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Abstract

Modeling fashion compatibility is challenging due to its

complexity and subjectivity. Existing work focuses on pre-

dicting compatibility between product images (e.g. an image

containing a t-shirt and an image containing a pair of jeans).

However, these approaches ignore real-world ‘scene’ im-

ages (e.g. selfies); such images are hard to deal with due

to their complexity, clutter, variations in lighting and pose

(etc.) but on the other hand could potentially provide key con-

text (e.g. the user’s body type, or the season) for making more

accurate recommendations. In this work, we propose a new

task called ‘Complete the Look’, which seeks to recommend

visually compatible products based on scene images. We

design an approach to extract training data for this task, and

propose a novel way to learn the scene-product compatibility

from fashion or interior design images. Our approach mea-

sures compatibility both globally and locally via CNNs and

attention mechanisms. Extensive experiments show that our

method achieves significant performance gains over alterna-

tive systems. Human evaluation and qualitative analysis are

also conducted to further understand model behavior. We

hope this work could lead to useful applications which link

large corpora of real-world scenes with shoppable products.

1. Introduction

Visual signals are a key feature for fashion analysis. Re-

cent advances in deep learning have been adopted by both

academia [17, 26, 43] and industry [15, 51, 52, 55] to realize

various fashion-related applications, ranging from clothing

recognition to fashion retrieval. Fashion images can be cat-

egorized into scene images (fashion images in the wild)

and product images (fashion item images from shopping

websites, usually containing a single product on a plain back-

ground). Generally speaking, the former (e.g. selfies, street

photos) predominate on image sharing applications, whereas

the latter are more common on online shopping websites.

We seek to bridge the gap between these two types of

images, via a new task called Complete the Look (CTL), in
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Figure 1: A comparison of the use cases of product-based

and scene-based complementary product recommendation.

Our approach (bottom) seeks to recommend compatible fash-

ion items based on a real-world scene, while product-based

approaches (top) consider compatibility between products.

which we seek to recommend fashion products from various

categories that complement (or ‘go well with’) the given

scene (Figure 1). Compared to existing approaches, this

setting corresponds more closely to real-world use-cases in

which users might seek recommendations of complementary

items, based on images they upload ‘in the wild.’

Fashion compatibility has been studied previously [40,

11], though existing approaches mainly consider only prod-

uct images (Figure 1). In comparison, our scene-based CTL

task has three significant features: 1) scene images contain

not only the fashion items worn by the subject (or user), but

also rich context like their body type, the season, etc. By

exploiting this side-information, we can potentially provide

more accurate and customized recommendations; 2) our sys-

tem can be adopted by users to give fashion advice (e.g. shoes

that go well with your outfit) simply by uploading (e.g.) a

selfie; 3) our system can be readily adapted to existing plat-

forms to recommend products appearing in fashion images.

Learning scene-product compatibility is at the core of

the CTL task. However, constructing appropriate ground-

truth data to learn the notion of compatibility is a signif-
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icant challenge. Existing large-scale fashion datasets are

typically labeled with clothing segments, attributes, or land-

marks [26, 2, 56], which are absent of any information re-

garding compatibility. Product-based methods have adopted

(for example) Amazon’s co-occurrence data [40, 28] or

Polyvore’s outfit data [11, 39, 36] to learn product-to-product

compatibility. However, these datasets can not be used for

our CTL task, as they lack images from real-world scenes. In

addition to the problem of data availability, another challenge

is to estimate the compatibility between product images and

real-world fashion images, whose characteristics can differ

significantly.

As mentioned above, existing studies typically consider

compatibility of product images [40, 11], meaning that new

data and techniques must be introduced for our CTL task.

