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Abstract

Distance metric learning (DML) has been successfully

applied to object classification, both in the standard regime

of rich training data and in the few-shot scenario, where

each category is represented by only a few examples. In

this work, we propose a new method for DML that simul-

taneously learns the backbone network parameters, the em-

bedding space, and the multi-modal distribution of each of

the training categories in that space, in a single end-to-end

training process. Our approach outperforms state-of-the-

art methods for DML-based object classification on a va-

riety of standard fine-grained datasets. Furthermore, we

demonstrate the effectiveness of our approach on the prob-

lem of few-shot object detection, by incorporating the pro-

posed DML architecture as a classification head into a stan-

dard object detection model. We achieve the best results on

the ImageNet-LOC dataset compared to strong baselines,

when only a few training examples are available. We also

offer the community a new episodic benchmark based on the

ImageNet dataset for the few-shot object detection task.

1. Introduction

Due to the great success of deep neural networks (DNNs)

in the tasks of image classification and detection [7, 11, 12,

14, 32, 45], they are now widely accepted as the ‘feature

extractors of choice’ for almost all computer vision appli-

cations, mainly for their ability to learn good features from

the data. It is well-known that training a regular DNN model

from scratch requires a significant amount of training data

[26]. Yet, in many practical applications, one may be given

only a few training samples per class to learn a classifier.

This is known as the few-shot learning problem.

Recent studies have achieved significant advances in us-

ing DNNs for few-shot learning. This has been demon-

strated for domain-specific tasks, such as face recogni-

tion [28] and for the classification of general categories

∗The authors have contributed equally to this work

Figure 1. One-shot detection example. Surrounding images: ex-

amples of new categories unseen in training. Center image: de-

tection result for the one-shot detector on an image containing in-

stances of partridge, which is one of the new categories.

[6, 10, 33, 38, 40, 44]. However, very few works have in-

vestigated the problem of few-shot object detection, where

the task of recognizing instances of a category, represented

by a few examples, is complicated by the presence of the

image background and the need to accurately localize the

objects. Recently, several interesting papers demonstrated

preliminary results for the zero-shot object detection case

[1, 23] and for the few-shot transfer learning [5] scenario.

In this work, we propose a novel approach for Distance

Metric Learning (DML) and demonstrate its effectiveness

on both few-shot object detection and object classification.

We represent each class by a mixture model with multiple

modes, and consider the centers of these modes as the rep-

resentative vectors for the class. Unlike previous methods,

we simultaneously learn the embedding space, backbone

network parameters, and the representative vectors of the

training categories, in a single end-to-end training process.

For few-shot object detection, we build upon modern ap-

proaches (e.g., the deformable-FPN variant of the Faster-
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Figure 2. Overview of our approach. (a) Train time: backbone, embedding space and mixture models for the classes are learned jointly,

class representatives are mixture mode centers in the embedding space; (b) Test time: new (unseen during training) classes are introduced

to the detector in the learned embedding space using just one or a few examples. Fine tuning the representatives and the embedding (on the

episode train data) can be used to further improve performance (Section 5). For brevity, only two novel classes are illustrated in the test.

The class posteriors are computed by measuring the distances of the input features to the representatives of each of the classes.

RCNN [7, 11]) that rely on a Region Proposal Network

(RPN) to generate regions of interest, and a classifier ‘head’

that classifies these ROIs into one of the object categories or

a background region. In order to learn a robust detector with

just a few training examples (see Figure 1 for a one-shot de-

tection example), we propose to replace the classifier head

with a subnet that learns to compute class posteriors for

each ROI, using our proposed DML approach. The input to

this subnet are the feature vectors pooled from the ROIs, and

the class posteriors for a given ROI are computed by com-

paring its embedding vector to the set of representatives for

each category. The detection task requires solving ‘an open

set recognition problem’, namely to classify ROIs into both

the structured foreground categories and the unstructured

background category. In this context, the joint end-to-end

training is important, since sampling background ROIs for

separate training of the DML is very inefficient (Section 5).

