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Abstract

In this paper, we present a novel strategy to design dis-

entangled 3D face shape representation. Specifically, a

given 3D face shape is decomposed into identity part and

expression part, which are both encoded in a nonlinear

way. To solve this problem, we propose an attribute de-

composition framework for 3D face mesh. To better repre-

sent face shapes which are usually nonlinear deformed be-

tween each other, the face shapes are represented by a ver-

tex based deformation representation rather than Euclidean

coordinates. The experimental results demonstrate that our

method has better performance than existing methods on

decomposing the identity and expression parts. Moreover,

more natural expression transfer results can be achieved

with our method than existing methods.

1. Introduction

A 3D face model is comprised of several components

like identity, expression, appearance, pose, etc., and the

3D face shape is determined by identity and expression at-

tributes [19]. Decoupling 3D face shape into these two com-

ponents is an important problem in computer vision as it

could benefit many applications like face component trans-

fer [42, 36], face animation [12, 35], avatar animation [21],

etc. The aim of this paper is to develop an attribute decom-

position model for 3D face shape such that a given face

shape can be well represented by its identity and expression

part.

Some existing 3D face parametric models already rep-

resent face shapes by the identity and expression param-

eters. Blanz and Vetter proposed 3D Morphable Model

(3DMM) [4] to model face shapes. The most popular form

of 3DMM is a linear combination of identity and expres-

sion basis [2, 43]. FaceWareHouse [13] adopts the bilinear

model and constructs face shapes from a tensor with iden-

tity and expression weights. Recently, FLAME [25] utilizes

articulated model along attributes like the jaw, neck et al. to
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achieve the state-of-the-art result. A common characteris-

tic of these linear and bilinear models is that each attribute

lies in individual linear space and their combination from

each attribute is also linear. Linear statistical models have

limitations like limited expression ability and disentangle-

ment. This limitation comes from the linear formulation

itself [38, 31]. However, facial variations are nonlinear in

the real world, e.g., the variations in different facial expres-

sions. Although some recent works [7, 6, 5, 27, 23] are

proposed to improve statistical models, they still construct

the 3D face shape by linearly combining the basis.

Inspired by rapid advances of deep learning techniques,

learning-based approaches have been proposed to embed

3D face shape into nonlinear parameter spaces, and the rep-

resentation ability of these methods gets greatly improved,

e.g., being able to represent geometry details [3], or recon-

structing whole face shapes using very few parameters [31].

However, all of these methods encode the entire face shape

into one vector in the latent space, and thus cannot distin-

guish the identity and expression separately. On the other

hand, many applications like animation [11], face retarget-

ing [37, 35], and more challenging task like 3D face recog-

nition [30, 26] need to decompose 3D face shape into iden-

tity and expression component.

In this paper, we aim to build a disentangled parametric

space for 3D face shape with powerful representation abil-

ity. Some classical linear methods [4, 13] have already de-

composed expression and identity attributes, while they are

limited by the representation ability of linear models. Al-

though deep learning based method is regarded as a poten-

tial enhancement way, how to design the learning method

is not straightforward e.g. the neural network structure and

the 3D face shape representation features for deep learning.

Besides, another challenging issue is that how to make use

of the identity and expression labels in the existing datasets

like FaceWareHouse [13] for the network training.

To restate the problem, assuming that the identity and

expression are separately encoded as vector zid and zexp,

the linear model like 3DMM decodes the shape via a linear

transformation in the form S̄+Aidzid+Aexpzexp, where S̄
is mean shape, Aid and Aexp are the identity and expression
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PCA basis. Considering its non-linear nature, we propose

to recover the shape via a nonlinear decoder in the form

F (Did(zid), Dexp(zexp)), where Did(·), Dexp(·) and F (·)
are nonlinear mapping functions learned by the deep neu-

ral network. For this learning task, we develop a general

framework based on spectral graph convolution [17], which

allows inputting vertex based feature on the mesh and de-

couples 3D face shape into separated attribute components.