Another line of related work considers a cross-scenario fash-

ion retrieval task called Street2Shop (also known as Shop

the Look, or STL) [17, 25] which seeks to retrieve similar-

looking (or even identical) products given a scene image

and a bounding box of the query product. Human-labeled

datasets have been introduced to estimate cross-scenario sim-

ilarity [17], though our CTL task differs from STL in that

we seek to learn a notion of complementarity (instead of sim-

ilarity), and critically the desired complementary products

typically don’t appear in the given scene (Figure 2).

In this paper, we design an approach to generate CTL

datasets based on STL data via cropping. In addition to

leveraging existing datasets from the fashion domain, we

also consider the domain of interior design (Section 3). We

learn global embeddings from scene and product images

and local embeddings from local regions of the scenes, and

measure scene-product compatibility in a unified style space

with category-guided attention (Section 4). We evaluate both

the overall and Top-K ranking performance of our method

against various baselines, quantitatively and qualitatively

analyze the attended regions, and perform a user study to

measure the difficulty of the task (Section 5).

2. Related Work

Visual Fashion Understanding. Recently, computer vi-

sion for fashion has attracted significant attention, with var-

ious applications typically built on top of deep convolu-

tional networks. Clothing ‘parsing’ is one such application,

which seeks to parse and categorize garments in a fashion

image [49, 23, 50]. Since clothing has fine-graind style

attributes (e.g. sleeve length, material, etc.), some works

seek to identify clothing attributes [4, 18, 3], and detect

fashion landmarks (e.g. sleeve, collar, etc.) [43, 26]. An-

other line of work considers retrieving fashion images based

on various forms of queries, including images [26, 35, 52],

attributes [8, 1], occasions [24], videos [6], and user prefer-

ences [16]. Our work is closer to the ‘cross-scenario’ fashion

retrieval setting (called street2shop) which seeks to retrieve

fashion products appearing in street photos [25, 17], as the

same type of data can be adapted to our setting.

Complementary Item Recommendation. Some recent

works seek to identify whether two products are complemen-

tary, such that we can recommend complementary products

based on the user’s previous purchasing or browsing pat-

terns [27, 54, 44]. In the fashion domain, visual features

can be useful to determine compatibility between items, for

example in terms of pairwise compatibility [40, 36, 39, 28],

or outfit compatibility [22, 11, 13, 38]. The former setting

takes a fashion item as a query and seeks to recommend

compatible items from different categories (e.g. recommend

jeans given a t-shirt). The latter seeks to select fashion items

to form compatible outfits, or to complete a partial outfit.

Our method retrieves compatible products based on a real-

world scene containing rich context (e.g. garments, body

shapes, occasions), which can also be viewed as a form of

complementary recommendation. However this differs from

existing methods which seek to model product-product com-

patibility from pairs of images containing products. In addi-

tion to retrieving existing products, one recent approach uses

generative models to generate compatible fashion items [34].

Attention Mechanisms. ‘Attention’ has been widely

used in computer vision tasks including image caption-

ing [47, 5], visual question answering [33, 46], image recog-

nition [14, 41], and generation [48, 53]. Attention is mainly

used to ‘focus’ on relevant regions of an image (known

as ‘spatial attention’). To identify relevant regions of fash-

ion images, previous methods have adopted pretrained per-

son detectors to segment images [25, 37]. Another ap-

proach discovers relevant regions by attribute activation

maps (AAMs) [57], generated using labels including cloth-

ing attributes [1] and descriptions [10]. Recently, attention

mechanisms have achieved strong performance on visual

fashion understanding tasks like clothing categorization and

fashion landmark detection [43]. Our work is the first (to our

knowledge) to apply attention to discover relevant regions

guided by supervision in the form of compatibility.

