], D-

iffusion Convolutional Recurrent Neural Network (DCRN-

N) [19] and Graph Attention Networks (GAT) [30]. Both

GCN [15] and GAT [30] use a one-step diffusion operation

while DCRNN [19] utilizes a finite K-step truncation of

diffusion on graph. In DCNN [1], it uses a standard ran-

dom walk based diffusion process. One main limitation for

these methods is that the equilibrium representation of fea-

ture diffusion is not obtained, which thus may lead to weak

contextual feature representation in their networks. Also,

these models can not be used directly for the data with

multiple graph structures. In contrast, in GDENs, we ex-

plore regularized diffusion (Eq.(9), Eq.(11) and Eq.(13)) in

our diffusion-embedding architecture for contextual feature

representation. The main benefits are three aspects. First,

they all have an explicit equilibrium representation which

encourage GDENs to generate more compact feature rep-

resentations for graph data. Second, they conduct feature

diffusion while preserve the information of original input

feature in feature representation process. Thus, they present

an effective representation by integrating both unary feature

information of graph nodes and contextual feature informa-

tion from neighboring nodes simultaneously. Third, they

can be naturally extended to address multiple graphs.

4. Experiments

4.1. Datasets

We test our GDENs on five datasets including three stan-

dard citation network benchmark datasets (Citeseer, Cora

and Pubmed [28]) and two widely used image datasets (CI-

FAR10 [17] and SVHN [23]. The details of these datasets
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and their usages in our experiments are introduced below.

Citeseer dataset. It is a citation network which contains

3327 nodes and 4732 edges. The nodes of this network are

falling into six categories and each node has a 3703 dimen-

sion feature descriptor.

Cora dataset. Similar to Citeseer dataset, it contains 2708

nodes and 5429 edges. Each node has a 1433 dimension

descriptor and all nodes are falling into six categories.

Pubmed dataset. This is a larger network data which con-

tains 19717 nodes and 44338 edges in all. Each node has

a 500 dimension feature descriptor and all the nodes are

falling into three categories.

CIFAR10 dataset. It contains 10 classes of 50000 RGB im-

ages with the same size 32×32 [17]. In our experiments, we

select 1500 images per class and use 15000 images in all for

evaluation. For each image, we first extract a CNN feature

descriptor for it. Then, we construct a k nearest neighbor

graph (k = 3) with nodes denoting images and edges repre-

senting the neighborhood relationship between images. The

weight of each edge is computed by Heat kernel function.

SVHN dataset. It contains 73257 training and 26032 test

RGB images with the same size 32× 32 [23]. Each image

contains several digits and the task is to classify the digit in

the center of image. Similar to CIFAR10, we select 1500

images per class and use 15000 images in all for evaluation.

We extract a CNN feature for each image and construct a

k nearest neighbor graph (k = 3) for images. The edge

weight is computed by Heat kernel function.

4.2. Experimental setup

For Cora, Citeseer and Pubmed datasets, we follow the

experimental setup in work [15, 30]. For image dataset

CIFAR10 [17] and SVHN [23], we randomly select 1000,

2000 and 4000 images as labeled samples and use the re-

maining data as unlabeled samples. For unlabeled samples,

we select 1000 images for validation purpose and use the

remaining 13000, 12000 and 10000 images as test sam-

ples. All the accuracy results are averaged over 10 runs

with different data splits. We implement our GDEN with

three versions, i.e., 1) GDEN-RWR that utilizes random

walk with restart (RWR) based diffusion operation in G-

DEN; 2) GDEN-Lap that utilizes graph Laplacian diffusion

operation in GDEN; 3) GDEN-NLap that utilizes normal-

ized Laplacian diffusion operation in GDEN. The optimal

parameter λ in GDEN-RWR, GDEN-Lap and γ in GDEN-

NLap are determined based on the validation loss values.

Similar to [15], we set the number of diffusion-embedding

layers in GDENs to 2. The number of units in each hid-

den layer is set to 40. We present additional experiments on

performance of GDENs with different hidden unit number-

s and convolutional layers in §4.4. We train GDENs for a

maximum of 2000 epochs (training iterations) using Adam

[14] with a learning rate of 0.01. Similar to [30], we stop

training if the validation loss does not decrease for 100 con-

secutive epochs. All the network weights {W(0) · · ·W(K)}
are initialized using Glorot initialization [8].

