
Semi-supervised Learning with Graph Learning-Convolutional Networks

Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang∗and Bin Luo

School of Computer Science and Technology, Anhui University, Hefei, 230601, China

jiangbo@ahu.edu.cn,{zhangziyanahu,ahu lindd}@163.com,ahhftang@gmail.com,luobin@ahu.edu.cn

Abstract

Graph Convolutional Neural Networks (graph CNNs)

have been widely used for graph data representation and

semi-supervised learning tasks. However, existing graph

CNNs generally use a fixed graph which may not be opti-

mal for semi-supervised learning tasks. In this paper, we

propose a novel Graph Learning-Convolutional Network

(GLCN) for graph data representation and semi-supervised

learning. The aim of GLCN is to learn an optimal graph

structure that best serves graph CNNs for semi-supervised

learning by integrating both graph learning and graph

convolution in a unified network architecture. The main

advantage is that in GLCN both given labels and the es-

timated labels are incorporated and thus can provide use-

ful ‘weakly’ supervised information to refine (or learn) the

graph construction and also to facilitate the graph convolu-

tion operation for unknown label estimation. Experimental

results on seven benchmarks demonstrate that GLCN sig-

nificantly outperforms the state-of-the-art traditional fixed

structure based graph CNNs.

1. Introduction

Deep neural networks have been widely used in many

computer vision and pattern recognition tasks. Recently,

many methods have been proposed to generalize the convo-

lution operation on arbitrary graphs to address graph struc-

ture data [5, 1, 15, 11, 19, 21]. Overall, these methods can

be categorized into spatial convolution and spectral convo-

lution methods [22]. For spatial methods, they generally

define graph convolution operation directly by defining an

operation on node groups of neighbors. For example, Duve-

naud et al. [5] propose a convolutional neural network that

operates directly on graphs and provide an end-to-end fea-

ture learning for graph data. Atwood and Towsley [1] pro-

pose Diffusion-Convolutional Neural Networks (DCNNs)

by employing a graph diffusion process to incorporate the

contextual information of node in graph node classification.

∗Corresponding author

Monti et al. [15] present mixture model CNNs (MoNet)

and provide a unified generalization of CNN architectures

on graphs. By designing an attention layer, Veličković et

al. [21] present Graph Attention Networks (GAT) for semi-

supervised learning. For spectral methods, they generally

define graph convolution operation based on spectral repre-

sentation of graphs. For example, Bruna et al. [3] propose

to define graph convolution in the Fourier domain based on

eigen-decomposition of graph Laplacian matrix. Defferrard

et al. [4] propose to approximate the spectral filters based on

Chebyshev expansion of graph Laplacian to avoid the high

computational complexity of eigen-decomposition. Kipf et

al. [11] propose a more simple Graph Convolutional Net-

work (GCN) for semi-supervised learning.

The above graph CNNs have been widely used for super-

vised or semi-supervised learning tasks. In this paper, we

focus on semi-supervised learning. One important aspect of

graph CNNs is the graph structure representation of data.

In general, the data we provide to graph CNNs either has

a known intrinsic graph structure, such as social networks,

or we construct a human established graph for it, such as

k-nearest neighbor graph with Gaussian kernel. However,

it is difficult to evaluate whether the graphs obtained from

domain knowledge (e.g., social network) or established by

human are optimal for semi-supervised learning in graph C-

NNs. Henaff et al. [7] propose to learn a supervised graph

with a fully connected network. However, the learned graph

is obtained from a separate network which is also not guar-

anteed to best serve the graph CNNs. Li et al. [19] pro-

pose optimal graph CNNs, in which the graph is learned

adaptively by using a distance metric learning. However, it

use an approximate algorithm to estimate graph Laplacian

which may lead to weak local optimal solution.

In this paper, we propose a novel Graph Learning-

Convolutional Network (GLCN) for semi-supervised learn-

ing problem. The main idea of GLCN is to learn an optimal

graph representation that best serves graph CNNs for semi-

supervised learning by integrating both graph learning and

graph convolution simultaneously in a unified network ar-

chitecture. The main advantages of the proposed GLCN for

semi-supervised learning are summarized as follows.