Deep Similarity Learning. A variety of methods have

been proposed to measure similarity with deep neural net-

works. Siamese Networks are a classic approach, which seek

to learn an embedding space such that similar images have

short distances, and have been applied to face verification

and dimensionality reduction [7, 9]. Recent methods tend

to use triplet losses [32, 42] by considering an anchor im-

age, a positive image (similar to the anchor), and a negative

image (randomly sampled), such that the distance from the

anchor to the positive image should be less than that of the

negative. Recent studies have found that better sampling

strategies (e.g. sampling ‘hard’ negatives) can aid perfor-

mance [32, 45]. In our method, we seek to learn a unified

style space where compatible scenes and products are close,

as they ought to represent similar styles.
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3. Datasets

We first introduce datasets for the Shop the Look (STL)

task, before describing how to convert STL data into a format

that can be used for our Complete the Look (CTL) task.

3.1. Shop the Look Datasets

As shown in Figure 2, the Shop the Look (aka

Street2Shop) task consists of retrieving visually similar (or

even identical) products based on a scene image and a bound-

ing box containing the query product. This application is

useful, for example, when a user sees a celebrity wearing an

item (e.g. a purse), allowing them to easily search and buy

the product (or a similar one) by taking a photo and selecting

a bounding box of the item.

The main challenge here arises due to the difference be-

tween products (e.g. clothing) in real-world scenes versus

that of online shopping images, where the latter are typically

in a canonical pose, on a plain background, adequately lit,

etc. To tackle the problem, a recent study sought to collect

human-labeled datasets which include bounding boxes of

products in scene images, the associated product images, as

well as the category of each product [17] (Figure 2). We

describe three datasets that can be used for the Shop the Look

task as follows:

Exact Street2Shop1 Kiapour et al. introduced a first

human-labeled dataset for the street2shop task [17]. They

crawled data from ModCloth, an online fashion store where

people can upload photos of themselves wearing products,

indicating the exact items they are wearing. ModCloth also

provides category information for all products. However,

since bounding boxes are not provided, the authors used

Amazon’s Mechanical Turk to label the bounding box of

products in scene images.

Pinterest’s Shop The Look2 We obtained two STL

datasets from Pinterest, containing various scene images and

shoppable products from partners. STL-Fashion contains

fashion images and products, while STL-Home includes

interior design and home decor items. Both datasets have

scene-product pairs, bounding boxes for products, and prod-

uct category information, all of which are labeled by internal

workers. Unlike the Exact Street2Shop dataset [17] where

users only provide product matches, here workers also label

products that have a similar style to the observed product and

are compatible with the scene. Furthermore, the two datasets

are much larger in terms of both the number of images and

scene-product pairs (Table 1).

3.2. Can STL Data be Used for CTL?

Estimating scene-product compatibility is at the core of

the CTL task. Although existing STL datasets provide abun-

1http://www.tamaraberg.com/street2shop/
2https://github.com/kang205/STL-Dataset
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Figure 2: A comparison of data formats and tasks between

STL and CTL. STL focuses on retrieving similar products

while CTL seeks to recommend compatible items that don’t

appear in the scene. The CTL data contains compatible

scene-product (i.e., Is and Ip) pairs.

dant scene-product pairs, directly using them to learn a no-

tion of compatibility (i.e., viewing each pair as a compatible

scene and product) is flawed.

For example, suppose we wanted to learn a CTL model

based on STL data. The model might be trained to predict

a high compatibility score for each scene/product pair (s /

p+) in the STL data, and predict a low compatibility score

for the negative product p- (e.g. via random sampling). That

is, the product p+ appears in the scene s while the product

p- doesn’t. Here it is possible that the model will merely

learn to detect whether the product appears in the scene

(i.e., give a high compatibility score if it appears, and a low

score otherwise), instead of measuring compatibility. In this

case, the model would fail on the CTL task which seeks to

recommend compatible products which don’t appear in the

scene. Empirical results also show that such an approach

leads to inferior performance.

The above issue arises mainly because the model ‘sees’

the product in the scene image. To address it, we propose a

strategy to adapt STL datasets for the CTL task. The core

idea is to remove the product by cropping the scene image,

which forces the model to learn the compatibility between

the remaining part of the scene image and the product.