4.3. Comparison to state­of­the­art methods

We compare our method with some other graph (neu-

ral network) based semi-supervised learning methods. The

compared methods contain i) two graph based semi-

supervised learning methods including Label Propagation

(LP) [36] and Manifold Regularization (ManiReg) [2]; i-

i) two deep neural network based semi-supervised learning

methods including Planetoid [33] and DeepWalk [26]; iii)

three graph neural network methods including Graph Con-

volutional Network (GCN) [15], Diffusion Convolutional

Neural Networks (DCNNs) [1] and Graph Attention Net-

works (GAT) [30]. The codes of DCNN, GCN and GAT

have been provided by authors and we use them in our ex-

periments. For fair comparison, the parameter settings of

GCN are the same as our GDEN to obtain the average bet-

ter performance on all datasets.

Table 2. Comparison results on citation network datasets

Methond Citeseer Cora Pubmed

ManiReg [2] 60.1% 59.5% 70.7%

LP [36] 45.3% 68.0% 63.0%

DeepWalk [26] 43.2% 67.2% 65.3%

Planetoid [33] 64.7% 75.7% 77.2%

DCNN [1] 64.5% 76.7% 75.3%

GCN [15] 70.3% 83.6% 78.3%

GAT [30] 71.0% 83.2% 78.0%

GDEN-RWR 72.8% 82.0% 78.7%

GDEN-Lap 72.6% 84.7% 78.9%

GDEN-NLap 70.3% 85.1% 78.7%

Table 2 summarizes the comparison results on three net-

work benchmark datasets1. The best results are marked by

bold. Here we can note that, 1) GDENs generally perform

better than GCN [15], DCNN [1] and GAT [30]. That is,

comparing with some other competing graph convolution

architectures, the proposed diffusion-embedding architec-

tures in GDENs are more effective for graph data representa-

tion and learning. 2) GDENs perform better than other semi-

supervised learning methods, such as Planetoid [33] and

DeepWalk [26], which indicates the effectiveness and bene-

fits of GDENs on conducting graph based semi-supervised

learning tasks. Table 3 summarizes the comparison result-

s on two widely used image datasets (CIFAR10 [17] and

SVHN [23]). The highest results are marked by bold. Over-

all, we can note that 1) GDENs perform better than re-

1GCN results in Table 2 are slightly different from that reported in

work [15], because we use a different hidden layer setting to make it con-

sistent with GDEN and also obtain average better results on all the network

and image datasets.
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Table 3. Comparison results on SVHN and CIFAR10 datasets

Dateset SVHN CIFAR10

No. of label 1000 2000 4000 1000 2000 4000

ManiReg [2] 79.38±0.53% 82.14±0.39% 84.24±0.42% 66.49±0.49% 70.26±0.37% 73.62±0.30%

LP [36] 64.82±0.92% 67.05±0.60% 69.84±0.45% 57.45±0.99% 59.30±1.07% 60.97±0.57%

DeepWalk [26] 72.85±0.58% 74.69±0.34% 76.38±0.43% 57.09±0.41% 59.93±0.29% 62.51±0.29%

Planetoid [33] 79.48±0.71% 82.09±0.49% 83.96±0.40% 64.24±0.61% 68.01±0.44% 71.34±0.41%

GCN [15] 81.07±0.52% 81.90±0.36% 82.42±0.40% 68.86±0.50% 71.55±0.29% 71.55±0.29%

GAT [30] 76.45±0.29% 77.38±0.24% 77.71±0.34% 64.33±0.65% 65.21±0.40% 65.94±0.36%

GDEN-L 82.18±0.48% 84.04±0.42% 85.44±0.29% 69.08±0.53% 72.17±0.27% 75.03±0.31%

GDEN-RWR 82.72±0.53% 84.76±0.33% 86.36±0.41% 68.60±0.52% 72.12±0.42% 75.19±0.35%

GDEN-NL 82.88±0.54% 84.80±0.39% 86.24±0.36% 69.08±0.53% 72.56±0.29% 75.46±0.21%
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Figure 3. Results of two-layer GDENs across different unit number in hidden layers (LEFT: CIFAR10 dataset; RIGHT: SVHN dataset).

cent GCN models (GCN [15], GAT [30]) on both dataset-

s, which further demonstrates the effectiveness of the pro-

posed diffusion-embedding architecture to enhance the abil-

ity of GDENs for graph data learning. 2) GDENs outperfor-

m the other graph based semi-supervised learning methods

and obtain the best performances on both datasets, indicat-

ing the better performance of the proposed GDENs based

semi-supervised learning on image data. 3) GDEN-NLap

usually performs better than GDEN-RWR and GDEN-Lap

on these two datasets.