111313

Figure 1. Architecture of the proposed GLCN network for semi-supervised learning.

• In GLCN, both given labels and the estimated labels

are incorporated and thus can provide useful ‘weakly’

supervised information to refine (or learn) the graph

construction and to facilitate the graph convolution op-

eration in graph CNN for unknown label estimation.

• GLCN can be trained via a single optimization manner,

which can thus be implemented simply.

To the best of our knowledge, this is the first attempt to

build a unified graph learning-convolutional network archi-

tecture for semi-supervised learning. Experimental results

demonstrate that GLCN outperforms state-of-the-art graph

CNNs on semi-supervised learning tasks.

2. Related Work

Here, we briefly review GCN based semi-supervised

learning proposed in work [11]. Let X = (x1, x2, · · ·xn) ∈
R

n×p be the collection of n data vectors in p dimension.

Let G(X,A) be the graph representation of X with A ∈
R

n×n encoding the pairwise relationship (such as similar-

ities, neighbors) among data X . GCN contains one input

layer, several propagation (hidden) layers and one final per-

ceptron layer [11]. Given an input X(0) = X and graph A,

GCN [11] conducts the following layer-wise propagation in

hidden layers as,

X(k+1) = σ(D−1/2AD−1/2X(k)W (k)) (1)

where k = 0, 1, · · ·K − 1 and D = diag(d1, d2 · · · dn)
is a diagonal matrix with di =

∑n
j=1 Aij . W (k) ∈

R
dk×dk+1 , d0 = p is a layer-specific weight matrix needing

to be trained. σ(·) denotes an activation function, such as

ReLU(·) = max(0, ·), and X(k+1) ∈ R
n×dk+1 denotes the

output of activations in the k-th layer. For semi-supervised

classification, GCN [11] defines the final perceptron layer

as

Z = softmax(D−1/2AD−1/2X(K)W (K)) (2)

where W (K) ∈ R
dK×c and c denotes the number of class-

es. The final output Z ∈ R
n×c denotes the label predic-

tion for all data X in which each row Zi denotes the la-

bel prediction for the i-th node. The optimal weight matri-

ces {W (0),W (1), · · ·W (K)} are trained by minimizing the

cross-entropy loss function as,

LSemi-GCN = −
∑

i∈L

c∑

j=1

Yij lnZij (3)

where L indicates the set of labeled nodes.

3. Graph Learning-Convolutional Network

One core aspect of GCN is the graph representation

G(X,A) of data X . In some applications, the graph struc-

ture of data are available from domain knowledge, such

as chemical molecules, social networks etc. In this case,

one can use the existing graph directly for GCN based

semi-supervised learning. In many other applications, the

graph data are not available. One popular way is to con-

struct a human established graph (e.g., k-nearest neighbor

graph) [8] for GCN. However, the graphs obtained from do-

main knowledge or estimated by human are generally in-

dependent of GCN (semi-supervised) learning process and

thus are not guaranteed to best serve GCN learning. Al-

so, the human established graphs are usually sensitive to

the local noise and outliers. To overcome these problems,

we propose a novel Graph Learning-Convolution Network

(GLCN) which integrates graph learning and graph convo-

lution simultaneously in a unified network architecture and

thus can learn an adaptive (or optimal) graph representa-

tion for GCN learning. In particular, as shown in Figure 1,

GLCN contains one graph learning layer, several convolu-

tion layers and one final perceptron layer. In the following,

we explain them in detail.

11314

Figure 2. Architecture of the proposed graph learning architecture in GLCN.