3.3. Generating CTL Datasets

To generate CTL datasets based on STL data, and over-

come the issue mentioned above, we propose to crop scene

images to exclude their associated products. Given a scene

image Is and a bounding box B for a product, we consider

four candidate regions (i.e., top, bottom, left, and right) that

don’t overlap with B, and select whichever has the greatest
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Name Source #Scene #Product #Pair Product Categories (in descending order of quantity)

Fashion-1 Exact Street2Shop [17] 10,482 5,238 10,608 footwear, tops, outerwear, skirts, leggings, bags, pants, hats, belts, eyewear

Fashion-2 STL-Fashion (Pinterest) 47,739 38,111 72,198
shoes, tops, pants, handbags, coats, sunglasses, shorts, skirts, earrings,

necklaces

Home STL-Home (Pinterest) 24,022 41,306 93,274
rugs, chairs, light fixtures, pillows, mirrors, faucets, lamps, sofas, tables,

decor, curtains

Table 1: Data statistics (after preprocessing). Each pair contains a compatible scene and product.

area as the cropped scene image. Specifically, we perform

the following procedure to crop scene images:

(i) In some cases, the bounding box doesn’t fully cover

the product. As we don’t want the model to see even a

small piece of the product (which might reveal e.g. its

color), we slightly expand the bounding box B to

ensure that the product is likely to be fully covered.

Specifically, we expand all bounding boxes by 5% of

the image length.

(ii) Calculate areas of the candidate regions, and select

the one whose area is largest. For fashion images, we

observe that almost all subjects are in a vertical pose,

so we only consider the ‘top’ and ‘bottom’ regions (as

the left/right regions often exclude the human subject);

for home images we consider all four candidates.

(iii) Finally, as the cropped scene should be reasonably

large so as to include the key context, we discard scene-

product pairs for which the area of the cropped image is

smaller than a threshold (we use 1/5 of the full area). If

the cropped image is large enough, the pair containing

the cropped scene and the corresponding product is

included in the CTL dataset.

Following our heuristic cropping strategy, we manually

verify that in most cases the cropped image doesn’t include

the associated product, and the cropped image contains a

meaningful and reasonable region for predicting comple-

ments. In practice we find that discarded instances are largely

due to dresses which often occupy a large area. We find that

for complement recommendation it is generally not practical

to apply a cropping strategy for objects that occupy a large

portion of the image; therefore we opted simply to discard

dresses from our dataset (note that we can still recommend

other fashion items based on scenes in which people wear

dresses). Figure 2 shows a comparison between STL and

CTL data; CTL data statistics are listed in Table 1.

4. Method

In the Complete the Look task, we are given a dataset

containing compatible pairs consisting of a scene image Is
and a product image Ip (as shown in Figure 2), and seek

to learn scene-product style compatibility. To this end, we

design a model which measures the compatibility globally

in addition to a more fine-grained approach that matches

relevant regions of the scene image with the product image.

4.1. Style Embeddings

We adopt ResNet-50 [12] to extract visual features from

scene and product images. Based on the scene image Is, we

obtain a visual feature vector vs ∈ R
d1 from the final lay-

ers (e.g. pool5), and a feature map {mi ∈ R
d2}w×h

i=1 from

intermediate convolutional layers (e.g. conv4 6). Simi-

larly, the visual feature for product image Ip is denoted as

vp ∈ R
d1. Such ResNet feature vectors have shown strong

performance and transferability [12, 20], and the feature

maps have been shown to be able to capture key context

from local regions [30, 47].

Due to the limited size of our datasets, we freeze the

weights of ResNet-50 (pretrained on Imagenet) and apply

a two-layer feed forward network g(Θ; ·)3 to transform the

visual features to a d-dimensional metric embedding (with

unit length) in a unified style space. Specifically, we have:

fs = g(Θg;vs), fp = g(Θg;vp),

fi = g(Θl;mi), f̂i = g(Θ
l̂
;mi),

(1)

where fs and fp are the style embedding for the scene and

the product respectively, and fi, f̂i are embeddings for the

i-th region of the scene image. ℓ2 normalization is applied

on embeddings to improve training stability, an approach

commonly used in recent work on deep embedding learn-

ing [32, 45].

