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Abstract

Blind video decaptioning is a problem of automatically

removing text overlays and inpainting the occluded parts in

videos without any input masks. While recent deep learn-

ing based inpainting methods deal with a single image and

mostly assume that the positions of the corrupted pixels are

known, we aim at automatic text removal in video sequences

without mask information. In this paper, we propose a sim-

ple yet effective framework for fast blind video decaption-

ing. We construct an encoder-decoder model, where the en-

coder takes multiple source frames that can provide visible

pixels revealed from the scene dynamics. These hints are

aggregated and fed into the decoder. We apply a residual

connection from the input frame to the decoder output to

enforce our network to focus on the corrupted regions only.

Our proposed model was ranked in the first place in the

ECCV Chalearn 2018 LAP Inpainting Competition Track2:

Video decaptioning. In addition, we further improve this

strong model by applying a recurrent feedback. The re-

current feedback not only enforces temporal coherence but

also provides strong clues on where the corrupted pixels

are. Both qualitative and quantitative experiments demon-

strate that our full model produces accurate and temporally

consistent video results in real time (50+ fps).

1. Introduction

Dealing with missing or corrupted data is a crucial

step before consuming visual contents. In many applica-

tions in image/video processing, such incompleteness de-

grades the visual perception for both human and machines.

To overcome this limitation, recent approaches have fo-

cused on solving denoising [30], restoration [20], super-

resolution [6], and inpainting [22]. In this paper, we fo-

cus on video decaptioning, one of the video inpainting tasks

where the solution can be directly applicable to real-world

video restoration scenarios.

In the context of media and video data from various lan-

guages, there are frequently text captions or encrusted com-

mercials. These text overlays reduce visual attention and
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Figure 1. Overview of our blind video decaptioning network.

(BVDNet) We propose a hybrid encoder-decoder model, where

the aggregation encoder stream takes multiple input frames and the

decoder reconstructs the middle frame. The temporal-pooling skip

connections carry low-level information. By a residual learning

algorithm, our model directly learns to recover the corrupted pixels

in the input. The output is then fed into a feedback connection for

a recurrent learning to the next time step.

occlude parts of frames. Removing the text overlays and

inpainting the occluded parts require the understanding of

the spatio-temporal context in videos. However, processing

a video sequence requires high memory footprint and time

complexity due to the additional time dimension.

A straightforward way to perform video decaptioning is

to recover a video frame-by-frame. However, it loses a great

advantage coming from the video dynamics. In many subti-

tled videos, the occluded parts in a frame are often revealed

in its neighboring frames if the object moves out of the text

overlay or the subtitles disappear (e.g. Fig. 4-a). Also, since

dealing with a single frame does not consider any temporal

consistency, the consecutive frames in the recovered video

are not likely to be connected naturally. The video cap-

tions which disappear or change very suddenly and inde-

pendently to the visual semantics make it more challeng-

ing to maintain the temporal stability. Post-processing with

off-the-shelf techniques like blind video temporal consis-

tency [17] is also not applicable, since they require refer-

ence video sequences with dense optical flows which are
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not reliable in our case due to the corrupted regions.

Another challenge in automatic text removal is that the

binary indicator (i.e. inpainting mask) for the corrupted pix-

els is not given in advance. In contrast, most existing in-

painting methods [22,31,34] usually assume that the binary

pixel mask is available and use different image priors based

on it. We cannot directly adopt their scenarios because

annotating (or creating) such pixel masks for every frame

in videos is impractical and limits the system’s autonomy.

Furthermore, many video subtitles include semi-transparent

shadows (as in Fig. 1, Fig. 4-a, b) where it is ambiguous

to label the pixels in binary. These regions should not be

considered as solid occlusions, because of the underlying

information.

To overcome the aforementioned challenges in blind

video decaptioning, we propose a simple yet effective

encoder-decoder model (see Fig. 1), where the encoder ag-

gregates spatio-temporal context from neighboring source

frames and the decoder reconstructs the target frame. We

apply a residual learning algorithm where our network is

encouraged to touch only the corrupted pixels. We further

introduce a recurrent feedback connection, so that the gen-

eration of the target frame is based on the previously gener-

ated frame. Since the features from the neighbor frames and

the previous output are largely dissimilar on the corrupted

regions, it helps our network to better detect corrupted pix-

els and boosts the performance. We train our model with

the gradient reconstruction loss and the structural similar-

ity loss in conjunction with the conventional L1 loss. We

validate the contribution of our design components through

experiments. To our best knowledge, this is the first attempt

to apply deep learning to the blind video inpainting applica-

tion.

Our contribution can be summarized as follows:

• Unlike most of the existing methods for image/video

inpainting, the proposed approach aggregates neigh-

boring spatio-temporal features in the encoder and re-

covers a decaptioned frame in the decoder without re-

quiring the inpainting masks.

• We design an effective and robust loss function for

video decaptioning and empirically validate the use-

fulness of the loss terms with our architectural design

by extensive ablation study.

• Our model outperforms other competing methods and

runs in real time (50+ fps). We took the first place

in the ECCV Chalearn 2018 LAP Video Decaptioning

Challenge.