3.1. Graph learning architecture

Given an input X = (x1, x2 · · ·xn) ∈ R
n×p, we aim to

seek a nonnegative function Sij = g(xi, xj) that represents

the pairwise relationship between data xi and xj . We im-

plement g(xi, xj) via a single-layer neural network, which

is parameterized by a weight vector a = (a1, a2, · · · ap)
T ∈

R
p×1. Formally, we learn a graph S as

Sij = g(xi, xj) =
exp(ReLU(aT |xi − xj |))∑n
j=1 exp(ReLU(aT |xi − xj |))

(4)

where ReLU(·) = max(0, ·) is an activation function,

which guarantees the nonnegativity of Sij . The role of the

above softmax operation on each row of S is to guarantee

that the learned graph S can satisfy the following property,

∑n

j=1
Sij = 1, Sij ≥ 0 (5)

We optimize the optimal weight vector a by minimizing the

following loss function,

LGL =
n∑

i,j=1

∥xi − xj∥
2
2Sij + γ∥S∥2F (6)

That is, larger distance ∥xi − xj∥2 between data point xi

and xj encourages a smaller value Sij . The second term is

used to control the sparsity of learned graph S because of

simplex property of S (Eq.(5)), as discussed in [17].

Remark. Minimizing the above loss LGL independently

may lead to trivial solution, i.e., a = (0, 0 · · · 0). We use

it as a regularized term in our final loss function, as shown

in Eq.(15) in §3.2.

For some problems, when an initial graph A is available,

we can incorporate it in our graph learning as

Sij = g(xi, xj) =
Aij exp(ReLU(aT |xi − xj |))∑n
j=1 Aij exp(ReLU(aT |xi − xj |))

(7)

We can also incorporate the information of A by consider-

ing a regularized term in the learning loss function as

LGL =
n∑

i,j=1

∥xi − xj∥
2
2Sij + γ∥S∥2F + β∥S −A∥2F (8)

On the other hand, when the dimension p of the input

data X is large, the above computation of g(xi, xj) may

be less effective due to the long weight vector a needing

to be trained. Also, the computation of Euclidean dis-

tances ∥xi − xj∥2 between data pairs in loss function LGL

is complex for large dimension p. To solve this prob-

lem, we propose to conduct our graph learning in a low-

dimensional subspace. We implement this via a single-layer

low-dimensional embedding network, parameterized by a

projection matrix P ∈ R
p×d, d < p. In particular, we con-

duct our final graph learning as follows,

x̃i = xiP, for i = 1, 2 · · ·n (9)

Sij = g(x̃i, x̃j) =
Aij exp(ReLU(aT |x̃i − x̃j |))∑n
j=1 Aij exp(ReLU(aT |x̃i − x̃j |))

(10)

where A denotes an initial graph. If it is unavailable, we

can set Aij = 1 in the above update rule. The loss function

becomes

LGL =

n∑

i,j=1

∥x̃i − x̃j∥
2
2Sij + γ∥S∥2F (11)

The whole architecture of the proposed graph learning net-

work is shown in Figure 2.

Remark. The proposed learned graph S has a desired prob-

ability property (Eq.(5)), i.e., the optimal Sij can be regard-

ed a probability that data xj is connected to xi as a neigh-

boring node. That is, the proposed graph learning (GL) ar-

chitecture can establish the neighborhood structure of data

automatically either based on data feature X only or by fur-

ther incorporating the prior initial graph A with X . The GL

architecture indeed provides a kind of nonlinear function

S = GGL(X,A;P, a) to predict/compute the neighborhood

probabilities between node pairs.

3.2. GLCN architecture

The proposed graph learning architecture is general and

can be incorporated in any graph CNNs. In this paper,

we incorporate it into GCN [11] and propose a unified

11315

Graph Learning-Convolutional Network (GLCN) for semi-

supervised learning problem. Figure 1 shows the overview

of GLCN architecture. The aim of GLCN is to learn an op-

timal graph representation for GCN network and integrate

graph learning and convolution simultaneously to boost

their respectively performance.