Considering that different face shapes are mainly caused by

deformations, we propose to represent the input face shape

of the neural network with vertex based deformation rather

than Euclidean coordinates. The vertex based deformation

representation for 3D shape is proposed in [20, 34, 41],

which captures local deformation gradient and is defined on

vertices. In our experiments, vertex based deformation rep-

resentation can greatly improve the representation ability,

and make the shape deformation more natural. In summary,

the main contributions of this paper include the following

aspects:

• We propose to learn a disentangled latent space for 3D

face shape that enables semantic edit in identity and

expression domains.

• We propose a novel framework for the disentangling

task defined on 3D face mesh. Vertex-based deforma-

tion representation is adopted in our framework, and

it achieves better performance than Euclidean coordi-

nates.

• Experimental results demonstrate that our method can

achieve much better results in disentangling identity

and expression. Therefore, applications like expres-

sion transfer based on our method can get more satis-

fying results.

2. Related Work

Linear 3D Face Shape Models Since the similar work of

3DMM [4], linear parametric models are widely used to

represent the 3D face shapes. Vlasic et al. [40] propose

a multi-linear model to decouple attributes into different

modes and Cao et al. [13] adopt a bilinear model to repre-

sent 3D face shape via identity and expression parameters.

Recently, other methods were proposed for further improve-

ment. E.g, by using a large scale dataset to improve 3DMM

ability [5], or using an articulated model to better capture

middle-end of face [25].

Nonlinear 3D Face Models Recently, some works pro-

pose to embed the 3D face shapes by the nonlinear para-

metric model with the powerfulness of deep learning based

method. Liu et al. [26] propose a multilayer perceptron to

learn a residual model for 3D face shape. Tran [38] put for-

ward an encoder-decoder structure for 3D face shape, which

is a part of the nonlinear form of 3DMM. Bagautdinov et

al. [3] propose a compositional Variational Autoencoder

structure for representing geometry details in different lev-

els. Tewari et al. [3] generate 3D face by self-supervised

approach. Anurag et al. [31] propose a graph-based convo-

lutional autoencoder for 3D face shape. These works adopt

deep neural network to learn a new parametric latent space

for 3D face shape, while none of them consider the problem

of face attribute decoupling.

Deep Learning for 3D Shapes Analysis Deep learning

based method for 3D shapes analysis attracts more and more

attentions in recent years [9]. Masci et al. [28] first propose

mesh convolutional operations for local patches in geodesic

polar coordinates. Sinha et al. [33] use geometry image to

represent Euclidean parametrization of a 3D object. Monti

and Boscaini et al. [29] introduce d-dimensional pseudo-

coordinates that define a local system around each point

with weight functions in the spatial domain. Tan et al. [34]

apply spatial graph convolution to extract localized defor-

mation components of mesh. Bruna et al. [10] first propose

spectral graph convolution by exploiting the connection be-

tween graph Laplacian and the Fourier basis. Defferrard et

al. [17] further improve the computation speed of spectral

graph convolution by truncated Chebyshev polynomials. In

our framework, we adapt fast spectral graph convolution

operator for shape attribute extraction. To the best of our

knowledge, this is the first deep learning based method for

the disentangling task defined on 3D mesh data.

3. Disentangled 3D Face Representation

3.1. Overview

Given a collection of 3D face meshes, we aim to ob-

tain a compact representation of identity and expression. A

common observation in expression analysis [14] is that hu-

man expressions lie in a high-dimension manifold, and an

illustration is shown in Fig. 1 where expression manifold

Figure 1. 3D face shape space illustration. As observed in [14],

the human expression should lie in a manifold. Based on that,

we illustrate each 3D face lie in its expression manifold. Those

expression manifolds of different identities should be similar [14,

18].
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of each individual is rendered in yellow. As the expres-

sion manifolds of different individuals are similar [18], an

expression of one person could be translated to the same

expression on the mean face. On the other hand, each indi-

vidual has its neutral expression, which is set as the origin

point in each manifold and used to represent his/her identity

attribute. Likewise, the same expression on mean face rep-

resents her/his expression attribute. These two meshes are

denoted as identity mesh and expression mesh respectively.

