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Abstract

Graph Convolutional Neural Networks (graph CNNs)

have been widely used for graph data representation and

semi-supervised learning tasks. However, existing graph

CNNs generally use a fixed graph which may not be opti-

mal for semi-supervised learning tasks. In this paper, we

propose a novel Graph Learning-Convolutional Network

(GLCN) for graph data representation and semi-supervised

learning. The aim of GLCN is to learn an optimal graph

structure that best serves graph CNNs for semi-supervised

learning by integrating both graph learning and graph

convolution in a unified network architecture. The main

advantage is that in GLCN both given labels and the es-

timated labels are incorporated and thus can provide use-

ful ‘weakly’ supervised information to refine (or learn) the

graph construction and also to facilitate the graph convolu-

tion operation for unknown label estimation. Experimental

results on seven benchmarks demonstrate that GLCN sig-

nificantly outperforms the state-of-the-art traditional fixed

structure based graph CNNs.

1. Introduction

Deep neural networks have been widely used in many

computer vision and pattern recognition tasks. Recently,

many methods have been proposed to generalize the convo-

lution operation on arbitrary graphs to address graph struc-

ture data [5, 1, 15, 11, 19, 21]. Overall, these methods can

be categorized into spatial convolution and spectral convo-

lution methods [22]. For spatial methods, they generally

define graph convolution operation directly by defining an

operation on node groups of neighbors. For example, Duve-

naud et al. [5] propose a convolutional neural network that

operates directly on graphs and provide an end-to-end fea-

ture learning for graph data. Atwood and Towsley [1] pro-

pose Diffusion-Convolutional Neural Networks (DCNNs)

by employing a graph diffusion process to incorporate the

contextual information of node in graph node classification.
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Monti et al. [15] present mixture model CNNs (MoNet)

and provide a unified generalization of CNN architectures

on graphs. By designing an attention layer, Veličković et

al. [21] present Graph Attention Networks (GAT) for semi-

supervised learning. For spectral methods, they generally

define graph convolution operation based on spectral repre-

sentation of graphs. For example, Bruna et al. [3] propose

to define graph convolution in the Fourier domain based on

eigen-decomposition of graph Laplacian matrix. Defferrard

et al. [4] propose to approximate the spectral filters based on

Chebyshev expansion of graph Laplacian to avoid the high

computational complexity of eigen-decomposition. Kipf et

al. [11] propose a more simple Graph Convolutional Net-

work (GCN) for semi-supervised learning.

The above graph CNNs have been widely used for super-

vised or semi-supervised learning tasks. In this paper, we

focus on semi-supervised learning. One important aspect of

graph CNNs is the graph structure representation of data.

In general, the data we provide to graph CNNs either has

a known intrinsic graph structure, such as social networks,

or we construct a human established graph for it, such as

k-nearest neighbor graph with Gaussian kernel. However,

it is difficult to evaluate whether the graphs obtained from

domain knowledge (e.g., social network) or established by

human are optimal for semi-supervised learning in graph C-

NNs. Henaff et al. [7] propose to learn a supervised graph

with a fully connected network. However, the learned graph

is obtained from a separate network which is also not guar-

anteed to best serve the graph CNNs. Li et al. [19] pro-

pose optimal graph CNNs, in which the graph is learned

adaptively by using a distance metric learning. However, it

use an approximate algorithm to estimate graph Laplacian

which may lead to weak local optimal solution.

In this paper, we propose a novel Graph Learning-

Convolutional Network (GLCN) for semi-supervised learn-

ing problem. The main idea of GLCN is to learn an optimal

graph representation that best serves graph CNNs for semi-

supervised learning by integrating both graph learning and

graph convolution simultaneously in a unified network ar-

chitecture. The main advantages of the proposed GLCN for

semi-supervised learning are summarized as follows.
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Figure 1. Architecture of the proposed GLCN network for semi-supervised learning.