As shown in Figure 1, GLCN contains one graph learn-

ing layer, several graph convolution layers and one final per-

ceptron layer. The graph learning layer aims to provide an

optimal adaptive graph representation S for graph convo-

lutional layers. That is, in the convolutional layers, it con-

ducts the layer-wise propagation rule based on the adaptive

neighbor graph S returned by graph learning layer, i.e.,

X(k+1) = σ(D−1/2
s SD−1/2

s X(k)W (k)) (12)

where k = 0, 1 · · ·K − 1. Ds = diag(d1, d2, · · · dn) is

a diagonal matrix with diagonal element di =
∑n

j=1 Sij .

W (k) ∈ R
dk×dk+1 is a layer-specific trainable weight ma-

trix for each convolution layer. σ(·) denotes an activation

function, such as ReLU(·) = max(0, ·), and X(k+1) ∈
R

n×dk+1 denotes the output of activations in the k-th layer.

Since the learned graph S satisfies
∑

j Sij = 1, Sij ≥ 0,

thus Eq.(12) can be simplified as

X(k+1) = σ(SX(k)W (k)) (13)

For semi-supervised classification task, we define the fi-

nal perceptron layer as

Z = softmax(SX(K)W (K)) (14)

where W (K) ∈ R
dK×c and c denotes the number of class-

es. The final output Z ∈ R
n×c denotes the label prediction

of GLCN network, in which each row Zi denotes the label

prediction for the i-th node. The whole network parameters

Θ = {P, a,W (0), · · ·W (K)} are jointly trained by mini-

mizing the following loss function as

LSemi-GLCN = LSemi-GCN + λLGL (15)

where LGL and LSemi-GCN are defined in Eq.(11) and Eq.(3),

respectively. Parameter λ ≥ 0 is a tradeoff parameter. It

is noted that, when λ = 0, the optimal graph S is learned

based on labeled data (i.e., cross-entropy loss) only which

is also feasible in our GLCN.

Demonstration and analysis. There are two main benefits

of the proposed GLCN network:

• In GLCN, both given labels Y and the estimated la-

bels Z are incorporated and thus can provide useful

‘weakly’ supervised information to refine the graph

construction S and thus to facilitate the graph convolu-

tion operation in GCN for unknown label estimation.

That is, the graph learning and semi-supervised learn-

ing are conducted jointly in GLCN and thus can boost

their respectively performance.

• GLCN is a unified network which can be trained via

a single optimization manner and thus can be imple-

mented simply.

Figure 3 shows the cross-entropy loss values over labeled

node L across different epochs. One can note that, GLCN

obtains obviously lower cross-entropy value than GCN at

convergence, which clearly demonstrates the higher predic-

tive accuracy of GLCN model. Also, the convergence speed

of GLCN is just slightly slower than GCN, indicating the

efficiency of GLCN. Figure 4 demonstrates 2D t-SNE [14]

visualizations of the feature map output by the first convo-

lutional layer of GCN [11] and GLCN, respectively. Dif-

ferent classes are marked by different colors. One can note

that, the data of different classes are distributed more clearly

and compactly in our GLCN representation, which demon-

strates the desired discriminative ability of GLCN on con-

ducting graph node representation and thus semi-supervised

classification tasks.

0 200 400 600 800 1000

Epoch

0

0.5

1

1.5

2

2.5

T
ra

in
in

g
 l
o
s
s

 GCN

 GLCN

Figure 3. Demonstration of cross-entropy loss values across dif-

ferent epochs on MNIST dataset.

4. Experiments

4.1. Datasets

To verify the effectiveness and benefit of the proposed

GLCN on semi-supervised learning tasks, we test it on sev-

en benchmark datasets, including three standard citation

network benchmark datasets (Citeseer, Cora and Pubmed

[20]) and four image datasets (CIFAR10 [12], SVHN [16],

MNIST and Scene 15 [9]). The details of these datasets and

their usages in our experiments are introduced below.

Citeseer. This network data contains 3327 nodes and 4732

edges. The nodes are falling into six classes and each node

is represented by a 3703 dimension feature descriptor.

Cora. This data contains 2708 nodes and 5429 edges. Each

node has a 1433 dimension feature descriptor and all the n-

odes are falling into six classes.