In the few-shot detection experiments, we introduce new

categories into the detector. This is done by replacing the

learned representatives (corresponding to old categories)

with embedding vectors computed from the foreground

ROIs of the few training examples given for these categories

(k examples for k-shot detection). We also investigate the

effects of fine-tuning our proposed model and the baselines

for few-shot learning. Promising results, compared to base-

lines and the previous work, are reported on the few-shot

detection task (Section 5.2) underlining the effectiveness

of jointly optimizing the backbone and the embedding for

DML. Figure 2 schematically illustrates an overview of our

approach to few-shot detection.

We also demonstrate the use of our approach for gen-

eral DML-based classification by comparing to the Magnet

Loss [25] and other state-of-the-art DML-based approaches

[43, 22]. Instead of the alternating training of embedding

and clustering used in [25], our proposed approach end-to-

end trains a single (monolithic) network architecture capa-

ble of learning the DML embedding together with the repre-

sentatives (modes of the mixture distributions). Effectively,

this brings the clustering inside the end-to-end network

training. Using this method, we were able to improve upon

the state-of-the-art classification results of [22, 25, 43] on a

variety of fine-grained classification datasets (Sec. 5.1).

Our contributions are threefold. First, we propose a

novel sub-net architecture for jointly training an embedding

space together with the set of mixture distributions in this

space, having one (multi-modal) mixture for each of the cat-

egories. This architecture is shown to improve the current

state of the art for both DML-based object classification and

few-shot object detection. Second, we propose a method to

equip an object detector with a DML classifier head that

can admit new categories, and thus transform it into a few-

shot detector. To the best of our knowledge, this has not

been done before. This is probably due to detector train-

ing batches being usually limited to one image per-GPU,

5198



not allowing for batch control in terms of category content.

This control is needed by any of the current few-shot learn-

ers that use episode-based training. This, in turn, makes it

challenging to use those approaches within an end-to-end

trained detector. In our approach, the set of representatives

serves as an ‘internal memory’ to pass information between

training batches. Third, in the few-shot classification lit-

erature, it is a common practice to evaluate the approaches

by averaging the performance on multiple instances of the

few-shot task, called episodes. We offer such an episodic

benchmark for the few-shot detection problem, built on a

challenging fine-grained few-shot detection task.

2. Related work

Distance Metric Learning. The use of metric learn-

ing for computer vision tasks has a long history (see [15]

for a survey). In a growing body of work, the meth-

ods for image classification and retrieval, based on deep

DML, have achieved state-of-the-art results on various tasks

[22, 25, 34, 43]. Rippel et al. [25] showed that if the em-

bedding and clustering of the category instances are alter-

nated during training, then on a variety of challenging fine-

grained datasets [13, 20, 21, 27] the DML-based classifica-

tion improves the state-of-the-art even with respect to the

non-DML methods. In DML, the metric being learned is

usually implemented as an L2 distance between the sam-

ples in an embedding space generated by a neural network.

The basic loss function for training such an embedding is

the triplet loss [41], or one of its recent generalizations

[34, 35, 39]. These losses are designed to make the em-

bedding space semantically meaningful, such that objects

from the same category are close under the L2 distance, and

objects from different categories are far apart. This makes

DML a natural choice for few-shot visual recognition. Fol-

lowing the DML, a discriminative class posterior is com-

puted at test time. To that end, a non-parametric approach

such as k-Nearest-Neighbors (k-NN) is commonly used

to model the class distributions in the learned embedding

space [38, 33, 41], though in some cases parametric models

are also used [4]. In addition, in many approaches such as

[33, 41] there is an inherent assumption of the category dis-

tributions being uni-modal in the embedding space. Our ap-

proach instead learns a multi-modal mixture for each cate-

gory, while simultaneously learning the embedding space in

which the distances to these representatives are computed.

Few-shot Learning. An important recent work in few-

shot classification has introduced Matching Networks [38],

where both train and test data are organized in ‘episodes’.