• In GLCN, both given labels and the estimated labels

are incorporated and thus can provide useful ‘weakly’

supervised information to refine (or learn) the graph

construction and to facilitate the graph convolution op-

eration in graph CNN for unknown label estimation.

• GLCN can be trained via a single optimization manner,

which can thus be implemented simply.

To the best of our knowledge, this is the first attempt to

build a unified graph learning-convolutional network archi-

tecture for semi-supervised learning. Experimental results

demonstrate that GLCN outperforms state-of-the-art graph

CNNs on semi-supervised learning tasks.

2. Related Work

Here, we briefly review GCN based semi-supervised

learning proposed in work [11]. Let X = (x1, x2, · · ·xn) ∈
R

n×p be the collection of n data vectors in p dimension.

Let G(X,A) be the graph representation of X with A ∈
R

n×n encoding the pairwise relationship (such as similar-

ities, neighbors) among data X . GCN contains one input

layer, several propagation (hidden) layers and one final per-

ceptron layer [11]. Given an input X(0) = X and graph A,

GCN [11] conducts the following layer-wise propagation in

hidden layers as,

X(k+1) = σ(D−1/2AD−1/2X(k)W (k)) (1)

where k = 0, 1, · · ·K − 1 and D = diag(d1, d2 · · · dn)
is a diagonal matrix with di =

∑n
j=1 Aij . W (k) ∈

R
dk×dk+1 , d0 = p is a layer-specific weight matrix needing

to be trained. σ(·) denotes an activation function, such as

ReLU(·) = max(0, ·), and X(k+1) ∈ R
n×dk+1 denotes the

output of activations in the k-th layer. For semi-supervised

classification, GCN [11] defines the final perceptron layer

as

Z = softmax(D−1/2AD−1/2X(K)W (K)) (2)

where W (K) ∈ R
dK×c and c denotes the number of class-

es. The final output Z ∈ R
n×c denotes the label predic-

tion for all data X in which each row Zi denotes the la-

bel prediction for the i-th node. The optimal weight matri-

ces {W (0),W (1), · · ·W (K)} are trained by minimizing the

cross-entropy loss function as,

LSemi-GCN = −
∑

i∈L

c∑

j=1

Yij lnZij (3)

where L indicates the set of labeled nodes.

3. Graph Learning-Convolutional Network

One core aspect of GCN is the graph representation

G(X,A) of data X . In some applications, the graph struc-

ture of data are available from domain knowledge, such

as chemical molecules, social networks etc. In this case,

one can use the existing graph directly for GCN based

semi-supervised learning. In many other applications, the

graph data are not available. One popular way is to con-

struct a human established graph (e.g., k-nearest neighbor

graph) [8] for GCN. However, the graphs obtained from do-

main knowledge or estimated by human are generally in-

dependent of GCN (semi-supervised) learning process and

thus are not guaranteed to best serve GCN learning. Al-

so, the human established graphs are usually sensitive to

the local noise and outliers. To overcome these problems,

we propose a novel Graph Learning-Convolution Network

(GLCN) which integrates graph learning and graph convo-

lution simultaneously in a unified network architecture and

thus can learn an adaptive (or optimal) graph representa-

tion for GCN learning. In particular, as shown in Figure 1,

GLCN contains one graph learning layer, several convolu-

tion layers and one final perceptron layer. In the following,

we explain them in detail.
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Figure 2. Architecture of the proposed graph learning architecture in GLCN.