Based on this observation, our disentangled 3D face rep-

resentation includes two parts: decomposition and fusion

networks. Decomposition network disentangles attributes

by decoupling the input face mesh into identity mesh and

expression mesh. And the fusion network recovers the orig-

inal face mesh from identity mesh and expression mesh.

We define a facial mesh as graph structure with a set

of vertices V and edges, M = (V, A) with |V| = n .

A ∈ {0, 1}n×n represents the adjacency matrix, where

Aij = 1 denotes an edge connection between vertex vi and

vj , and Aij = 0 otherwise. In our framework, the facial

meshes in the training data set contain the same connectiv-

ity, and each vertex is associated with a feature vector Rd.

The graph feature of mesh M is denoted as G ∈ R
|V|×d.

In our proposed method, a 3D face mesh M is paired with

two meshes, identity mesh Mid and expression mesh Mexp.

The triplet (M,Mid,Mexp) will be used for training our

networks.

Spectral Graph Convolution Like convolution (correla-

tion) operator for regular 2D image, we adopt a graph con-

volution operator, spectral graph convolution, for extract-

ing useful vertex feature on mesh. We first provide some

background about this convolution, and more details can be

found in [10, 17, 22].

As we define our mesh M = (V, A) in graph structure,

the normalized Laplacian matrix can be defined as L =
I−D− 1

2AD− 1

2 , where D is the degree matrix, specifically,

a diagonal matrix with Di,i =
∑n

j=1 Ai,j and I stands

for identity matrix. Spectral graph convolution defined on

graph Fourier transform domain, which is eigenvectors U
of laplacian matrix L: L = UΛUT . The convolution on

Fourier space is defined as x ∗ y = U((UTx) ⊗ (UT y)),
where ⊗ is the element-wise Hadamard product. It follows

that a signal x is filter by gθ as y = gθ(L)x. An efficient

way in computation of spectral convolution is parametrized

gθ as a Chebyshev polynomial of order K, like input x ∈
R

n×Fin :

yj =

Fin
∑

i=1

K−1
∑

k=0

θki,jTk(L̃)xi, (1)

where yj is the j-th feature of y ∈ R
n×Fout , L̃ =

2L/λmax − In is a scaled Laplacian matrix, λmax is the

maximum eigenvalue, Tk is the Chebyshev polynomial

of order k and can be compute recursively as Tk(x) =
2xTk−1(x) − Tk−2(x) with T0 = 1 and T1 = x. Each

convolution layer has Fin × Fout vector of Chebyshev co-

efficients, θi,j ∈ R
k, as trainable parameters.

Deformation Representation In existing 3D face shape

representation works [4, 13, 25, 31], Euclidean coordinate

in R
3 is the most common used vertex feature. With spectral

graph convolution, we can use other features defined on the

vertex. As pointed out in [24], spectral graph convolution is

a special form of Laplacian smoothing. Since the main dif-

ference among different facial meshes is mainly caused by

non-rigid deformations, we prefer a vertex feature related to

local deformation rather than the widely used Euclidean co-

ordinate. In this work, we adopt a recent deformation rep-

resentation (DR) [20, 41] to model 3D mesh. We choose

neutral expression of mean face as reference mesh, and oth-

ers are treated as deformed meshes. We briefly introduce the

details on how to compute DR feature for a given deformed

mesh.

Let us denote the position of the ith vertex vi on the ref-

erence mesh as pi , and the position of vi on the deformed

mesh as p′
i. The deformation gradient in the 1-ring neigh-

borhood of vi from the reference model to the deformed

model is defined as the affine transformation matrix Ti that

minimizes the following energy:

E(Ti) =
∑

j∈Ni

cij‖(p
′
i − p′

j)−Ti(pi − pj)‖
2 (2)

where Ni is the 1-ring neighborhood of vertex vi and cij
is the cotangent weight depending only on the reference

model to cope with irregular tessellation [8]. By polar de-

composition Ti = RiSi, Ti can be decomposed into a ro-

tation part Ri and a scaling/shear part Si, where rotation

can be represent as rotating around the axis ωi by angle θi.
We collect non-trivial entries in the rotation and scale/shear

components, and obtain the deformation representation of

ith vertex in deformed mesh as a R9 vector. The DR feature

of a mesh can treat as a graph feature G ∈ R
|V|×9 when

d = 9.

