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Abstract

Standard RGB-D trackers treat the target as a 2D struc-

ture, which makes modelling appearance changes related

even to out-of-plane rotation challenging. This limitation is

addressed by the proposed long-term RGB-D tracker called

OTR – Object Tracking by Reconstruction. OTR performs

online 3D target reconstruction to facilitate robust learn-

ing of a set of view-specific discriminative correlation filters

(DCFs). The 3D reconstruction supports two performance-

enhancing features: (i) generation of an accurate spatial

support for constrained DCF learning from its 2D pro-

jection and (ii) point-cloud based estimation of 3D pose

change for selection and storage of view-specific DCFs

which robustly localize the target after out-of-view rotation

or heavy occlusion. Extensive evaluation on the Princeton

RGB-D tracking and STC Benchmarks shows OTR outper-

forms the state-of-the-art by a large margin.

1. Introduction

Visual object tracking (VOT) is one of the core prob-

lems in computer vision; it has many applications [18, 8].

The field has progressed rapidly, fueled by the availabil-

ity of large and diverse datasets [39, 34] and the annual

VOT challenge [22, 23]. Until recently, tracking research

has focused on RGB videos, largely neglecting RGB-D

(rgb+depth) tracking as obtaining a reliable depth map at

video frame rates has not been possible without expensive

hardware. In the last few years, depth sensors have become

widely accessible, which has lead to a significant increase of

RGB-D tracking related work [6, 1, 26]. Depth provides im-

portant cues for tracking since it simplifies reasoning about

occlusions and facilitates depth-based object segmentation.

Progress in RGB-D tracking has been further boosted by
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Figure 1. The OTR – Object Tracking by Reconstruction – ob-

ject model consists of a set of 2D view-specific DCFs and of an

approximate 3D object reconstruction. The OTR thus copes well

with out-of-view rotation with a significant aspect change, while a

state-of-the-art tracker CSR-rgbd++ [19] drifts and fails.

the emergence of standard datasets and evaluation proto-

cols [35, 40].

In RGB-D tracking, direct extensions of RGB methods

by adding the D-channel as an additional input dimension

have achieved considerable success. In particular, discrimi-

native correlation filter (DCF) based methods have shown

excellent performance on the Princeton RGB-D tracking

benchmark [35], confirming the reputation gained on RGB

benchmarks [22, 23, 19, 20, 6, 1]. Furthermore, DCFs

are efficient in both learning of the visual target appear-

ance model and in target localization, which are both im-

plemented by FFT, running in near real time on a standard

CPU.

A major limitation of the standard RGB and RGB-D

trackers, regardless of the actual method (e.g. DCF [4],

Siamese deep nets [2], Mean shift [9], Lucas Kanade [27]),
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is that they treat the tracked 3D object as a 2D structure.

Thus even a simple rotation of a rigid 3D object is inter-

preted as potentially significant appearance change in 2D

that is conceptually indistinguishable from partial occlu-

sion, tracker drift, blurring and ambient light changes.

Consider a narrow object, e.g., a book, with its front

cover facing the camera, that rotates sideways and ends with

its back side facing the camera (Figure 1). From the per-

spective of a standard RGB tracker, the object has deformed

and the appearance has completely changed. Since most of

the standard trackers cannot detect (do not model) aspect

changes, the target bounding box and the appearance model

contain mostly pixels belonging to the background when

the narrow side of the book is facing the camera. Further-

more, the model update is carried out by implicit or explicit

temporal averaging of the tracked views. Consequently, the

appearance observed in the earlier frames is lost after a cer-

tain time period, limiting re-detection capability in situation

when the target is completely occluded, but later re-appears,

since its appearance no longer matches the last observed

view. The above-mentioned problems are almost trivial to

solve if a 3D model with attached photometric information

is available for the tracked object.

We exploit the opportunity of using the depth component

in RGB-D signal to build a simple, yet powerful 3D object

representation based on the surface splat model, i.e., the ob-

ject surface is approximated by a collection of 3D points

with color, radius and the normal – surfels. This model has

been proven very powerful in the context of SLAM [33].

The 3D model is aligned and updated to the current 2D

target appearance during tracking by an ICP-based match-

ing mechanism [33] – thus a pre-image of the 2D target

projection is maintained during tracking. The 3D object

pre-image significantly simplifies detection and handling of

(self-)occlusion, out-of-plane rotation (view changes) and

aspect changes.