4.2. Measuring Compatibility

We measure compatibility by considering both global and

local compatibility in a unified style space.

Global compatibility. We seek to learn style embed-

dings from compatible scene and product images, where

nearby embeddings indicate high compatibility. We use the

(squared) ℓ2 distance between the scene embedding fs and

the product embedding fp to measure their global compati-

bility:

dglobal(s, p) = ‖fs − fp‖
2, (2)

where ‖ · ‖ is the ℓ2 distance.

Local Compatibility. As the scene image typically con-

tains a large area including many objects, considering only

global compatibility may overlook key details in the scene.

3The network architecture is Linear-BN-Relu-Dropout-Linear

-L2Norm, and parameterized by Θ.
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Figure 3: An illustration of our hybrid compatibility mea-

surement. We simplify the size of the attention map to 2×2.

Hence we match every region of the scene image with the

product image to achieve a more fine-grained matching pro-

cedure. Moreover, not all regions are equally relevant, and

relevance may vary when predicting complementarity from

different categories. Thus, we first measure the compatibility

between every scene patch and the product, and then adopt

category-aware attention to assign weights over all regions:

dlocal(s, p) =
∑

1≤i≤w×h

ai‖fi − fp‖
2,

âi = −‖f̂i − êc‖
2, a = softmax(â),

(3)

where c is the category of product p, and êc ∈ R
d is an

ℓ2-normalized embedding for category c. Here, we use the

distance between f̂i and êc to measure the relevance of the

i-th region of the scene image when predicting complements

from category c. Note the ‘attentive distances’ in eq. 3 can be

viewed as an extension of attention for metric embeddings,

as if we replace the ℓ2 distance with an inner product we

recover the conventional attention form (
∑

i aifi)
T
fp.

Finally, we measure compatibility by defining a hybrid

distance that combines both global and local distances:

d∗(s, p) =
1

2
[dglobal(s, p) + dlocal(s, p)] . (4)

Figure 3 illustrates our scene-product compatibility measur-

ing procedure. Recall that all the embeddings we used are

normalized to have unit length, and attention weights are

also normalized (i.e.,
∑

i ai = 1). Note that all the distances

(d∗, dglocal, and dlocal) range from 0 to 4.

4.3. Objective

Following [32], we adopt the hinge loss to learn style

embeddings by considering triplets T of a scene s, a positive

Scene Scene Scene Scene Scene

(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

Figure 4: A sample of the binary questions in our testing

sets. Given a scene and two products, the model must predict

which product is more compatible with the scene. Correct

predictions are labeled in green, incorrect in red.

product p+, and a negative product p-:

L =
∑

(s,p+,p-)∈T

[d∗(s, p
+)− d∗(s, p

-) + α]+ , (5)

where α is the margin, which we set to 0.2 as in [32]. Storing

all possible triplets in T is intractable; we use mini-batch gra-

dient descent to optimize the model, where training triplets

for each batch are dynamically generated: we first randomly

sample (s, p+) from all compatible pairs, and then sample a

negative product p- from the same category of p+. We do not

sample negatives from different categories, as during testing

we rank products from the same category, which is what the

adopted sampling strategy seeks to optimize.

5. Experiments

5.1. Baselines

Popularity: A simple baseline which recommends prod-

ucts based on their popularity (i.e., the number of associated

(scene, product) pairs).

Imagenet Features: We directly use visual features

from ResNet pretrained on Imagenet, which have shown

strong performance in terms of retrieving visually similar

images [29, 52]. The similarity is measured via the ℓ2 dis-

tance between embeddings.

IBR [28]: Image-based recommendation (IBR) measures

product compatibility via a learned Mahalanobis distance

between visual embeddings. Essentially IBR learns a linear

transformation to convert visual features into a style space.