Pubmed. This data contains 19717 nodes and 44338 edges.

11316

-80 -60 -40 -20 0 20 40 60 80

-80

-60

-40

-20

0

20

40

60

80

(a) GCN result

-100 -80 -60 -40 -20 0 20 40 60 80 100

-80

-60

-40

-20

0

20

40

60

80

(b) GLCN result

Figure 4. 2D t-SNE [14] visualizations of the feature map output by the first convolutional layer of GCN [11] and GLCN respectively on

Scene15 dataset. Different classes are marked by different colors. One can note that, the data of different classes are distributed more

clearly and compactly in our GLCN convolutional layer feature representation.

Each node is represented by a 500 dimension feature de-

scriptor and all the nodes are classified into 3 classes.

CIFAR10. This dataset contains 50000 natural images

which are falling into 10 classes [12]. Each image in this

dataset is a 32 × 32 RGB color image. In our experiments,

we select 1000 images for each class and use 10000 images

in all for our evaluation. For each image, we extract a CNN

feature descriptor for it.

SVHN. It contains 73257 training and 26032 test images

[16]. Each image is a 32 × 32 RGB image which contains

multiple number of digits and the task is to recognize the

digit in the image center. Similar to CIFAR 10 dataset, in

our experiments, we select 1000 images for each class and

obtain 10000 images in all for our evaluation. For each im-

age, we extract a CNN feature descriptor for it.

MNIST.1 This dataset consists of images of hand-written

digits from ‘0’ to ‘9’. We randomly select 1000 images

from each digit class and obtain 10000 images in all for our

evaluation. Similar to other related works, we use gray val-

ue directly and convert it to a 784 dimension vector.

Scene15. It consists of 4485 scene images with 15 differ-

ent categories [13, 9]. For each image, we use the feature

descriptor provided by work [9].

4.2. Experimental setting

For Cora, Citeseer and Pubmed datasets, we follow the

experimental setup of previous works [11, 21]. For image

dataset CIFAR10, SVHN and MNIST, we randomly select

1000, 2000 and 3000 images as labeled samples and the re-

maining data are used as unlabeled samples. For unlabeled

samples, we select 1000 images for validation purpose and

1http://yann.lecun.com/exdb/mnist/

Table 1. Comparison results of semi-supervised learning on

dataset Citeseer, Cora and Pubmed.

Methond Citeseer Cora Pubmed

ManiReg [2] 60.1% 59.5% 70.7%

LP [23] 45.3% 68.0% 63.0%

DeepWalk [18] 43.2% 67.2% 65.3%

GCN [11] 70.9% 82.9% 77.9%

GAT [21] 71.0% 83.2% 78.0%

GLCN 72.0% 85.5% 78.3%

use the remaining 8000, 7000 and 6000 images as test sam-

ples, respectively. All the reported results are averaged over

ten runs with different splits of training, validation and test-

ing data. For image dataset Scene15 [9], we randomly s-

elect 500, 750 and 1000 images as label data and use 500

images for validation, respectively. The remaining samples

are used as the unlabeled test samples. The reported results

are averaged over ten runs with different data splits.

Similar to [11], in our experiments we set the number of

convolution layers in our GLCN to 2. The number of unit-

s in graph learning layer is set to 70 and it is set to 30 in

graph convolution hidden layer. We train GLCN for a max-

imum of 5000 epochs (training iterations) using an ADAM

algorithm [10] with learning rate 0.005, and stop training

if the validation loss does not decrease for 100 consecutive

epochs, as suggested in work [11]. All the network weights

Θ are initialized using Glorot initialization [6].