The ICP-based 3D pre-image construction [33] requires

accurate identification of the object pixels in the current

frame prior to matching, and it copes with only small mo-

tions due to a limited convergence range. A method from

a high-performance RGB-D DCF tracker [19] is thus used

to robustly estimate potentially large motions and to iden-

tify object pixels for the pre-image construction. The DCF

learning is improved by generating appearance constraints

from the pre-image. Object appearance changes result-

ing from out-of-view rotation are detected by observing

the pre-image 3D motion and a set of view-specific DCFs

is generated. These 2D models are used during tracking

for improved localization accuracy as well as for target re-

detection using the recent efficient formulation of the DCF-

based detectors [30]. The resulting tracker thus exhibits a

long-term capability, even if the target re-appears in a pose

different from the one observed before the occlusion.

Contributions The main contribution of the paper is a

new long-term RGB-D tracker, called OTR – Object Track-

ing by Reconstruction that constructs a 3D model with

view-specific DCFs attached. The DCF-coupled estima-

tion of the object pre-image and its use in DCF model

learning for robust localization has not been proposed be-

fore. The OTR tracker achieves the state-of-the-art, outper-

forming prior trackers by a large margin on two standard

RGB-D tracking benchmarks. An ablation study confirms

the importance of view-specific DCF appearance learning

that is tightly connected to the 3D reconstruction. We will

make the reference implementation of OTR available at

https://github.com/ugurkart.

2. Related Work

RGB Tracking Of the many approaches proposed in the

literature, DCF-based methods have demonstrated excel-

lent performance – efficiency trade-off in recent tracking

challenges [24, 22, 23]. Initially proposed by Bolme et

al. [4], DCF-based tracking captured the attention of the

vision community due to its simplicity and mathemati-

cal elegance. Improvements of the original method include

multi-channel formulation of correlation filters [12, 15], fil-

ter learning using kernels exploiting properties of circular

correlation [17] and scale estimation with multiple one-

dimensional filters [11]. Following these developments,

Galoogahi et al. [14] tackled the boundary problems that

stem from the nature of circular correlation by proposing a

filter learning method where a filter with size smaller than

the training example is adopted. Lukezic et al. [28] further

improved this idea by formulating the filter learning process

using a graph cut based segmentation mask as a constraint.

RGB-D Tracking The most extensive RGB-D object

tracking benchmark has been proposed by Song et al. [35]

(Princeton Tracking Benchmark). The benchmark includes

a dataset, evaluation protocol and a set of baseline RGB-

D trackers. Several RGB-D trackers have been proposed

since. Meshgi et al. [31] used an occlusion-aware parti-

cle filter framework. A similar approach was proposed by

Bibi et al. [3] but using optical flow to improve localiza-

tion accuracy. As an early adopter of DCF based RGB-D

trackers, Hannuna et al. [16] used depth as a clue to detect

occlusions while tracking is achieved by KCF [17]. An et

al. [1] performed a depth based segmentation along with a

KCF tracker. Kart et al. [20] proposed a purely depth based

segmentation to train a constrained DCF similarly to CSR-

DCF [28] and later extended their work to include color in

segmentation [19]. Liu et al. [26] proposed a context-aware

3-D mean-shift tracker with occlusion handling. At the time

of writing this paper [26] is ranked first at Princeton Track-

ing Benchmark. Xiao et al. [40] recently proposed a new

RGB-D tracking dataset (STC) and an RGB-D tracker by
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adopting an adaptive range-invariant target model.

3D Tracking Klein et al. [21] proposed a camera pose

tracking algorithm for small workspaces which works on

low-power devices. The approach is based on tracking key-

points across the RGB frames and bundle adjustment for

joint estimation of the 3D map and camera pose. New-

combe et al. [32] proposed an iterative closest point (ICP)

based algorithm for depth sequences for dense mapping of

indoor scenes. In a similar fashion, Wheelan et al. [38] used

surfel-based maps and jointly optimized color and geomet-

ric costs in a dense simultaneous localization and mapping

(SLAM) framework. All three methods are limited to static

scenes and are inappropriate for object tracking. This limi-

tation was addressed by Rünz et al. [33], who extended [38]

by adding the capability of segmenting the scene into multi-

ple objects. They use a motion consistency and semantic in-

formation to separate the object from the background. This

limits the method to large, slow moving objects.

Lebeda et al. [25] combined structure from motion,

SLAM and 2D tracking to cope with 3D object rotation.

Their approach reconstructs the target by tracking keypoints

and line features, however, it cannot cope with poorly-

textured targets and low-resolution images.