Siamese Nets: Veit et al. [40] adopt Siamese CNNs [7]

to learn style embeddings from product images, and measure

their compatibility using an ℓ2 distance. As suggested in

[40], we fine-tune the network based on a pretrained model.

BPR-DAE [36]: This method uses autoencoders to ex-

tract representations from clothing images and textual de-

scriptions, and incorporates them into the BPR recommen-

dation framework [31]. Due to the absence of textual infor-

mation in our datasets, we only use its visual module.

Since the baselines above are designed for measuring

product compatibility, we adapt the baselines to our problem

10536



1 10 20 30 40 50
K

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Ours
BPR-DAE
Siamese Nets
IBR

(a) Fashion-1

1 10 20 30 40 50
K

0.00

0.05

0.10

0.15

0.20
Ours
BPR-DAE
Siamese Nets
IBR

(b) Fashion-2

1 10 20 30 40 50
K

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Ours
BPR-DAE
Siamese Nets
IBR

(c) Home

Figure 5: Top-K Accuracy on all datasets (i.e., how often the

top-K retrieved items contain the ground-truth product).

by treating all images as product images and apply the same

sampling strategy as used in our method.

5.2. Implementation Details

For a fair comparison, we implemented all methods us-

ing ResNet-504 (pretrained on Imagenet), as the underly-

ing network, where the layer pool5 (2048d) is used for

the visual vectors and the layer block3 (7×7×1024) is

used as the feature map. We use an embedding size of 128,

and we did not observe any performance gain with larger d

(e.g. d = 512). All models are trained using Adam [19] with

a batch size of 16. As suggested in [32], visual embeddings

are normalized to have a unit length for metric embedding

based methods, and the margin α is set to 0.2. For all meth-

ods, horizontal mirroring and random 224× 224 crops from

256 × 256 images are used for data augmentation, and a

single center crop is used for testing. We randomly split

the scenes (and the associated pairs) into training (80%),

validation (10%) and test (10%) sets. We train all methods

for 100 epochs, examine the performance on the validation

set every 10 epochs, and report the test performance for the

model which achieves the best validation performance.

5.3. Recommendation Performance

As shown in Figure 4, given a scene s, a category c, a

positive product p+, and a negative product p- (randomly

sampled from c), the model needs to decide which product

is more compatible with the scene image. The accuracy of

these binary choice problems is used as a metric for perfor-

mance evaluation. Note the accuracy here is equivalent to

the AUC which measures the overall ranking performance.

Table 2 lists the accuracy of all methods. First, we note

that the first group of methods (learning-free) perform poorly.

Imagenet features perform similarly to random guessing,

which indicates that visual compatibility is different from

visual similarity, and thus it is necessary to learn the notion

of compatibility from data. Even the naı̈ve popularity base-

line achieves better (though still poor) performance. Second,

we found training with cropped images is effective as it can

generally boost the performance compared with using full

images. Compared to other baselines, our method has the

4We use the implementation from TensorFlow-Slim. The architecture is

slightly different from the original paper (e.g. different strides).

Method Fashion-1 Fashion-2 Home

Random 50.0 50.0 50.0

Popularity 52.1 57.5 55.6

Imagenet Feature 49.4 51.6 48.1

Train w/ full images

IBR [28] 56.5 58.5 57.0

Siamese Nets [40] 63.0 67.1 72.4

BPR-DAE [36] 59.3 61.1 64.2

Ours 63.1 70.0 75.0

Train w/ cropped images

IBR [28] 54.5 55.9 58.0

Siamese Nets [40] 64.0 69.0 73.1

BPR-DAE [36] 59.6 61.1 65.8

Ours 68.5 75.3 79.6

Table 2: Accuracy of binary comparisons on all datasets.

most significant performance drop with full images, presum-

ably because our method is the only one which is aware of

local appearance, which makes it easier to erroneously match

scene patches with the product rather than leaning compat-

ibility (as discussed in Section 3.2). The performance gap

between Fashion-1 and Fashion-2 possibly relates to their

sizes. Finally, our method achieves the best performance on

all datasets for both the fashion and home domains.