4.3. Comparison with state­of­the­art methods

Baselines. We first compare our GLCN model with

baseline GCN [11] which is the most related model with

our GLCN. We also compare our method against some oth-

11317

Table 2. Comparison results on dataset SVHN, CIFAR, MNIST and Scene15

Dataset SVHN CIFAR

No. of label 1000 2000 3000 1000 2000 3000

ManiReg [2] 69.44±0.69% 72.73±0.44% 74.63±0.45% 52.30±0.66% 57.08±0.80% 59.69±0.71%

LP [23] 69.68±0.84% 70.35±1.73% 69.47±2.96% 57.52±0.67% 59.22±0.67% 60.38±0.51%

DeepWalk [18] 74.64±0.23% 76.21±0.23% 77.04±0.42% 56.16±0.54% 59.73±0.35% 61.26±0.32%

GCN [11] 71.33±1.48% 73.43±0.46% 73.63±0.52% 60.43±0.56% 60.91±0.50% 60.99±0.49%

GAT [21] 73.87±0.32% 74.85±0.55% 75.17±0.43% 63.25±0.50% 65.55±0.58% 66.56±0.58%

GLCN 79.14±0.38% 80.68±0.22% 81.43±0.34% 66.67±0.24% 69.33±0.54% 70.39±0.54%

Dataset MNIST Scene15

No. of label 1000 2000 3000 500 750 1000

ManiReg [2] 92.74±0.33% 93.96±0.23% 94.62±0.22% 81.29±3.35% 86.45±1.91% 89.86±0.71%

LP [23] 79.28±0.91% 81.91±0.82% 83.45±0.53% 89.40±4.74% 92.12±2.87% 92.98±2.45%

DeepWalk [18] 94.55±0.27% 95.04±0.28% 95.34±0.26% 95.64±0.24% 96.01±0.24% 96.53±0.37%

GCN [11] 90.59±0.26% 90.91±0.19% 91.01±0.23% 91.42±2.07% 94.41±0.92% 95.44±0.89%

GAT [21] 92.11±0.35% 92.64±0.28% 92.81±0.29% 93.98±0.75% 94.64±0.41% 95.03±0.46%

GLCN 94.28±0.28% 95.09±0.17% 95.46±0.20% 96.19±0.38% 96.71±0.40% 96.67±0.37%

er graph neural network based semi-supervised learning ap-

proaches which contain i) two traditional graph based semi-

supervised learning methods including Label Propagation

(LP) [23], Manifold Regularization (ManiReg) [2], and i-

i) three graph neural network methods including DeepWalk

[18], Graph Convolutional Network (GCN) [11] and Graph

Attention Networks (GAT) [21]. The codes of GCN and

GAT have been provided by authors and we use them in our

experiments. For fair comparison, the parameter settings of

GCN are the same as our GLCN to obtain the average better

performance on all datasets.

Results. Table 1 summarizes the comparison results on

three citation network benchmark datasets (Citeseer, Cora

and Pubmed [20])2. Table 2 summarizes the comparison

results on four widely used image datasets. The best re-

sults are marked as bold in Table 1 and 2. Overall, we can

note that (1) GLCN outperforms the baseline method GC-

N [11] on all datasets, especially on the four image dataset-

s. This clearly demonstrates the higher predictive accuracy

on semi-supervised classification of GLCN by incorporat-

ing graph learning architecture. Comparing with GCN, the

hidden layer presentations of graph nodes in GLCN become

more discriminatively (as shown in Figure 4), which thus

facilitates to semi-supervised learning results. (2) GLC-

N performs better than recent graph network GAT [21],

which indicates the benefit of GLCN on graph data rep-

resentation and learning. (3) GLCN performs better than

other graph based semi-supervised learning methods, such

as LP [23], ManiReg [2] and DeepWalk [18], which fur-

ther demonstrates the effectiveness of GLCN on conducting

2Note that, GCN results in Table 1 are slightly different from that re-

ported in work [11], because we use a different hidden layer setting to

make it consistent with GLCN and also obtain average better results on all

the network and image datasets.

graph semi-supervised classification tasks.