3. Object tracking by 3D reconstruction

In OTR, object appearance is modeled at two levels of

abstraction which enables per-frame target localization and

re-detection in the case of tracking failure. The appearance

level used for localizing the target in the image is modelled

by a a set of view-specific discriminative correlation filters,

i.e., a DCF ht that models the current object appearance,

and a set of snapshots {h(s)}Ss=1 modelling the object from

previously observed views. In addition to the filters, the

object color and depth statistics are modelled by separate

color and depth histograms for the foreground and the back-

ground.

The second level of object abstraction is a model of

the object pre-image Θt = {Pt,Rt,Tt}, where Pt is

the surfel-based object 3D model specified in the object-

centered coordinate system and {Rt,Tt} are the rotation

and the translation of the 3D model into the current object

position.

The two models interact during tracking for improved

DCF training and 3D pose change detection (e.g., rotations).

We describe the DCF framework used by the OTR tracker in

Section 3.1, the multi-view DCFs with the pre-image model

is detailed in Section 3.2, Section 3.3 details target loss re-

covery and Section 3.4 summarizes the full per-frame track-

ing iteration.

3.1. Constrained DCF

The core DCF tracker in the OTR framework is the re-

cently proposed constrained discriminative correlation fil-

ter CSR-DCF [29], which is briefly outlined here. Given a

search region of size W × H a set of Nd feature channels

f = {fd}
Nd

d=1, where fd ∈ R
W×H , are extracted. A set of

Nd correlation filters h = {hd}
Nd

d=1, where hd ∈ R
W×H ,

are correlated with the extracted features and the object po-

sition is estimated as the location of the maximum of the

weighted correlation responses

r =
∑Nd

d=1
wd(fd ⋆ hd), (1)

where ⋆ represents circular correlation, which is efficiently

implemented by a Fast Fourier Transform with {wd}
Nd

d=1 be-

ing the channel weights. The target scale can be efficiently

estimated by another correlation filter trained over the scale-

space [11].

Filter learning is formulated in CSR-DCF as a con-

strained optimization that minimizes a regression loss

ε(h) =

Nc∑

d=1

‖fd ⋆hd−g‖2+λ‖hd‖
2 ; hd ≡m⊙hd, (2)

where g is a desired output and m is a binary mask m ∈
{0, 1}W×H that approximately separates the target from the

background. The mask thus acts as a constraint on the filter

support, which allows learning a filter from a larger training

region as well as coping with targets that are poorly approx-

imated by an axis-aligned bounding box. CSR-DCF applies

a color histogram-based segmentation for mask generation,

which is not robust to visually similar backgrounds and illu-

mination change. We propose generating the mask from the

RGB-D input and the estimated pre-image in Section 3.2.1.

Minimization of (2) is achieved by an efficient ADMM

scheme [5]. Since the support of the learned filter is con-

strained to be smaller than the learning region, the maxi-

mum response on the training region reflects the reliabil-

ity of the learned filter [28]. These values are used as per-

channel weights wd in (1) for improved target localization

(we refer the reader to [29] for more details).

3.2. A multiview object model

At each frame, the current filter ht is correlated within a

search region centered on the target position predicted from

the previous frame following (1). To improve localization

during target 3D motion, we introduce a ”memory” which is

implemented by storing captured snapshots {h(s)}Ss=1 from

different 3D view-points (i.e., a set of view-specific DCFs).

At every NR-th frame, all view-specific DCFs are evalu-

ated, and the location of the maximum of the correlation

response is used as the new target hypothesis xt. If the max-

imum correlation occurs in the set of snapshots, the current
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filter is replaced by the corresponding snapshot filter. Target

presence is determined at this location by the test described

in Section 3.3.1. In the case the test determines target is

lost, the tracker enters a re-detection stage described in Sec-

tion 3.3.

If the target is determined to be present, the current filter

ht is updated by a weighted running average

ht+1 = (1− η)ht + ηh̃t, (3)

where h̃t is a new filter estimated by the constrained filter

learning in Section 3.1 at the estimated position xt and η is

the update factor.

In addition to updating the current filter, the object color

and depth histograms are updated as in [19], the object pre-

image is updated as described in Section 3.2.2 and the set

of view-specific DCFs {h(s)}Ss=1 is updated following Sec-

tion 3.2.3.

3.2.1 Object pre-image-based filter constraint

The binary mask m used in the constrained learning in (2)

is computed at the current target position at filter learn-

ing stage. In the absence of other inputs, the mask is

estimated by a recent segmentation approach from [19].

This approach uses an MRF segmentation model from

CSR-DCF [29] within the filter learning region and es-

timates per-pixel unary potentials by color and depth

(foreground/background) histograms backprojection in the

RGB-D image.