An N -way, M -shot episode is an instance of the few-shot

task represented by a set of M training examples from

each of the N categories, and one query image of an ob-

ject from one of the categories. The goal is to determine

the correct category for the query. In [38], the algorithm

learns to produce a dedicated DML embedding specific to

the episode. In [33], each class is represented by a Proto-

type - a centroid of the batch elements corresponding to that

category. Recently, even more compelling results were ob-

tained on the standard few-shot classification benchmarks

using meta-learning methods [9, 19, 24, 44] and synthesis

methods [6, 10, 29, 40, 44]. Although great progress was

made towards few-shot classification, it is still difficult to

apply these methods to few-shot detection. The reason is

that a detector training batch typically consists of just one

image, with a highly unbalanced foreground to background

ROI ratio (somewhat balanced using OHEM [31] and alike).

This is problematic for existing few-shot learners, which

usually require a balanced set of examples from multiple

categories in each batch and commonly have difficulty cop-

ing with unstructured noise (background ROIs in our case).

There are only a handful of existing works on few-shot

detection. An interesting recent work by Chen at al. [5]

proposed using regularized fine-tuning on the few given ex-

amples in order to transfer a pre-trained detector to the few-

shot task. The authors show that using their proposed reg-

ularization, fine-tuning of the standard detectors, such as

FRCNN [30] and SSD [18], can be significantly improved

in the few-shot training scenario. A different approach by

Dong et al. [8] uses additional unlabeled data in a semi-

supervised setting. By using the classical method of enrich-

ing the training data with high-confidence sample selection,

the method of [8] produces results comparable to weakly

supervised methods with lots of training examples. Un-

like previous methods, we propose a DML-based approach

for few-shot object detection, which yields superior perfor-

mance compared to existing techniques.

3. RepMet Architecture
We propose a subnet architecture and corresponding

losses that allow us to train a DML embedding jointly with

the multi-modal mixture distribution used for computing the

class posterior in the resulting embedding space. This sub-

net then becomes a DML-based classifier head, which can

be attached on top of a classification or a detection back-

bone. It is important to note that our DML-subnet is trained

jointly with the feature producing backbone. The architec-

ture of the proposed subnet is depicted in Figure 3.

Batch-training is used, but for simplicity we will refer to

the input of the subnet as a single (pooled) feature vector

X ∈ R
f computed by the backbone for the given image

(or ROI). Examples for a backbone are InceptionV3 [36]

or an FPN [16] (without RCNN). We first employ a DML

embedding module, which consists of a few fully connected

(FC) layers with batch normalization (BN) and ReLU non-

linearity (2-3 such layers in our experiments). The output

of the embedding module is a vector E = E(X) ∈ R
e,

where commonly embedding size e ≪ f . As an additional

set of trained parameters, we hold a set of ‘representatives’
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Figure 3. The proposed RepMet DML sub-net architecture performs joint end-to-end training of the DML embedding together with the

modes of the class posterior distribution. For the detailed description of the notation and the different components please refer to section 3.

Rij ∈ R
e. Each vector Rij represents the center of the j-th

mode of the learned discriminative mixture distribution in

the embedding space, for the i-th class out of the total of N

classes. We assume a fixed number of K modes (peaks) in

the distribution of each class, so 1 ≤ j ≤ K.

In our implementation, the representatives are realized

as weights of an FC layer of size N ·K · e receiving a fixed

scalar input 1. The output of this layer is reshaped to an N×
K×e tensor. During training, this simple construction flows

the gradients to the weights of the FC layer and learns the

representatives. For a given image (or detector ROI) and its

corresponding embedding vector E, our network computes

a matrix of N ×K distances dij(E) = d(E,Rij) between

E and the representatives Rij . These distances are used to

compute the probability of the given image (or ROI) in each

mode j of each class i:

pij(E) ∝ exp

(

−
d2ij(E)

2σ2

)

(1)

Here we assume that all the class distributions are mix-

tures of isotropic multi-variate Gaussians with variance σ2.

In our current implementation, we do not learn the mixing

coefficients and set the discriminative class posterior to be:

P(C = i|X) = P(C = i|E) ≡ max
j=1,...,K

pij(E) (2)

where C = i denotes class i and the maximum is taken over

all the modes of its mixture. This conditional probability

is an upper bound on the actual class posterior. The reason

for using this approximation is that for one-shot detection,

at test time, the representatives are replaced with embedded

examples of novel classes, unseen during training (more de-

tails are found in Section 5). Mixture coefficients are asso-

ciated with specific modes, and since the modes change at

test time, learning the mixture coefficients becomes highly

non-trivial. Therefore, the use of the upper bound in Eq.