4.4. Parameter analysis

In this section, we evaluate the performance of GLCN

model with different settings of network parameters. We

first investigate the influence of model depth of GLCN

(number of convolutional layers) on semi-supervised clas-

sification results. Figure 5 shows the performance of our

GLCN method across different number of convolutional

layers on MNIST dataset. As a baseline, we also list the

results of GCN model with the same setting. One can

note that GLCN can obtain better performance with differ-

ent number of layers, which indicates the insensitivity of

the GLCN w.r.t. model depth. Also, GLCN always per-

forms better than GCN under different model depths, which

further demonstrates the benefit and better performance of

GLCN comparing with the baseline method.

2 3 4 5 6 7 8

Number of layers

0.75

0.8

0.85

0.9

0.95

A
c
c
u
ra

c
y

GCN

GLCN

Figure 5. Results of GLCN across different convolutional layers

on MNIST dataset.

11318

Table 3. Results of two-layer GLCN across different number of

units in convolutional-layer on MNIST dataset.

GCN-Layers 50 60 70 80 90

GCN 0.9041 0.9075 0.9080 0.9076 0.9070

GLCN 0.9410 0.9396 0.9394 0.9410 0.9389

Table 4. Results of GLCN with different settings of graph learning

parameter λ in loss (Eq.(15)) on MNIST and CIFAR10 datasets

Parameter λ 0 1e-4 1e-3 1e-2 1e-1 1.0

CIFAR10 0.67 0.69 0.69 0.70 0.69 0.69

MNIST 0.92 0.93 0.93 0.94 0.94 0.93

Then, we evaluate the performance of two-layer GLCN

with different number of hidden units in convolutional layer.

Table 3 summarizes the performance of GLCN with differ-

ent number of hidden units on MNIST dataset. We can note

that Both GCN and GLCN are generally insensitive w.r.t.

number of units in the hidden layer.

Finally, we investigate the influence of graph learning

parameter λ in our GLCN. Table 4 shows the performance

of GLCN with different parameter settings. When λ is set to

0, GLCN can also return a reasonable result. Also, one can

note that the graph learning regularization term in loss func-

tion improves the graph learning and thus semi-supervised

classification results.

5. Conclusion and Future Works

In this paper, we propose a novel Graph Learning-

Convolutional Network (GLCN) for graph based semi-

supervised learning problem. GLCN integrates the pro-

posed new graph learning operation and traditional graph

convolution architecture together in a unified network,

which can learn an optimal graph structure that best serves

GCN for semi-supervised learning problem. Experimental

results on seven benchmarks demonstrate that GLCN gen-

erally outperforms traditional fixed-graph CNNs on various

semi-supervised learning tasks.

Note that, GLCN is not limited to deal with semi-

supervised learning tasks. In the future, we will adap-

t GLCN on some more pattern recognition tasks, such as

graph data clustering, graph link/edge prediction, etc. Al-

so, we can explore GLCN method on some other comput-

er vision tasks, such as visual object detection, image co-

segmentation and visual saliency analysis.

Acknowledgment

This work is supported in part by NSFC Key Projects

of International (Regional) Cooperation and Exchanges un-

der Grant (61860206004); National Natural Science Foun-

dation of China (61602001, 61872005, 61671018); Natural

Science Foundation of Anhui Province (1708085QF139);

Natural Science Foundation of Anhui Higher Education In-

stitutions of China (KJ2016A020).

References

[1] James Atwood and Don Towsley. Diffusion-

convolutional neural networks. In Advances in Neural

Information Processing Systems, pages 1993–2001,

2016.

[2] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani.

Manifold regularization: A geometric framework for

learning from labeled and unlabeled examples. Jour-

nal of machine learning research, 7:2399–2434, 2006.

[3] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and

Yann LeCun. Spectral networks and locally connect-

ed networks on graphs. In International Conference

on Learning Representations, 2014.

[4] Michaël Defferrard, Xavier Bresson, and Pierre Van-

dergheynst. Convolutional neural networks on graphs

with fast localized spectral filtering. In Advances in

Neural Information Processing Systems, pages 3844–

3852, 2016.