3.1. Graph learning architecture

Given an input X = (x1, x2 · · ·xn) ∈ R
n×p, we aim to

seek a nonnegative function Sij = g(xi, xj) that represents

the pairwise relationship between data xi and xj . We im-

plement g(xi, xj) via a single-layer neural network, which

is parameterized by a weight vector a = (a1, a2, · · · ap)
T ∈

R
p×1. Formally, we learn a graph S as

Sij = g(xi, xj) =
exp(ReLU(aT |xi − xj |))∑n
j=1 exp(ReLU(aT |xi − xj |))

(4)

where ReLU(·) = max(0, ·) is an activation function,

which guarantees the nonnegativity of Sij . The role of the

above softmax operation on each row of S is to guarantee

that the learned graph S can satisfy the following property,

∑n

j=1
Sij = 1, Sij ≥ 0 (5)

We optimize the optimal weight vector a by minimizing the

following loss function,

LGL =
n∑

i,j=1

∥xi − xj∥
2
2Sij + γ∥S∥2F (6)

That is, larger distance ∥xi − xj∥2 between data point xi

and xj encourages a smaller value Sij . The second term is

used to control the sparsity of learned graph S because of

simplex property of S (Eq.(5)), as discussed in [17].

Remark. Minimizing the above loss LGL independently

may lead to trivial solution, i.e., a = (0, 0 · · · 0). We use

it as a regularized term in our final loss function, as shown

in Eq.(15) in §3.2.

For some problems, when an initial graph A is available,

we can incorporate it in our graph learning as

Sij = g(xi, xj) =
Aij exp(ReLU(aT |xi − xj |))∑n
j=1 Aij exp(ReLU(aT |xi − xj |))

(7)

We can also incorporate the information of A by consider-

ing a regularized term in the learning loss function as

LGL =
n∑

i,j=1

∥xi − xj∥
2
2Sij + γ∥S∥2F + β∥S −A∥2F (8)

On the other hand, when the dimension p of the input

data X is large, the above computation of g(xi, xj) may

be less effective due to the long weight vector a needing

to be trained. Also, the computation of Euclidean dis-

tances ∥xi − xj∥2 between data pairs in loss function LGL

is complex for large dimension p. To solve this prob-

lem, we propose to conduct our graph learning in a low-

dimensional subspace. We implement this via a single-layer

low-dimensional embedding network, parameterized by a

projection matrix P ∈ R
p×d, d < p. In particular, we con-

duct our final graph learning as follows,

x̃i = xiP, for i = 1, 2 · · ·n (9)

Sij = g(x̃i, x̃j) =
Aij exp(ReLU(aT |x̃i − x̃j |))∑n
j=1 Aij exp(ReLU(aT |x̃i − x̃j |))

(10)

where A denotes an initial graph. If it is unavailable, we

can set Aij = 1 in the above update rule. The loss function

becomes

LGL =

n∑

i,j=1

∥x̃i − x̃j∥
2
2Sij + γ∥S∥2F (11)

The whole architecture of the proposed graph learning net-

work is shown in Figure 2.

Remark. The proposed learned graph S has a desired prob-

ability property (Eq.(5)), i.e., the optimal Sij can be regard-

ed a probability that data xj is connected to xi as a neigh-

boring node. That is, the proposed graph learning (GL) ar-

chitecture can establish the neighborhood structure of data

automatically either based on data feature X only or by fur-

ther incorporating the prior initial graph A with X . The GL

architecture indeed provides a kind of nonlinear function

S = GGL(X,A;P, a) to predict/compute the neighborhood

probabilities between node pairs.

3.2. GLCN architecture

The proposed graph learning architecture is general and

can be incorporated in any graph CNNs. In this paper,

we incorporate it into GCN [11] and propose a unified
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Graph Learning-Convolutional Network (GLCN) for semi-

supervised learning problem. Figure 1 shows the overview

of GLCN architecture. The aim of GLCN is to learn an op-

timal graph representation for GCN network and integrate

graph learning and convolution simultaneously to boost

their respectively performance.