3.2. Decomposition Networks

The input of decomposition networks is deformation rep-

resentation feature G of 3D face mesh, and our goal is to

disentangle it into identity and expression attributes. It is

equivalent to map the input mesh M to the other two triplet

elements (Mid,Mexp).
Decomposition part includes two parallel networks with

the same structure, one for extracting expression mesh

Mexp and the other for extracting identity mesh Mid. Tak-

ing the identity branch as an example, the input will go

through several spectral graph convolution layers for mesh

feature extraction, with a bottleneck architecture of fully
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Figure 2. Framework overview. Our network includes two parts, the decomposition part and the fusion part. There are two branches in the

decomposition part, one for expression extraction and the other one for identity extraction. Fusion module targets for recovering original

mesh from the output of the decomposition part.

connected layers as an encoder-decoder structure. This

structure is applied to obtain latent identity representation.

The output should be close to DR feature of Mid.

The same structure and principle are applied on expression

branch to obtain expression mesh Mexp. We use the bottle-

neck layer in encoder-decoder part for each branch as a new

compact parametric space for the corresponding attribute.

These two branches accomplish attribute disentanglement

task as shown in Fig.2.

We denote Gid as the deformation representation of iden-

tity mesh Mid, so does Gexp for expression mesh Mexp. In

order to control the distribution in latent space, we use vari-

ational strategy when training each branch. Let Did and

Dexp be the decoder for identity and expression extraction,

and zid, zexp be the latent representation of each branch, the

loss terms are defined as:

Lid = ‖Gid −Did(zid)‖1

Lid kld = KL(N (0, 1)‖Q(zid|Gid))

Lexp = ‖Gexp −Dexp(zexp)‖1

Lexp kld = KL(N (0, 1)‖Q(zexp|Gexp)),

(3)

where Lid and Lid kld are identity reconstruction loss and

KullbackLeibler (KL) divergence loss, so do Lexp and

Lexp kld for expression attribute. The KL loss enforces a

unit Gaussian prior N (0, 1) with zero mean on the distribu-

tion of latent vectors Q(z).

3.3. Fusion Network

As a representation, it is essential to rebuild the origi-

nal input from the decomposed identity and expression at-

tributes. Therefore, we naturally propose a fusion module

to merge identity and expression meshes pair (Mid, Mexp)

for reconstruction. And this module further guarantees that

our decomposition is, in a sense, lossless. Since the mesh

triplets are isomorphic, we can get a new graph by concate-

nating vertex features from identity and expression mesh.

The new graph has the same edge set and vertex set with

the original input, except for the concatenated 2d-dimension

feature on each vertex. The fusion module targets to convert

this new graph with vertex feature in R
2d to an isomorphic

graph with vertex feature in R
d (original input). We also

apply spectral graph convolution with activation layers to

achieve this target.

Now, let Gcat = [Ĝid, Ĝexp] be the concatenated new

graph feature and Gori be the feature of the original mesh

M. Here Ĝid, Ĝexp are outputs of the identity/expression

branch respectively. The loss function for the fusion mod-

ule is:

Lrec = ‖F (Gcat)− Gori‖1, (4)

where F represents the fusion network.