[5] David K Duvenaud, Dougal Maclaurin, Jorge Ipar-

raguirre, Rafael Bombarell, Timothy Hirzel, Alán

Aspuru-Guzik, and Ryan P Adams. Convolution-

al networks on graphs for learning molecular finger-

prints. In Advances in Neural Information Processing

Systems, pages 2224–2232, 2015.

[6] Xavier Glorot and Yoshua Bengio. Understanding

the difficulty of training deep feedforward neural net-

works. In International conference on artificial intel-

ligence and statistics, pages 249–256, 2010.

[7] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep

convolutional networks on graph-structured data. arX-

iv preprint arXiv:1506.05163, 2015.

[8] Bo Jiang, Chris Ding, Bio Luo, and Jin Tang. Graph-

laplacian pca: Closed-form solution and robustness.

In Proceedings of the IEEE Conference on Comput-

er Vision and Pattern Recognition, pages 3492–3498,

2013.

[9] Zhuolin Jiang, Zhe Lin, and Larry S Davis. Label

consistent k-svd: Learning a discriminative dictionary

for recognition. IEEE transactions on pattern analysis

and machine intelligence, 35(11):2651–2664, 2013.

[10] Diederik P Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. In International Confer-

ence on Learning Representations, 2015.

[11] Thomas N Kipf and Max Welling. Semi-supervised

classification with graph convolutional networks. arX-

iv preprint arXiv:1609.02907, 2016.

11319

[12] Alex Krizhevsky and Geoffrey Hinton. Learning mul-

tiple layers of features from tiny images. Technical

report, University of Toronto, 2009.

[13] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce.

Beyond bags of features: Spatial pyramid matching

for recognizing natural scene categories. In IEEE Con-

ference on Computer Vision and Pattern Recognition,

pages 2169–2178, 2006.

[14] Laurens van der Maaten and Geoffrey Hinton. Visu-

alizing data using t-sne. Journal of machine learning

research, 9:2579–2605, 2008.

[15] Federico Monti, Davide Boscaini, Jonathan Masci, E-

manuele Rodola, Jan Svoboda, and Michael M Bron-

stein. Geometric deep learning on graphs and mani-

folds using mixture model cnns. In IEEE Conference

on Computer Vision and Pattern Recognition, pages

5423–5434, 2017.

[16] Yuval Netzer, Tao Wang, Adam Coates, Alessandro

Bissacco, Bo Wu, and Andrew Y Ng. Reading digits

in natural images with unsupervised feature learning.

In NIPS workshop on deep learning and unsupervised

feature learning, 2011.

[17] Feiping Nie, Xiaoqian Wang, and Heng Huang. Clus-

tering and projected clustering with adaptive neigh-

bors. In ACM SIGKDD international conference on

Knowledge Discovery and Data Mining, pages 977–

986, 2014.

[18] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena.

Deepwalk: Online learning of social representation-

s. In ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 701–

710, 2014.

[19] Feiyun Zhu Junzhou Huang Ruoyu Li, Sheng Wang.

Adaptive graph convolutional neural networks. In

AAAI Conference on Artificial Intelligence, pages

3546–3553, 2018.

[20] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise

Getoor, Brian Galligher, and Tina Eliassi-Rad. Col-

lective classification in network data. AI magazine,

29(3):93–93, 2008.

[21] Petar Veličković, Guillem Cucurull, Arantxa Casano-

va, Adriana Romero, Pietro Lio, and Yoshua Ben-

gio. Graph attention networks. arXiv preprint arX-

iv:1710.10903, 2017.

[22] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Ma-

ciejewski. Graph convolutional networks: Algorithm-

s, applications and open challenges. In International

Conference on Computational Social Networks, pages

79–91, 2018.

[23] Xiaojin Zhu, Zoubin Ghahramani, and John D Laffer-

ty. Semi-supervised learning using gaussian fields and

harmonic functions. In Proceedings of the 20th Inter-

national conference on Machine learning (ICML-03),

pages 912–919, 2003.

11320