As shown in Figure 1, GLCN contains one graph learn-

ing layer, several graph convolution layers and one final per-

ceptron layer. The graph learning layer aims to provide an

optimal adaptive graph representation S for graph convo-

lutional layers. That is, in the convolutional layers, it con-

ducts the layer-wise propagation rule based on the adaptive

neighbor graph S returned by graph learning layer, i.e.,

X(k+1) = σ(D−1/2
s SD−1/2

s X(k)W (k)) (12)

where k = 0, 1 · · ·K − 1. Ds = diag(d1, d2, · · · dn) is

a diagonal matrix with diagonal element di =
∑n

j=1 Sij .

W (k) ∈ R
dk×dk+1 is a layer-specific trainable weight ma-

trix for each convolution layer. σ(·) denotes an activation

function, such as ReLU(·) = max(0, ·), and X(k+1) ∈
R

n×dk+1 denotes the output of activations in the k-th layer.

Since the learned graph S satisfies
∑

j Sij = 1, Sij ≥ 0,

thus Eq.(12) can be simplified as

X(k+1) = σ(SX(k)W (k)) (13)

For semi-supervised classification task, we define the fi-

nal perceptron layer as

Z = softmax(SX(K)W (K)) (14)

where W (K) ∈ R
dK×c and c denotes the number of class-

es. The final output Z ∈ R
n×c denotes the label prediction

of GLCN network, in which each row Zi denotes the label

prediction for the i-th node. The whole network parameters

Θ = {P, a,W (0), · · ·W (K)} are jointly trained by mini-

mizing the following loss function as

LSemi-GLCN = LSemi-GCN + λLGL (15)

where LGL and LSemi-GCN are defined in Eq.(11) and Eq.(3),

respectively. Parameter λ ≥ 0 is a tradeoff parameter. It

is noted that, when λ = 0, the optimal graph S is learned

based on labeled data (i.e., cross-entropy loss) only which

is also feasible in our GLCN.

Demonstration and analysis. There are two main benefits

of the proposed GLCN network:

• In GLCN, both given labels Y and the estimated la-

bels Z are incorporated and thus can provide useful

‘weakly’ supervised information to refine the graph

construction S and thus to facilitate the graph convolu-

tion operation in GCN for unknown label estimation.

That is, the graph learning and semi-supervised learn-

ing are conducted jointly in GLCN and thus can boost

their respectively performance.

• GLCN is a unified network which can be trained via

a single optimization manner and thus can be imple-

mented simply.

Figure 3 shows the cross-entropy loss values over labeled

node L across different epochs. One can note that, GLCN

obtains obviously lower cross-entropy value than GCN at

convergence, which clearly demonstrates the higher predic-

tive accuracy of GLCN model. Also, the convergence speed

of GLCN is just slightly slower than GCN, indicating the

efficiency of GLCN. Figure 4 demonstrates 2D t-SNE [14]

visualizations of the feature map output by the first convo-

lutional layer of GCN [11] and GLCN, respectively. Dif-

ferent classes are marked by different colors. One can note

that, the data of different classes are distributed more clearly

and compactly in our GLCN representation, which demon-

strates the desired discriminative ability of GLCN on con-

ducting graph node representation and thus semi-supervised

classification tasks.
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Figure 3. Demonstration of cross-entropy loss values across dif-

ferent epochs on MNIST dataset.

4. Experiments

4.1. Datasets

To verify the effectiveness and benefit of the proposed

GLCN on semi-supervised learning tasks, we test it on sev-

en benchmark datasets, including three standard citation

network benchmark datasets (Citeseer, Cora and Pubmed

[20]) and four image datasets (CIFAR10 [12], SVHN [16],

MNIST and Scene 15 [9]). The details of these datasets and

their usages in our experiments are introduced below.

Citeseer. This network data contains 3327 nodes and 4732

edges. The nodes are falling into six classes and each node

is represented by a 3703 dimension feature descriptor.

Cora. This data contains 2708 nodes and 5429 edges. Each

node has a 1433 dimension feature descriptor and all the n-

odes are falling into six classes.

Pubmed. This data contains 19717 nodes and 44338 edges.
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