However, the pre-image Θt can be used to better out-

line the object in the filter training region, leading to a more

accurately learned filter. Thus, at DCF training stage, the

pre-image is generated by fitting the object 3D model Pt

onto the current object appearance (Section 3.2.2). If the fit

is successful, the segmentation mask used in filter learning

(2) is replaced by a new mask generated as follows. The 3D

model Pt is projected into the 2D filter training region. Pix-

els in the region corresponding to the visible 3D points are

set to one, while others to zero, thus forming a binary ob-

ject occupancy map. The map is dilated to remove holes in

the object mask and only the largest connected component

is retained, while others are set to zero to reduce the ef-

fect of potential reconstruction errors in the 3D model. An

example of the 2D mask construction from the 3D object

pre-image is demonstrated in Figure 2.

3.2.2 Object pre-image update

The object pre-image Θt is updated from the object position

estimated by the multi-view DCF (Section 3.2). Pixels cor-

responding to the target are identified by the color+depth

segmentation mask from Section 3.2.1. The patch is ex-

tracted from the RGB-D image and used to update the ob-

ject 3D model Pt. The 3D model Pt is first translated to

 3D pre-image update

Color-based 
segmentation 

 RGB-D input image 

Occupancy map from
3D-to-2D projection 

 Overlayed mask 

 Overlayed mask 

Object region identification+

Figure 2. A 2D DCF localizes the target (top-left), the target

color+depth pixels are approximately segmented (top-right) and

used to update the 3D pre-image (bottom-left). The pre-image is

projected to 2D generating an occupancy map (bottom-right). The

resulting mask better delineates the object, which improves the

constrained DCF learning.

the 3D position determined by the target location from the

multi-view DCF. The ICP-based fusion from [33], that uses

color and depth, is then applied to fine align the 3D model

with the patch and update it by adding and merging the cor-

responding surfels (for details we refer to [33]). The up-

dated model is only retained if the ICP alignment error is

reasonably low (i.e., below a threshold τICP), otherwise the

update is discarded.

3.2.3 A multi-view DCF update

Continuous updates may lead to gradual drift and fail-

ure whenever the target object undergoes a significant ap-

pearance change. Recovery from such situations essen-

tially depends on the diversity of the target views captured

by the snapshots {h(s)}Ss=1 and their quality (e.g., snap-

shots should not be contaminated by the background). The

following conservative update mechanism that maximizes

snapshot diversity and minimizes contamination is applied.

The current filter is considered for addition to the snap-

shots only if the target passed the presence test (Sec-

tion 3.3.1) and the object pre-image Θt is successfully up-

dated (Section 3.2.2). Passing these two tests, the target is

considered visible with the pre-image accurately fitted. A

filter is added if the object view has changed substantially

and results in a new appearance (viewpoint). The change

is measured by a difference between the reference aspect ρ0
(i.e., a bounding box width-to-height ratio) and the aspect ρt
obtained from the current 2D projection of the object pre-

image. Whenever this difference exceeds a threshold, i.e.,

‖ρ0 − ρt‖ > τρ, a new snapshot is created and the current

ratio becomes a new reference, i.e., ρ0 ← ρt. In our pre-

liminary experiments, we tested using Euler angles of the

estimated rotation matrix R, but this was found sensitive to
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Initialization Snapshot creation frames

Figure 3. Examples of view-specific DCFs creation. The tracker

was initialized on the images in the left-most column, while the

remaining images represent frames in which a new view was de-

tected and stored in the set of view-specific DCFs.

ICP estimation errors and therefore aspect ratio test proved

to be more robust. Examples of images used to create sepa-

rate DCF views are shown in Figure 3.

3.3. A multiview DCF target detection

Target presence is determined at each frame using the

test described in Section 3.3.1. Whenever the target is lost,

the following re-detection mechanism is activated. At each

frame all filters in the snapshot set {h(s)}Ss=1 are corre-

lated with features extracted from a region centered at the

last confident target position. To encode a motion model,

the search region size is gradually increased in subsequent

frames by a factor α∆t
s , where αs > 1 is a fixed scale fac-

tor and ∆t is the number of frames since the last confident

target position estimation. The correlation is efficiently cal-

culated by padding the snapshots with zeros to the current

search region size and applying FFT [30].

Since the target may change the size, a two-stage ap-

proach for re-detection is applied. First, the hypothesized

target position is estimated as the location of the maximum

correlation response and the filter h(m) that yielded this re-

sponse is identified. The current object scale is then com-

puted as the ratio sf = D0

Dt
between the depth of the target

in the first frame (D0), and the depth Dt at the current posi-

tion. The depth is calculated by the median of the D channel

within the target bounding box. The filter that yielded the

best correlation response (h(m)) is correlated again on the

search region scaled by sf and target presence test is carried

out (Section 3.3.1). In case the test determines the target is

present, the current filter is replaced, i.e., ht ← h(m), and

the re-detection process is deactivated.