In addition to an overall ranking measurement, the Top-K

accuracy (the fraction of times that the first K recommended

items contain the positive item) [1] might be closer to a

practical scenario. Figure 5 shows Top-K accuracy curves

for all datasets. We see that our method significantly out-

performs baselines on the last two datasets, and slightly

outperforms the strongest baseline on the first dataset. Per-

formance analysis on additional model variants is included

in our supplementary material.

5.4. Analysis of Attended Regions

We visualize the attended areas to intuitively reveal what

parts of a scene image are important for predicting comple-

mentarity, and quantitatively evaluate whether the attention

focuses on meaningful regions.

Figure 6 shows test scene images (after cropping), the cor-

responding attention map from our model, and the saliency

map generated by DeepSaliency5 [21]. DeepSaliency is

trained to detect salient objects while our attention mecha-

nism discovers relevant areas by learning the compatibility

between scene and product images. For the first two fashion

datasets, the two approaches both successfully identify the

subject of the image (i.e., the person) from various back-

grounds. Interestingly, our attention mechanism tends to

ignore human faces and more focus only on clothing, which

means our model discovers that the subject’s clothing is more

relevant than the appearance of the subject themselves when

5http://www.zhaoliming.net/research/

deepsaliency
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Figure 6: Visualization of attention maps (‘A’) from our

method, and saliency maps (‘S’) from DeepSaliency [21].

Method Fashion-1 Fashion-2 Home

Top-1 region

Random 13.2 12.3 16.4

Attention (Ours) 22.4 24.4 18.9

DeepSaliency [21] 24.8 25.0 17.8

Top-3 regions

Random 32.1 29.9 37.0

Attention (Ours) 43.3 45.0 38.3

DeepSaliency [21] 49.2 47.8 36.8

Table 3: Fraction of successful hits on meaningful regions.

recommending complements.6 In contrast, the scenes in the

interior design domain are much more complex (critically,

they contain many objects rather than a single subject). Al-

though some meaningful objects (e.g. pillows, lamps, etc.)

are discovered in some cases, it appears to be harder for

either attention or saliency to detect key objects.

In addition to qualitative examples, we also quantitatively

measure whether attention focuses on meaningful areas of

scene images. Here we assume that areas corresponding

to labeled products are relevant. Specifically, we divide the

image into 7×7 regions, and a region is considered ‘relevant’

if it significantly overlaps (i.e. larger than half the area of a

region) with any product’s bounding box. We then calculate

the attention map (7× 7) for all test scene images and rank

the 49 regions according to their scores. If the top-1 region

(or one of the top-3 regions) is a ‘relevant region’, then we

deem the attention map as a successful hit.

Table 3 shows the fraction of successful hits of our atten-

tion map, random region ranking, and the saliency map from

DeepSaliency [21]. On the fashion datasets, our method’s

performance is close to that of DeepSaliency, and both meth-

ods are significantly better than random. This shows that

our attention mechanism can discover and focus on key ob-

jects (without knowing what area is relevant during training)

guided by the supervision of complementarity. This is simi-

lar to a recent study which shows that spatial attention seems

6Note that attention is only used when measuring local compatibility,

the model can still leverage the context provided in the unattended regions

via the global compatibility.

Method Dataset Overlap Human

Popularity 56.5 60.7 56.0

IBR [28] 56.3 56.2 52.9

Siamese Nets [40] 72.1 72.6 62.1

BPR-DAE [36] 62.5 63.8 58.3

Ours 75.8 77.3 65.0

Human 75.0 100 100

Table 4: Accuracy on sampled data using dataset labels, hu-

man labels, and overlap labels as ground truth (respectively).

to be good at extracting key areas for clothing category pre-

diction [43]. However, for the ‘home’ domain, both our

method and DeepSaliency perform only slightly better than

(or similar to) random. This indicates that scene images in

the home domain are more complex than fashion images, as

shown in Figure 6. This may also imply that a more sophis-

ticated method (e.g. object detection) might be needed to

extract local patterns for the home domain.