3.4. Training Process

We first pretrain the decomposition network and fusion

network sequentially. Then we train the entire network in

an end-to-end strategy. During the end-to-end training step,
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we add disentangling loss in the following form:

Ldis = ‖Dexp(Eexp(Ĝid))− Ḡ‖1 + ‖Did(Eid(Ĝexp))− Ḡ‖1,

(5)

where Ḡ is the feature of mean neutral face, as shown in

Fig. 2. The disentangling loss guarantees the identity part

containing no expression information, and the expression

part does not contain any identity information. In summary,

the full loss function is defined as follow:

Ltotal = Lrec + Ldis + Lid + Lexp+

αid kldLid kld + αexp kldLexp kld.
(6)

Data Augmentation We train our model with FaceWare-

House [13] dataset, which includes 150 identities and 47 ex-

pressions for each identity. In our experiment, as the quan-

tity of identities is very small, there exists an over-fitting

problem in the training process of identity decomposition

branch. We develop a novel data augmentation method to

overcome such over-fitting problem. Given m identity sam-

ples in the training set, we generate new 3D face meshes

via interpolations among m samples. The deformation rep-

resentation(DR) features of these identity samples are de-

noted as (DR1,DR2, . . . ,DRm). We generate new DR

features and reconstruct the 3D face meshes from these

new DR features. We create an uniform distribution vec-

tor, (r, θ1, . . . , θm−1) in polar coordinates system, where r
follows uniform distribution U(0.5, 1.2), and others follow

uniform distribution U(0, π/2). We convert the above polar

coordinates into Cartesian coordinates (a1, . . . , am), and

interpolate the sampled m DR features by
∑m

i=1 aiDRi.

These m features are a bootstrap sample from the training

dataset. This data augmentation method can create various

3D faces with only several samples from the training set

and can solve the over-fitting problem. In our experiment,

we set m = 5 and generate 10000 new 3D face meshes (see

supplementary for some examples) for training.

4. Experiment

In this section, we will first introduce our implementa-

tion1 details in 4.1. details in 4.1. Then we will introduce

several metrics used for measuring reconstruction and de-

composition accuracy in 4.2. Finally, we will show our

experiments on two different datasets in Sec 4.3 and 4.4,

including ablation study and comparison with baselines.

4.1. Implementation Details

At first, we introduce data preparation procedure of gen-

erating the ground-truth identity and expression mesh. Tak-

ing FaceWareHouse for example, the neutral expression of a

subject represents his/her identity mesh. As for expression

1Avalible at https://github.com/zihangJiang/DR-Learning-for-3D-Face

mesh, we compute the average shape of the same expres-

sion belonging to 140 subjects and define the output 47 ex-

pressions as the ground-truth meshes on mean face. These

operations can also be applied to other 3D face shape data

sets.

Our algorithm is implemented in Keras [15] with Tensor-

flow [1] backend. All the training and testing experiments

were tested on a PC with NVIDIA TiTan XP and CUDA

8.0.

We train our networks for 50 epochs per step with a

learning rate of 1e-4, and a learning rate decay of 0.6 ev-

ery 10 epochs. The hyper-parameters αid kld, αexp kld are

set as 1e-5.

4.2. Evaluation Metric

The main target of our method is to decompose a given

3D face shape into identity and expression parts as accurate

as possible and achieve high 3D shape reconstruction ac-

curacy at the same time. Therefore, evaluation criteria are

designed based on these two aspects.

4.2.1 Reconstruction Measurement

We adopt two kinds of metrics to evaluate the 3D shape

reconstruction accuracy.

Average vertex distance The average vertex distance Eavd

between reconstructed mesh M′ and original mesh M is

defined as: Eavd(M,M′) = 1
|V|

∑|V|
i=1 ‖vi − v′i‖2.

Perceptual Error As Eavd can not reflect perceptual dis-

tance [16, 39]. In [39], spatial-temporal edge difference

was proposed to measure perceptual distance by the local

error of dynamic mesh independent of its absolute position.