3.3.1 Target presence test

Recently, a target presence test has been proposed for long-

term discriminative correlation filters [30]. The test is based

on computing tracking uncertainty value as a ratio qt =
Rt

R

between the maximum correlation response in the current

frame (Rt) and a moving average of these values in the re-

cent Nq frames when the target was visible. The test con-

siders target lost whenever the ratio exceeds a pre-defined

threshold qt > τq . It was showed in [30] that the test is

robust to a range of thresholds.

To allow early occlusion detection, however, [19] intro-

duce a test that compares the area of the segmentation mask

with the area of the axis-aligned bounding box of the DCF.

This test improves performance during occlusion, but grad-

ual errors in scale estimation result in disagreement between

the bounding box and the actual object and might lead to a

reduced accuracy of the test.

The two tests are complementary and computationally

very efficient, and the target presence is reported only if the

considered target position passes the both tests.

3.4. Object tracking by reconstruction

Our object tracking by reconstruction approach (OTR) is

summarized as follows.

Initialization. The tracker is initialized from a bounding

box in the first frame. Color and depth histograms are sam-

pled as in [19] and a segmentation mask m is generated.

The segmentation mask m is used to learn the initial filter

h0 according to (2), as well as to identify target pixels in the

RGB-D model to initialize the pre-image Θ0 by [33]. The

set of snapshots is set to an empty set.

Localization. A tracking iteration at frame t starts with

the target position xt−1 from the previous frame. A region

is extracted around xt−1 in the current image and the po-

sition xt with maximum correlation response is computed

using the current filter ht−1 (along with all snapshots every

NR frames) as described in Section 3.2. The position xt

is tested using the target presence test from Section 3.3.1.

If the test is passed, the target is considered as well local-

ized, and the visual models (i.e., filters and pre-image) are

updated. Otherwise, target re-detection (Section 3.3) is ac-

tivated in the next frame.

Update. A color+depth segmentation mask m is com-

puted within a region centered at xt according to [19] to

identify target pixels. The corresponding RGB-D pixels are

used to update the pre-image Θt, i.e., the 3D surfel repre-

sentation along with its 3D pose (Section 3.2.2).

The filter ht−1 is updated (3) by the filter learned at

the current position (2) with support constraint computed

from the pre-image (Section 3.2.1). Finally, the target as-

pect change is computed using the updated pre-image and

the set of snapshots are updated if significant appearance

change is detected (Section 3.2.3)

4. Experimental analysis

In this section, we validate OTR by a comprehensive ex-

perimental evaluation. The implementation details are pro-
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Table 1. Experiments on the Princeton Tracking Benchmark using the PTB protocol. Numbers in the parenthesis are the ranks.

Method

Avg.

Rank

Avg.

Success Human Animal Rigid Large Small Slow Fast Occ. No-Occ. Passive Active

OTR 2.36 0.769(1) 0.77(2) 0.68(6) 0.81(2) 0.76(4) 0.77(1) 0.81(2) 0.75(1) 0.71(3) 0.85(2) 0.85(1) 0.74(2)

ca3dms+toh [26] 4.55 0.737(5) 0.66(9) 0.74(2) 0.82(1) 0.73(7) 0.74(2) 0.80(4) 0.71(7) 0.63(9) 0.88(1) 0.83(2) 0.70(6)

CSR-rgbd++ [19] 5.00 0.740(3) 0.77(3) 0.65(8) 0.76(7) 0.75(5) 0.73(3) 0.80(3) 0.72(4) 0.70(4) 0.79(8) 0.79(6) 0.72(4)

3D-T [3] 5.64 0.750(2) 0.81(1) 0.64(9) 0.73(12) 0.80(1) 0.71(6) 0.75(9) 0.75(2) 0.73(1) 0.78(11) 0.79(7) 0.73(3)

PT [35] 6.09 0.733(6) 0.74(6) 0.63(11) 0.78(3) 0.78(3) 0.70(7) 0.76(5) 0.72(6) 0.72(2) 0.75(13) 0.82(4) 0.70(7)

OAPF [31] 6.09 0.731(7) 0.64(12) 0.85(1) 0.77(6) 0.73(8) 0.73(5) 0.85(1) 0.68(9) 0.64(8) 0.85(3) 0.78(9) 0.71(5)