5.5. Human Performance

To assess how well the learned models accord with hu-

man fashion sense, we conduct a human subject evaluation,

in which four fashion experts are asked to respond to binary

choice questions (as shown in Figure 4). Specifically, each

fashion expert is required to label 20 questions (randomly

sampled from the test set) for each dataset, and performance

is then evaluated based on the 240 labeled questions. An im-

portant observation is that our model achieves ‘human-level’

performance: the second column of Table 4 (“Dataset”)

shows that fashion experts achieve 75.0% accuracy, while

our model achieves 75.8% accuracy.

Considering that fashion experts sometimes disagree with

the ground-truth, we use the fashion experts’ judgments

as the ground-truth labels to evaluate the consistency with

human fashion sense, and our model outperforms other meth-

ods (fourth column of Table 4, “Human”). We also observe

that better performance on the dataset typically implies a

better consistency with human fashion sense.

A final question is related to the subjectivity of the task:

how well does our model do on cases where there is a clear

answer? To answer this question, we used the following

heuristic to generate a dataset consisting of only unambigu-

ous questions: select the test data where both fashion experts

and the dataset label agree. On this data subset, our model

is again the top-performer, which shows that our model in-

deed produces better fashion recommendations than other

approaches, even when controlling for question ambiguity

(third column of Table 4, “Overlap”).

5.6. Qualitative Results

Figure 7 shows four examples (from the test set) that de-

pict the original scene, the cropped product, query scene,

query category, and the top-3 most and least compatible prod-

10538



Tops Outerwear Bags

Query

Scene

(cropped)

Full 

Scene

Product

Image

(a) (b) (c) (d)

Most

Compatible

Products

Least

Compatible

Products

Query Category Tops Eyewear BagsBags Hats Shoes Pillows Lamps Curtains

Figure 7: Qualitative results of the top-3 most and least compatible products generated by our model. Note the full scenes and

(ground truth) product images are only for demonstration and are not the input to our system.

ucts selected by our algorithm. By comparing the removed

product and the retrieved products from the first category

(i.e., the same as the removed one), it appears that the most

compatible items are closer in style to the ground-truth prod-

uct compared with the least compatible items. Qualitatively

speaking, the generated compatible products are more com-

patible with the scenes. In column (a), the recommended

white and transparent hats are (in the authors’ opinion) more

compatible than dark colors; in column (b), the yellow out-

erwear from the full scene is close in color and style with

the recommendations. We also observe that the learned com-

patibility is not merely based on simple factors like color;

for example, in column (d) the recommended lamps have

different colors but similar style (modern, minimalist), and

are quite different in style from the incompatible items. Thus

the model appears to have learned a complex notion of style.

6. Conclusion

In this paper, we proposed a novel task, Complete the

Look, for recommending complementary products given

a real-world scene. Complete the Look (or CTL) can be

straightforwardly applied on e-commerce websites to give

users fashion advice, simply by providing scene images as

input. We designed a cropping-based approach to construct

CTL datasets from STL (Shop the Look) data. We estimate

scene-product compatibility globally and locally via a uni-

fied style space. We performed extensive experiments on

recommendation performance to verify the effectiveness of

our method. We further studied the behavior of our attention

mechanism across different domains, and conducted human

evaluation to understand the ambiguity and difficulty of the

task. Qualitatively, our CTL method generates compatible

recommendations that seem to capture a complex notion of

‘style.’ In the future, we plan to incorporate object detec-

tion techniques to extract key objects for more fine-grained

compatibility matching.
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