2 eliminates the need to estimate the mixture coefficients.

An interesting future extension to our approach would be

to predict the mixture coefficients and the covariance of the

modes as a function of E or X .

Having computed the class posterior, we also estimate

a (discriminative) posterior for the ‘open’ background (B)

class. Following [2], we do not model the background prob-

ability, but instead it is estimated via its lower bound using

the foreground (class) probabilities:

P(B|X) = P(B|E) = 1−max
ij

pij(E) (3)

Having P(C = i|X) and P(B|X) computed in the net-

work, we use a sum of two losses to train our model (DML

subnet + backbone). The first loss is the regular cross-

entropy (CE) with the ground truth labels given for the im-

age (or ROI) corresponding to X . The other is intended to

ensure there is at least α margin between the distance of

E to the closest representative of the correct class, and the

distance of E to the closest representative of a wrong class:

L(E,R) =

∣

∣

∣

∣

min
j

di∗j(E)− min
j,i 6=i∗

dij(E) + α

∣

∣

∣

∣

+

(4)

where i∗ is the correct class index for the current example

and | · |+ is the ReLU function. Figure 4 illustrates how the

proposed DML sub-net is integrated within the full network

architectures used for the DML-based classification and the

few-shot detection experiments.

4. Implementation details

In this section we list additional details of our implemen-

tation of the proposed approach for the DML-based classi-

fication (Section 4.1) and few-shot detection (Section 4.2)

tasks. Our code is available here.
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Figure 4. Network architectures used. (a) Network for DML based classification. (b) Network for few-shot detection; its backbone is

FPN+DCN with deformable ROI-align [7].

4.1. DMLbased classification
For the DML-based classification experiments, we used

the InceptionV3 [36] backbone, attaching the proposed

DML subnet to the layer before its last FC layer. The em-

bedding module of the subnet consists of two FC layers of

sizes 2048 and 1024, the first with BN and ReLU, and the

second just with linear activation. This is followed by an

L2 normalization of the embedding vectors. All layers are

initialized randomly. In all of our DML-based classification

experiments, we set σ = 0.5 and use K = 3 representatives

per category. Varying of K on the validation set (Fig. 5(d))

shows that going from K = 1 to K = 3 improves accu-

racy by 15% and for K > 5 accuracy degrades gracefully

by 5%. Learning optimal K for each category is an inter-

esting future direction. Each training batch was constructed

by randomly sampling M = 12 categories and sampling

D = 4 random instances from each of those categories.

In our DML-based classification experiments on stan-

dard benchmarks, there is no background category B, hence

we do not need our class mixtures to handle points that are

outliers to all of the mixtures. Therefore, we resort to a

more classical mixture model variant with equaly weighted

modes, replacing the class posterior in Eq. 2 with its softer

normalized version, which we have experimentally verified

as more beneficial for DML-based classification:

P(C = i|X) = P(C = i|E) =

K
∑

j=1

pij(E)

N
∑

i=1

K
∑

j=1

pij(E)

(5)

4.2. DMLbased fewshot detection
For few-shot detection, we used our DML sub-net in-

stead of the RCNN (the classification ‘head’) on top of the

FPN backbone [16] in its Deformable Convolutions (DCN)

variant [7]. Our code is based on the original MXNet im-

plemetation of [7]. The backbone was pre-trained on MS-

COCO [17]. Our DML subnet, including the representa-

tives, was initialized randomly. The entire network was

trained end-to-end using OHEM [31] and SoftNMS [3].

The embedding module in the DML subnet for one-shot de-

tection consisted of two FC layers of width 1024 with BN

and ReLU, and a final FC layer of width 256 with linear

activation, followed by L2 normalization. We trained using

K = 5 representatives per class, and σ = 0.5. Figure 6(d)

shows examples of the learned representatives. As in [7],

each training batch contained one random training image.

5. Results

We have evaluated the utility of our proposed DML sub-

net on a series of classification and few-shot detection tasks.