In this work, we adopt the spatial edge difference error Esed

to measure the perceptual error. Let eij be the edge con-

nects vi and vj of original mesh M, and edge e′ij is the

corresponding edge in reconstructed mesh M′, the relative

edge difference is defined as: ed(eij , e
′
ij) = |

‖eij‖−‖e′ij‖

‖eij‖
|

The weighted average of relative edge difference around

a vertex vi is computed as: ēd(vi) =
∑

j∈Ni
lijed(eij ,e

′
ij)∑

j∈Ni
lij

where lij is the edge length of edge eij . Therefore the local

deviation around a vertex vi can be expressed by

σ(vi) =

√

∑

j∈Ni
lij(ed(eij , e′ij)− ēd(vi))2

∑

j∈Ni
lij

. (7)

We compute the average local deviation over all the vertices

and get the spatial edge difference error:

Esed =
1

|V|

|V|
∑

i=1

σ(vi). (8)

And smaller value of Esed means better perceptual result.
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Method Eavd Esed Eid Eexp

Mean Error Median Mean Error Median Mean Error Median Mean Error Median

Bilinear [13] 0.993 0.998 0.0243 0.0183 0.477 0.472 0.527 0.484
FLAME [25] 0.882 0.905 0.0144 0.0074 0.329 0.328 0.711 0.630
MeshAE [31] 0.825 0.811 0.0151 0.0777 - - - -

Ours w/o DR & Fusion 0.981 1.292 0.177 0.0938 0.395 0.380 0.170 0.160
Ours w/o DR 0.939 0.836 0.447 0.388 0.446 0.463 0.0992 0.0750
Ours w/o Fusion 0.661 0.579 0.00283 0.0000 0.183 0.178 0.0582 0.0494
Ours 0.472 0.381 0.00333 0.0000 0.121 0.121 0.0388 0.0267

Table 1. Quantitative results on Facewarehouse. All number were in millimeters. DR: deformation representation; Fusion: fusion module.

4.2.2 Decomposition Measurement

To measure the disentangled representation for 3D face

shape, we propose a metric for reconstructed identity mesh

from the models with the same identity and different expres-

sions, and expression mesh from the models with different

identities and the same expression.

Taking identity part for example, we denote {Mi} as

the test set containing a series of expressions of an iden-

tical person. A good decomposition method is supposed

to decompose {Mi} into several similar identity features

and various expression features. Moreover, the meshes re-

constructed from those identity features are supposed to be

similar with each other, hence the standard deviation of re-

constructed identity meshes {Mi
id} is suitable to be used

to evaluate the decomposed ability of the disentangled rep-

resentation. And it is the same to other test set {N j} con-

sisted of identical expressions and different identities. So

the decomposition metric is defined as follow:

Eid = σ({Mi
id})

Eexp = σ({N j
exp}),

(9)

where {Mi
id} and {N j

exp} are reconstructed identity and

expression meshes of test sets {Mi} and {N j}, while σ is

the standard deviation operator. This metric adopts vertex

distance.

4.3. Experiments on FaceWareHouse [13]

FaceWareHouse is a widely used 3D face shape dataset

developed by Cao et al., which includes 47 expressions

along 150 different identities. It is easy to obtain the train-

ing triplets from Facewarehouse dataset. We conduct ab-

lation study of our framework and compare our method

with the bilinear model which is widely referred with this

dataset. In all the experiments of this part, we choose the

first 140 identities with their expression face shapes to build

the training set, and the left 10 identities for testing.

4.3.1 Baseline Comparison

Bilinear model Cao et al. [13] proposed 2-mode tensor

product formulation for 3D face shape representations as:

M = Cr ×2 αid ×3 αexp (10)

where Cr is the reduced core tensor containing the top-left

corner of the original tensor produced by HO-SVD decom-

position, αid and αexp are the row vectors of identity and

expression weights. And 50 and 25 are recommended as

the proper reduced dimensions of identity and expression

subspaces [13].

For a given 3D face shape, αid and αexp can be

optimized by applying Alternating Least Squares (ALS)

method to the tensor contraction. We denote {Mi} like we

used in 4.2.2 and optimize (αi
id,α

i
exp) for each Mi. The

identity mesh is reconstructed with identity parameters αi
id

and neutral expression parameters, and the expression mesh

is reconstructed with mean face identity and expression pa-

rameter αi
exp.

FLAME Li et al. [25] propose FLAME model by represent-

ing 3D face shape including identity, expression, head rota-

tion, and yaw motion with linear blendskinning and achieve

state of the art result. For comparison, we train FLAME

with identity model and expression model.