DLST [1] 6.45 0.740(4) 0.77(4) 0.69(5) 0.73(13) 0.80(2) 0.70(9) 0.73(11) 0.74(3) 0.66(6) 0.85(4) 0.72(13) 0.75(1)

DM-DCF [20] 6.91 0.726(8) 0.76(5) 0.58(13) 0.77(5) 0.72(9) 0.73(4) 0.75(8) 0.72(5) 0.69(5) 0.78(10) 0.82(3) 0.69(9)

DS-KCF-Shape [16] 7.27 0.719(9) 0.71(7) 0.71(4) 0.74(9) 0.74(6) 0.70(8) 0.76(6) 0.70(8) 0.65(7) 0.81(6) 0.77(11) 0.70(8)

DS-KCF [6] 9.91 0.693(11) 0.67(8) 0.61(12) 0.76(8) 0.69(10) 0.70(10) 0.75(10) 0.67(11) 0.63(10) 0.78(12) 0.79(8) 0.66(10)

DS-KCF-CPP [16] 10.09 0.681(12) 0.65(10) 0.64(10) 0.74(10) 0.66(12) 0.69(12) 0.76(7) 0.65(12) 0.60(12) 0.79(9) 0.80(5) 0.64(12)

hiob-lc2 [36] 10.18 0.662(13) 0.53(13) 0.72(3) 0.78(4) 0.61(13) 0.70(11) 0.72(12) 0.64(13) 0.53(13) 0.85(5) 0.77(12) 0.62(13)

STC [40] 10.45 0.698(10) 0.65(11) 0.67(7) 0.74(11) 0.68(11) 0.69(13) 0.72(13) 0.68(10) 0.61(11) 0.80(7) 0.78(10) 0.66(11)

vided in Section 4.1. Performance analysis on two challeng-

ing RGB-D datasets, Princeton Tracking Benchmark (PTB)

and STC, is reported in Section 4.2 and Section 4.3, respec-

tively. Ablation studies are presented in Section 4.4 to ver-

ify our design choices.

4.1. Implementation details

We use HOG features [10] and colornames [37] in our

tracker. The parameters related to the tracker are taken

from [19]. The ICP error threshold is empirically set to

τICP = 5 · 10−4 and the aspect ratio change threshold is

set to τρ = 0.20. Maximum filter evaluation period is equal

to NR = 5 frames and αs = 1.07. All experiments are

run on a single laptop with Intel Core i7 3.6GHz and the

parameters for both tracking and 3D reconstruction are kept

constant throughout the experiments. Our non-optimized

implementation runs at 2 fps.

4.2. Performance on PTB benchmark [35]

The Princeton Tracking Benchmark [35] is the most

comprehensive and challenging RGB-D tracking bench-

mark to date. The authors have recorded and manually an-

notated 100 RGB-D videos in real-life conditions using a

Kinect v1.0. Ground truth bounding boxes of five sequences

are publicly available whereas the ground truth for the re-

maining 95 sequences are kept hidden to prevent overfitting.

Tracking performance is evaluated on the 95 sequences with

the hidden ground-truth. The sequences are grouped into

11 categories: Human, Animal, Rigid, Large, Small, Slow,

Fast, Occlusion, No Occlusion, Passive and Active. We use

Bibi et al. [3] protocol with improved depth registration in

the experiments.

The performance is measured by employing a PASCAL

VOC [13] type of evaluation. Per-frame overlap ot is de-

fined as

ot =











area(BTR∩BGT )
area(BTR∪BGT )

, if both BTR and BGT exist

1, if neither BTR and BGT exists

0, otherwise

(4)

where BTR is the output bounding box of the tracker and

BGT is the ground truth bounding box. Tracking perfor-

mance is given as success rate which represents average

overlap [7]. The PTB evaluation protocol sorts the track-

ers according to the primary performance measures with re-

spect to each object category and computes the final ranking

as the average over these ranks. In addition, the overall suc-

cess rate is reported for detailed analysis.

The OTR tracker is compared to all trackers available on

the PTB leaderboard: ca3dms+toh [26], CSR-rgbd++ [19],

3D-T [3], PT [35], OAPF [31], DM-DCF [20], DS-KCF-

Shape [16], DS-KCF [6], DS-KCF-CPP [16], hiob lc2 [36]

and we added two recent trackers STC [40] and DLST [1].

Results are reported in Table 1.

OTR convincingly sets the new state-of-the-art in terms

of both overall ranking and the average success by a large

margin compared to the next-best trackers (Table 1). In

terms of average success, OTR obtains a 4.3% gain com-

pared to the second ranking tracker ca3dms+toh [26], which

tracks the target in 3D as well, but without reconstruction.