4.4. Evaluation on GDENs setting

We evaluate the performance of GDENs under different

network settings. As a baseline method, we also report the

performance of GCN [15] with the same setting.

Analysis on number of hidden units. We first evaluate

the performance of GDENs across different number of hid-

den units. Figure 3 summarizes the results on dataset CI-

FAR10 [17] and SVHN [23], respectively. We can observe

that GDENs generally perform insensitively w.r.t. the num-

ber of units in the hidden layer.Also, GDENs always outper-

form GCN on all settings of unit numbers in hidden layer.

Analysis on model depth. We then investigate the influ-

ence of model depth (number of hidden layers) on final

performance of GDENs. Figure 4 shows the results on CI-

FAR10 [17] and SVHN [23], respectively. Note that GDEN-

s can obtain desired better results using a simple two-layer

setting. This phenomenon also occurs in many other graph

neural networks, such as GCN [15] and GAT [30]. GDENs

are generally insensitive w.r.t. model depth. It maintains

better performs under different numbers of hidden layers.

Also, GDENs generally outperform GCN on all settings of

model depth, indicating the better performance of GDENs.

4.5. Evaluation on M­GDEN

Our final evaluation is to verify the effectiveness of the

proposed M-GDEN on the data with multiple graphs. Here,

we evaluate the performance of the proposed M-GDEN

for semi-supervised learning on two datasets, i.e., MSRC-

v1 [31] and Caltech101-7 [18, 25]. MSRC-v1 contains 210

images which are falling into 7 classes. Following the ex-

perimental setting in work [25], we construct five graphs

(5 nearest neighbor graph) for this dataset based on five d-

ifferent kinds of visual descriptors. Caltech101-7 [18, 24]

is an object recognition data set containing 101 categories

of images. We follow the experimental setup of previous

work [24] and select the widely used 7 classes. We con-

struct six graphs (5 nearest neighbor graph) for this dataset
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Figure 4. Results of GDENs across different network layers (LEFT: CIFAR10 dataset; RIGHT: SVHN dataset).

based on six kinds of visual feature descriptors. Table 4

summarizes the semi-supervised classification results under

different rates of labeled data on these two datasets, respec-

tively. As a baseline, we also report the classification results

of GCN method [15]. Since GCN can not be used to deal

with multiple graphs, we implement it in two variants, i.e.,

i) GCN(v) that conducts convolution on the v-th individual

graph A(v); ii) GCN-A that conducts convolution on the av-

eraged graph Ā = 1
m

∑m

v=1 A(v). Here, one can note that,

comparing with baseline methods, our method obtains the

best performance on both datasets, which demonstrates the

effectiveness of M-GDEN on multiple graphs.

Table 4. Semi-supervised classification results on multiple graphs.

Dateset MSRC-v1 Caltech101-7

Rate 10% 20% 30% 10% 20% 30%

GCN(1) 47.86 49.25 49.21 82.13 84.93 84.88

GCN(2) 70.77 76.26 80.00 82.47 83.73 84.92

GCN(3) 69.46 83.33 84.29 85.62 86.03 87.63

GCN(4) 67.14 72.59 84.29 92.06 94.78 94.74

GCN(5) 67.14 75.7 73.33 90.27 93.82 94.09

GCN(6) - - - 89.54 92.76 93.74

GCN-A 80.36 87.14 88.73 91.05 94.09 94.68

M-GDEN 84.70 89.59 90.70 92.69 95.77 96.74

5. Conclusion and Future Work

We present Graph Diffusion-Embedding Networks (G-

DENs) for graph-structured data representation and learn-

ing. GDENs integrate both feature diffusion and embed-

ding simultaneously in a unified network by introducing

a new diffusion-embedding architecture. The diffusion-

embedding architecture in GDENs can produce an equilibri-

um representation for graph nodes by exploring graph struc-

ture, which makes GDENs be able to obtain a more com-

pact representation for graph data. Furthermore, GDENs

provide a straightforward mechanism to address structured

data with multiple graphs. Experimental results on several

widely used benchmarks demonstrate that GDENs signifi-

cantly outperform the state-of-the-art graph neural network

models on various semi-supervised learning tasks.

In our future, we will develop some approximate algo-

rithms to compute the inversion operation in GDENs and

thus to make GDENs more efficiently in practical.
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