MeshAE Anurag [31] proposed a spectral graph convolu-

tional mesh autoencoders (MeshAE) structure for 3D face

shape embedding. We also evaluate the model’s reconstruc-

tion ability on FaceWareHouse dataset as it encode whole

shape 3D face without disentangling identity and expres-

sion.

For a fair comparison, the dimensions of our latent

spaces (identity zid and expression zexp) are separately set

as 50 and 25, the same with the bilinear model and FLAME.

And the size of latent space for Mesh AutoEncoder (Me-

shAE) is set as 75. Quantitative results are given in Tab

1. Our framework gets much better result in each evalua-

tion. We also show qualitative visual result of our results

on identity and expression decomposition in Fig 3. The vi-

sual result and numerical result demonstrate that our dis-

entangled learning not only achieves better reconstruction

accuracy but also neatly decouples expression and identity

attributes.

4.3.2 Ablation Study

In our framework, we have two novel designs including 3D

face shape representation and fusion network, which greatly

improve the representation ability of our method. To inves-
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Figure 3. Results of identity and expression decomposition. The

original and extracted identity and expression components are

given from top to bottom. We show samples from two subjects.

tigate the effectiveness of these two designs, Tab. 1 presents

the variants of our learning method, where w/o is the abbre-

viation of without. In the following, we compare our well-

designed framework with other implementation strategies.

We adopt a novel vertex based deformation representa-

tion [20] for 3D face shape. Another straightforward way

is to directly use the Euclidean coordinates as the method

in [31]. The results of without using DR is reported in

Tab. 1.

Another novel design in our pipeline is the fusion net-

work. A natural replacement for fusion module is to rep-

resent 3D face as a composite model like 3DMM [4, 26]:

G = Ḡ + Did(zid) + Dexp(zexp). where Ḡ is the feature

of mean face. The result that without using fusion is shown

in Tab. 1. We also report errors without using both designs.

It can be observed from the ablation study, both DR and

fusion network greatly improve the performance. DR sig-

nificantly improved our model’s performance in the aver-

age vertex distance error evaluation. And the fusion mod-

ule helps to disentangle the expression more naturally i.e.

achieves smaller error in Eexp. Our proposed framework

get a slightly higher error in Esed when adding the fusion

module. While considering for all evaluation metrics, our

method still achieves more satisfying result than other com-

parative tests.

4.4. Experiment on COMA Dataset [31]

Very recently, Anurag et al. released the COMA dataset

which includes 20,466 3D face models. This dataset is cap-

tured at 60fps with a multi-camera active stereo system,

which contains 12 identities performing 12 different expres-

sions. COMA dataset was used to build a nonlinear 3D face

representation [31], while it encodes and decodes the whole

3D face shape into one vector in the latent space without

Average error Mean Error Median Error

FLAME [25] 2.001 1.615
Ours 1.643 1.536

Table 2. Extrapolation results on COMA dataset. All results are in

millimeters.

considering identity and expression attribute. We evaluate

the ability of extrapolation over expression by training our

model with COMA dataset. However, different from Face-

WareHouse dataset, the shape models in COMA dataset are

not specified with expression labels. We manually select 12

models with representative expressions for all the 12 iden-

tities. For each shape model in the remaining, the resid-

ual DR feature between the original model and its identity

model is used for supervision during the training process.

To measure the generalization of our model, we perform

12 cross validation for one expression. For our method, we

set our latent vector size as 8, with 4 for identity and 4 for

expression. And we compare our method with FLAME,

which is the state-of-the-art 3D face model representation

with decomposed attributes. For comparison, FLAME is

trained for expression model and obtained with 8 compo-

nents for identity and expression respectively.

We compare our method with FLAME on expression ex-

trapolation experiment, and report the average vertex dis-

tance on all the 12 cross validation experiments in Tab. 2. It

can be observed that our method gets better generalization

result compared with the state-of-the-art FLAME method

on extrapolation experiment. All the 12 expressions ex-

trapolation cross validation experiments are given in sup-

plementary.