This result speaks in favour of our 3D-based pre-image con-

struction and its superiority for RGB-D tracking.

In addition to being the top overall tracker, the perfor-

mance of OTR is consistent across all categories. OTR is

consistently among the top trackers in each category and

achieves the top rank in three categories and the second best

in five categories. This suggests that our tracker does not

overfit to a certain type of scenario and it generalizes very

well unlike some other methods in the benchmark.

A closely related work to our own is recent CSR-rgbd++,

which combines a single CSR-DCF with color and depth

segmentation and implements a target re-detection. OTR

obtains a significant 6.6% increase over CSR-rgbd++ in

Rigid category, which speaks in favor of our DCFs ap-

proach with several views connected to a 3D pre-image that

localizes the target more precisely. On the No-Occ. cat-

egory, OTR outperforms CSR-rgbd++ by a 7.6% success

rate. This can be attributed to the advantage of using a pre-

image Θ for DCF training described in Section 3.2.1.
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Table 2. The normalized area under the curve (AUC) scores computed from one-pass evaluation on the STC Benchmark [40].

Attributes

Method AUC IV DV SV CDV DDV SDC SCC BCC BSC PO

OTR 0.49 0.39 0.48 0.31 0.19 0.45 0.44 0.46 0.42 0.42 0.50

CSR-rgbd++ [19] 0.45 0.35 0.43 0.30 0.14 0.39 0.40 0.43 0.38 0.40 0.46

ca3dms+toh [26] 0.43 0.25 0.39 0.29 0.17 0.33 0.41 0.48 0.35 0.39 0.44

STC [40] 0.40 0.28 0.36 0.24 0.24 0.36 0.38 0.45 0.32 0.34 0.37

DS-KCF-Shape [16] 0.39 0.29 0.38 0.21 0.04 0.25 0.38 0.47 0.27 0.31 0.37

PT [35] 0.35 0.20 0.32 0.13 0.02 0.17 0.32 0.39 0.27 0.27 0.30

DS-KCF [6] 0.34 0.26 0.34 0.16 0.07 0.20 0.38 0.39 0.23 0.25 0.29

OAPF [31] 0.26 0.15 0.21 0.15 0.15 0.18 0.24 0.29 0.18 0.23 0.28

4.3. Performance on STC benchmark [40]

The STC benchmark [40] has been recently published

to complement the PTB benchmark in the number of

categories and diversity of sequences. 36 sequences are

recorded indoors and outdoors using Asus Xtion sensors

and the authors annotated every frame of every video with

10 attributes; Illumination variation (IV), Depth varia-

tion (DV), Scale variation (SV), Color distribution vari-

ation (CDV), Depth distribution variation (DDV), Sur-

rounding depth clutter (SDC), Surrounding color clutter

(SCC), Background color camouflages (BCC), Background

shape camouflages (BSC), Partial occlusion (PO). These

attributes were either automatically computed or manually

annotated.

The tracking performance is measured by precision and

success plots computed from a one-pass evaluation akin

to [39]. Success plot shows the portion of correctly tracked

frames with respect to the different values of the overlap

thresholds. Tracking performance is measured by a non-

normalized area under the curve on this graph, i.e., the sum

of values on the plot. The standard AUC measure [39] is

obtained by dividing the non-normalized AUC by the num-

ber of overlap thresholds. The number of thresholds is the

same for all evaluated trackers and only scales the non-

normalized AUC to interval [0, 1]. We therefore report the

standard AUC values, which is the more familiar measure in

the tracking community. Precision plot is constructed sim-

ilarly to success plot, by measuring the portion of frames

with center-error smaller than a threshold. The overall mea-

sure on precision plot is computed as the value at 20 pixels

error threshold.

The OTR tracker is compared to the following trackers:

CSR-rgbd++ [19], ca3dms+toh [26], STC [40], DS-KCF-

Shape [16], PT [35], DS-KCF [6] and OAPF [31]. The

results are presented in Table 2 and Figure 4. As on PTB

benchmark (Section 4.2), OTR outperforms the state-of-

the-art by a large margin not only in the overall score but

in most of the categories except CDV (Color Distribution

Variation) and SCC (Surrounding Color Clutter), where it

is ranked among top three trackers. The overall top per-

formance and excellent per-attribute performance support

our observations on PTB benchmark that OTR is capable

of handling various tracking scenarios and generalizes well

over the different datasets. Qualitative tracking results on

the four sequences from STC dataset are shown in Fig-

ure 5. The computing times for the three best performing

trackers are 2 fps (OTR), 6 fps (CSR-rgbd++) and 34 fps

(ca3dms+toh).
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Figure 4. Success and precision plots on STC benchmark [40].