5.1. DMLbased classification

Fine-grained classification. We tested our approach on

a set of fine-grained classification datasets, widely adopted

in the state-of-the-art DML classification works [22, 25,

43]: Stanford Dogs [13], Oxford-IIIT Pet [21], Oxford 102

Flowers [20], and ImageNet Attributes [25]. The results re-

ported in Table 1 show that our approach outperforms the

state-of-the-art DML classification methods [22, 25, 43] on

all datasets1 except Oxford Flowers. Figure 5 shows the

evolution of the t-SNE [37] plot of the training instances in

the embedding space over the training iterations.

Attribute distribution. We verified that following DML

training for classification, images with similar attributes are

closer to each other in the embedding space (even though

attribute annotations were not used during training). We

used the same experimental protocol as [25]. Specifically,

we trained our DML classifier on the ImageNet Attributes

dataset defined in [25], which contains 116236 images from

90 classes. Next, we measured the attribute distribution on

the Object Attributes dataset [27], which provides 25 at-

tributes annotations for about 25 images per class for these

90 classes. For each image in this dataset, and for each

attribute, we compute the fraction of neighbors also fea-

turing this attribute, over different neighborhood cardinal-

ities. Figure 6(a) shows improved results obtained by our

approach as compared to [25] and to other methods.

Hyperparameter robustness – ablation study. We

evaluated different values of representatives per class (1 ≤
K ≤ 8), and 9 different architectures of the embedding net-

work (varying the number of dense layers between 1 and 3
and using three different widths for each). Same robustness

tests were also repeated for our implementation (reproduc-

ing the results) of [25] (original code is not available).

1Non-DML [42] achieves 3.3% error on Stn.-Dogs using external data
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method

dataset MsML [22] Magnet [25] VMF [43] Ours

Stanford Dogs 29.7 24.9 24.0 13.7

Oxford Flowers 10.5 8.6 4.4 11

Oxford Pet 18.8 10.6 9.9 6.9

ImageNet Attributes – 15.9 — 13.2

Table 1. Comparison of test error (in %) with the state-of-the-art DML classifier approaches on different fine-grained classification datasets

(lower is better). For our method, same hyper-parameters were used for all datasets. Specific tuning may improve flowers results furhter.

Figure 5. Evolution of the t-SNE visualization of the embedding space while training on the Oxford Flowers. Different colors correspond

to different mixture modes. (a) initial; (b) 1200 iterations; (c) 4200 iterations; (d) perfromance for different K = number of representatives

Figures 6(b) and 6(c) show that our method is more ro-

bust to hyperparameter changes compared to [25]. We no-

ticed that every time [25] does a k-means step, a significant

loss increase occurs causing slower and less stable conver-

gence. In our method this is addressed by doing joint up-

dates to both the embedding and the mixture models.

5.2. Fewshot object detection

To the best of our knowledge, the only few-shot detec-

tion benchmark available to-date is reported in the LSTD

work [5] by Chen et al., who proposed to approach few-

shot detection by a regularized fine-tuning. In Table 2, we

compare our approach to the results of LSTD [5] on ’Task

1’, which is their most challenging ImageNet based 50-way

few-shot detection scenario.

1-shot 5-shot 10-shot

LSTD [5] 19.2 37.4 44.3

ours 24.1 39.6 49.2

Table 2. Comparison to LSTD [5] on their Task 1 experiment:

50-way detection on 50 ImageNet categories (as mAP %).

Since for all of their proposed tasks, the benchmarks

of [5] consist of just one episode (train/test images se-

lection) per task, we created an additional benchmark for

few-shot detection. Our proposed benchmark is based on

ImageNet-LOC data. The benchmark contains multiple ran-

dom episodes (instances of the few-shot detection tasks);

we used 500 random episodes in our benchmark. This for-

mat is borrowed from the few-shot classification literature.

Each episode, for the case of the n-shot, m-way few-shot

detection task, contains random n training examples for

each of the m randomly chosen classes, and 10 ·m random

query images containing one or more instances belonging

to these classes (thus at least 10 instances per class). The

goal is to detect and correctly classify these instances. For

consistency, for each n ∈ {1, 5, 10} the same 500 random

episodes are used in all of the n-shot experiments. Please

see Figure 1 for an illustration of a 1-shot, 5-way episode.