4.5. Discussion on Larger Dataset

There is a long-standing problem in conducting learn-

ing method in 3D vision topic, which is lack of 3D data.

Recently, more and more methods proposed solution to

tackle this problem, e.g. combine multiple dataset by non-

rigid registration. In our framework, we adopt a novel data

augmentation strategy by interpolation/extrapolation of DR

feature. We also design an experiment on a large-scale

dataset. We create a larger dataset by convert Bospho-

rus [32] to mesh by nonrigid registration and combine

with FaceWareHouse (FWH). We evaluate our method on

three different training datasets: original FaceWareHouse,

combination of FWH and Bosphorus, and DR-augmented

FWH. Tab. 3 shows the comparison results. Our augmen-

tation strategy leads to the best scores on all aspects, which

demonstrates that it greatly improves the model’s stability

and robustness. We hope our data augmentation strategy

can benefit 3D vision community.
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Dataset Eavd Esed Eid Eexp

Original FWH 18.3/18.0 0.05/0.03 1.4/1.4 0.5/0.3

Combination 16.9/16.6 0.06/0.03 1.6/1.6 0.5/0.4

DR-augmented 4.7/3.8 0.03/0.00 1.2/1.2 0.4/0.3

Table 3. More quantitative results. Table gives our results on

different datasets: original FWH, combination of Bosphorus and

FWH (Combination) and our DR-augmented FWH. All number in

0.1 millimeters.

Expression codeℳ𝟎

ℳ𝟏
Figure 4. Exploring interpolation results on latent space. Based on

our method, we can obtain identity and expression code for two

3D face model M0 and M1, and we interpolate latent identity

and expression vectors individually, in stride of 0.25.
      

Source     Target                       Blinear                       GT                           Ours
0 mm >8 mm

Figure 5. Expression transfer application. Comparing to the bi-

linear model, our method achieves more natural and stable visual

results.

5. Application

Based on our proposed disentangled representation for

3D face shape, we can apply our model in many applica-

tions like expression transfer and face recognition. In the

following part, we first show that our method can achieve

better performances than traditional method on expression

transfer, and then we show the shape exploration results

in the trained identity and expression latent space of our

model.

5.1. Expression Transfer

A standard solution for expression transfer [40, 11, 36]

is to transfer the expression weights from source to target

face. We randomly select two identities from the test data

set of FaceWareHouse to compare the expression transfer

results of the bilinear model and our method. For the bi-

linear model, we first solve the identity and expression pa-

rameters for the reference model and then transfer the ex-

pression parameter from the source to the target face. In

our method, we directly apply the latent expression code of

source face to the target face. Some results are shown in

Fig. 5. The corresponding expressions on the target ob-

ject in FaceWareHouse dataset are treated as the ground

truth. It can be easily observed that our method can achieve

more natural and accurate performances, and our results are

closer to the ground truth in quantitative error evaluations.

5.2. Latent space interpolation

Our disentangled representation includes two latent

codes for identity and expression. With the learned latent

spaces, we can interpolate models by gradually changing

identities and expressions. The interpolating operation is

applied on the latent code, and the models are recovered

from the generated code with the trained decoder. In this

experiment, We interpolate latent code by step of 0.25 in

identity and expression separately, and thus we can observe

that the interpolation results are meaningful and reasonable

as shown in Fig. 4,

6. Conclusion

We have proposed a disentangled representation learning

method for 3D face shape. A given 3D face shape can be ac-

curately decomposed into identity part and expression part.

To effectively solve this problem, a well-designed frame-

work is proposed to train decomposition networks and fu-

sion network. To better represent the non-rigid deforma-

tion space, the input face shape is represented as vertex

based deformation representation rather than Euclidean co-

ordinates. We have demonstrated the effectiveness of the

proposed method via ablation study and extensive quantita-

tive and qualitative experiments. Applications like expres-

sion transfer based on our disentangled representation have

shown more natural and accurate results compared with tra-

ditional method.
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