4.4. Ablation studies

The main components of our tracker are (i) the 3D-based

pre-image, which provides an improved target segmenta-

tion, (ii) the set of multiple view-specific target DCFs and

(iii) the interaction between the former two components. An

ablation study is conducted on the PTB [35] dataset to eval-

uate the extent of contribution of each component. We im-

plemented three variants of the proposed tracker with the
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Table 3. Ablation studies on the PTB benchmark [35].

Method

Avg.

Success Human Animal Rigid Large Small Slow Fast Occ. No-Occ. Passive Active

OTR 0.769 0.77 0.68 0.81 0.76 0.77 0.81 0.75 0.71 0.85 0.85 0.74

OTR−3D 0.747 0.76 0.62 0.80 0.75 0.75 0.80 0.72 0.69 0.82 0.84 0.71

OTR−VS 0.743 0.75 0.66 0.77 0.74 0.74 0.79 0.72 0.67 0.84 0.81 0.72

OTR−3D−VS 0.740 0.78 0.61 0.76 0.75 0.73 0.79 0.72 0.71 0.78 0.79 0.72

OTR CSR-rgbd++ ca3dms+toh

Figure 5. Tracking results on four sequences from STC

dataset [40]. The proposed OTR tracker confidently tracks the

target undergoing a substantial pose change. Two state-of-the-art

RGB-D trackers (CSR-rgbd++ [19] and cs3dms+toh [26]), that do

not apply the multi-view DCFs nor target 3D pre-image, result in

less accurate localization or failure.

3D pre-image and view-specific DCFs. The first variant is

the tracker without the 3D pre-image, denoted as OTR−3D.

The second variant is the tracker without the view-specific

DCFs (OTR−VS) and the third variant is the tracker with-

out the view-specific DCFs and without the 3D pre-image

(OTR−3D−VS).

The results of the ablation study are reported in Table 3.

The proposed OTR with all components achieves a 0.769
success rate. Removing the view-specific target represen-

tation (OTR−VS) or 3D pre-image (OTR−3D) result to ap-

prox. 3% success rate drop in tracking performance (0.747
and 0.743). Removing both view-specific and 3D pre-image

representation (OTR−3D−VS) further reduces the tracking

performance to 0.740 success rate.

On the Occlusion category the OTR tracker outperforms

the version without a view-specific formulation (OTR−VS)

by 6% increase in the success rate. The view-specific set

of DCFs remembers the target appearance from different

views, which helps in reducing drifting and improves re-

detection accuracy after occlusion. On average, 4 views

were automatically generated by the view-specific DCF in

OTR per tracking sequence. The tracker version without

the view-specific formulation forgets the past appearance,

which reduces the re-detection capability.

In situations without occlusion, the 3D pre-image plays

a more important role than the view-specific DCF formula-

tion. Removing the 3D pre-image creation from the tracker

results in 7% success rate reduction, which indicates the sig-

nificant importance of using the 3D pre-image for robust

DCF learning.

Overall, the addition of 3D pre-image and view-specific

target representation improves performance of the baseline

version OTR−3D−VS by approximately 4% in tracking suc-

cess rate. The ablation study results conclusively show that

every component importantly contributes to the tracking

performance boost.

5. Conclusions

A new long-term RGB-D tracker, called OTR – Object

Tracking by Reconstruction is presented. The target 3D

model, a pre-image, is constructed by a surfel-based ICP.

The limited convergence range of the ICP and the require-

ment to automatically identify object pixels used for recon-

struction is addressed by utilizing a DCF for displacement

estimation and for approximate target segmentation. The

3D pre-image in turn constrains the DCF learning, and is

used for generating view-specific DCFs. These are used

for localization as well as for target re-detection, giving the

tracker a long-term tracking quality.

The OTR tracker is extensively evaluated on two chal-

lenging RGB-D tracking benchmarks and compared to

12 state-of-the-art RGB-D trackers. OTR outperforms all

trackers by a large margin, setting a new state-of-the-art

on these benchmarks. An ablation study verifies that the

performance improvements come from the 3D pre-image

construction, the view-specific DCF set and the interaction

between the two.

The view-specific DCF formulation allows long-term

tracking of poorly textured and small objects over large dis-

placements. Our future work will focus on extension to

model-based tracking with pre-learned models on realistic,

open-world scenarios. In addition, we plan to consider im-

provements by ICP robustification and deep features.
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