On the proposed few-shot detection benchmark, we have

compared our approach to three baselines. For the first, de-

noted as ‘baseline-FT’, we fine-tune a standard detector

network on just the few (n · m) available samples of the

(m) novel categories in each (n-shot, m-way) test episode.

Specifically, we fine-tuned the linear decision layer of the

classifier head of the FPN-DCN detector [7], the same de-

tector we use as a backbone for our approach. For the sec-

ond baseline, denoted as ’baseline-DML’, we attach our

DML sub-net without the embedding module to the regu-

lar (pre-trained) FPN-DCN detector, effectively using the

FPN-DCN two last FC layers as the embedding module.

The FPN-DCN detector used for this baseline is pre-trained

as a regular FPN-DCN on the same data as our approach,

hence without being optimized for DML based classifica-

tion as opposed to our full method. For the third baseline,

denoted as ‘baseline-DML-external’, we trained the DML

sub-net embedding module separately from the detector, in

an offline training process. The embedding was trained on

sampled foreground and background ROIs using the triplet

loss [41]. Training the embedding using Prototypical Net-

works [33] obtained similar performance for this baseline.

All the baselines were pre-trained on the same train-

ing set as our model and tested on the same collections
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Figure 6. (a) Mean attribute precision as a function of neighborhood size on the ImageNet Attributes dataset. The ‘Softmax’, ‘Triplet’ and

‘Magnet’ graphs are borrowed from [25]. (b) Testing performance stability to hyperparameter change of our method and the Magnet loss

[25]. We plot the STD of the classification error, measured accross various depth and width sizes of the embedding model, as a function

of the iteration number. Lower is better. (c) same as (b) for various number of modes in the learned mixture. (d) Examples of learned

representatives, for each representative train RPN crop with the closest embedding is shown (please use zoom).

no episode fine-tuning with episode fine-tuning

dataset method 1-shot 5-shot 10-shot 1-shot 5-shot 10-shot

ImageNet-LOC

(214 unseen animal classes)

baseline-FT (FPN-DCN [7]) — — — 35.0 51.0 59.7

baseline-DML 41.3 58.2 61.6 41.3 59.7 66.5

baseline-DML-external 19.0 30.2 30.4 32.1 37.2 38.1

Ours 56.9 68.8 71.5 59.2 73.9 79.2

ImageNet-LOC

(100 seen animal classes)

Ours - trained representatives — 86.3 — — — —

Ours - episode representatives 64.5 79.4 82.6 — — —

Table 3. Few-shot 5-way detection test performance on ImageNet-LOC. Reported as mAP in %.

or random episodes. To train the models we used the 100
first categories from ImageNet-LOC (mostly animals and

birds species). For testing, we used all the remaining 214
ImageNet-LOC animal and bird species categories (unseen

at training) to ensure that the train and the test categories

belonged to the same concept domain. For our model and

all the DML-baselines, in each episode, the set of categories

being detected was reset to the m new ones by replacing the

set of representatives R in the DML subnet with the embed-

ding vectors computed from the ROIs corresponding to the

training objects of the episode. These ROIs were selected

among the 2K ROIs per image returned by RPN by check-

ing which ROIs passed the IoU≥ 0.7 requirement with the

training objects bounding boxes. In our approach, the em-

bedding and the backbone are jointly optimized to be used

with the representatives-based class posterior. This offers

an advantage compared to the baselines, as suggested by

the performance comparison reported in Table 3.

The evaluation of our approach and the baselines on the

set of unseen classes is reported in Table 3 (in its unseen

classes section). The mean average precision (mAP) in % is

calculated on 5-way detection tasks (500 such tasks). The

mAP is computed by collecting and evaluating jointly (in

terms of score threshold for computing precision and recall)

the entire set of bounding boxes detected in all the 500 test

episodes with 50 query images each.

In addition, for each of the tested methods (ours and the

baselines), we repeated the experiments while fine-tuning

the last layer of the network just on the episode training

images (for our model and the baselines using DML, the last

embedding layer and the representatives were fine-tuned).

The results with fine-tuning are also reported in Table 3.

Figure 7 shows examples of 1-shot detection test results.

From the relatively low performance of ’baseline-DML-

external’, we can conclude that, as stated in the introduc-

tion, joint training of the embedding space with the DML

classifier is crucial for the performance. From our close

examination, the reduction in mAP of ’baseline-DML-

external’ is mostly attributed to significantly higher False

Positives rates than in the other methods. Although the ex-

ternal embedding was trained on the same training images

as our method and the other baselines, it was infeasible to

sample the entire collection of possible background ROIs

that are being processed by our method when training as a

detector end-to-end. Therefore, we had to resort to sam-

pling 200 ROIs per image, which reduced the baseline’s

ability to reject the background.

To test the inter-dependence of the learned embedding

on the specific representatives learned jointly with it during

training, we repeated the episode-based testing on the set

of classes seen during training (using only validation im-

ages not used for training). The results of this evaluation

are also reported in Table 3 in the seen classes section. We

repeated the seen classes testing twice: once using the rep-
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Figure 7. Example one-shot detection results. Green frames indicate correctly detected objects and red frames indicate wrong detections.

A threshold of 0.5 on the detection score is used throughout. Detections with higher scores are drawn on top of those with lower scores.

resentatives taken from the training objects of each episode

(same as for unseen classes) and once using the originally

trained representatives (as they correspond to the set of seen

classes). Since during training, we learn K = 5 represen-

tatives per class, we report the result of the second test in

the 5-shot column. We can see that (i) the trained represen-

tatives perform better than embedding of random class ex-

amples, underlining again the benefits of joint training; (ii)

the performance drop from trained representatives to ran-

dom class members is not that big (∼ 7 points), hinting that

the learned embedding is robust to change of representatives

and is likely to perform well on the new unseen categories

(as was verified above in our few-shot experiments).

In [1] Recall@100 was used as their performance mea-

sure (Recall % taking 100 top detections in each test im-

age). We also implemented this measure in our 1-shot test,

achieving 88.2% Recall@100 and 65.9% Recall@10 calcu-

lated over our entire set of 500 test episodes. This demon-

strates that our approach works well on an individual image

basis, and illustrates the importance of considering all the

boxes from all the test images simultaneously when com-

puting the AP, as we did in our benchmark.

In order to check if the modification introduced by re-

placing the RCNN classifier with our DML sub-net hinders

the detection performance on the seen classes, we tested the

detection performance of our model and the vanilla FPN-

DCN model (using their original code) on the validation

sets of the 100 first Imagenet-LOC training categories and

of PASCAL VOC. As shown in Table 4, our detector is

slightly inferior to the original FPN-DCN model on the Pas-

cal VOC, but compares favorably on the 100 first Imagenet-

LOC (more fine-grained) categories.

6. Summary & Conclusions

In this work, we proposed a new method for DML,

achieving state-of-the-art performance for object classifica-

PASCAL VOC ImageNet (LOC)

method / IoU 0.7 0.5 0.3 0.7 0.5 0.3

FPN-DCN [7] 74.6 83.5 85.3 46.9 55.2 60.2

Ours 73.7 82.9 84.9 60.7 61.7 70.7

Table 4. Regular detection performance (in mAP [%]) per different

acceptance IoU. FPN-DCN evaluated using their original code.

tion compared to other DML-based approaches. Using this

method, we designed one of the first few-shot detection ap-

proaches, which compares favorably to the current few-shot

detection state-of-the-art. We also proposed a benchmark

for the few-shot object detection, based on the Imagenet-

LOC dataset, in the hopes that it will encourage researchers

to further investigate into this problem, which has so far

been almost untouched. Future work directions include

predicting the mixing coefficients and covariances for the

class mixtures learned within our DML sub-net as a func-

tion of the input. High RPN recall is important (for any

two stage detector) and is clearly harder to achieve for the

few-shot caegories. Additional interesting future direction

is using our proposed DML classifer also for the RPN. This

will allow improving the RPN sensitivity to the new cate-

gories and potentially better handle cases where few-shot

categories appear alongside training categories in the intial

training. That said, class-agnostic RPN (as in our approach)

is trained for ’general objectness’ and in many cases its re-

call is quite high (above 90%) on the unseen categories.
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