• We further improve our model by introducing a re-

currence mechanism and boost the performance even

more in terms of both visual quality and temporal co-

herency.

2. Related Work

2.1. Image Inpainting

Approaches of traditional image inpainting make use of

the image-level features to diffuse the texture from the sur-

rounding context to the missing hole [1, 3]. These methods

can only tackle small holes and would lead to noise pat-

terns and artifacts for large holes. Later works using patch-

based methods could optimize the inpainting performance

by searching the best matching patches [2, 7]. However,

while these methods could provide plausible texture gener-

ation in the hole, they are not aware of the high-level se-

mantics of the image and cannot make reasonable inference

for object completion and structure prediction.

Recently, many image inpainting models based on

Convolutional Neural Networks (CNNs) have been pro-

posed [13, 19, 22, 31–34]. These approaches directly infer

pixel values inside holes in an end-to-end fashion. Thanks

to their ability to learn adaptive image features of various

semantics, they can synthesize pixels that are more visu-

ally plausible. Pathak et al. [22] introduced Context En-

coder that enabled to fill large masks using a CNN model.

They proposed to use Generative Adversarial Networks

(GAN) [9] to avoid the blurring artifacts. Iizuka et al. [13]

proposed a fully convolutional network with both global

and local discriminators to obtain semantically and locally

coherent image inpainting results. This method, however,

heavily relies on a post-processing step; Poisson image

blending. Yu et al. [34] proposed a coarse-to-fine model by

stacking two generative networks, ensuring the color and

texture consistency of generated regions with surroundings.

Moreover, in order to capture long-range spatial dependen-

cies, a contextual attention module is integrated into the net-

works. However, this model does not generalize well on

irregular masks because it is mainly trained on large rect-

angular masks. To better handle free-form masks, partial

convolution [19] and gated convolution [33] are proposed

where the convolution weights are masked or re-weighted

respectively to utilize valid pixels only.

2.2. Video Inpainting

Approaches for video inpainting can be categorized into

object-based and patch-based methods. Object-based ap-

proahces [5,16,18] segment a video into moving foreground

objects and background that is either still or exhibits smooth

motion. The moving objects are, in general, copied into the

holes as smoothly as possible, whereas the background is

inpainted using image inpainting methods. However, such

approaches work well only when the objects’ motion shows

strict periodicity.

The patch-based method [23] copied and pasted small

video patches into the holes. Patwardhan et al. [24] fur-

ther improved this approach so that moving cameras could
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Figure 2. Multiple time steps of our BVDNet framework. The

image shortcuts, input to the recurrence stream, and input to the

aggregation stream are represented by orange, red, and black

arrows, respectively. We mirror-pad at initial input boundary

(e.g.t=1,2) as illustrated in stripe pattern. Our method processes

frames sequentially in a sliding window manner and produces the

video results in real time.

be dealt with. Granados et al. [10] proposed a semi-

automatic algorithm which optimizes the spatio-temporal

shift map [25]. However, manual tracking of moving ob-

jects is required to reduce a large search space and high

computational complexity. Further, Wexler et al. [29] pro-

posed an iterative method to solve a global optimization

method. However, these methods rely on the inpainting

masks for each frame and lack high-level semantic under-

standing. Newson et al. [21] extend this by developing a

3D version of PatchMatch [2]. Huang et al. [12] propose

to use additional optical flow term by modifying the energy

term of [29] for temporally coherent predictions in results.

Our work takes an important next step beyond the afore-

mentioned prior works in that we address a blind video in-

painting task using a deep CNN model. We propose a 3D

encoder-2D decoder model that can effectively learn spatio-

temporal features to recover clear frames in a data-driven

manner. Our predicted frames are visually natural and tem-

porally smooth without any post-processing step. Thanks

to our light-weight design, the overall process performs in

real-time (50+ fps).

3. Proposed Method

Video decaptioning aims to estimate original frames

{Ŷ } from the subtitled, noised frames {X}. The recov-

ered region should either be as accurate as in the GT frames

{Y } or seamlessly merged into the surrounding pixels. Our

strategy is to collect hints from the multiple neighboring

(source) frames and recover a target frame. This is to lever-

age the scene dynamics in a video where the occluded parts

are often revealed in the lagging or leading frames as the

objects move or the subtitles change. We also propose to

use a recurrent feedback connection as an additional source

stream. This helps our network to reduce temporal flicker-

ing and to automatically detect the corrupted regions.

3.1. Residual Learning

Directly estimating all pixels in a frame may needlessly

touch uncorrupted pixels. To deal with the absence of the

pixel indicators (inpainting masks), we train our model by

a residual learning algorithm. Specifically, the final output

is yielded by summing the input center frame {Xt} and the

predicted residual image {Rt} in a pixel-wise manner. This

encourages our network to explicitly focus on the corrupted

pixels only, and also prevent the global tone distortion.

Formally, with the proposed decaption model f , we

model the video captioning problem as

Ŷt = f(Xt−N :t+N , Ŷt−1) +Xt, (1)

where t denotes a frame index and N is a temporal radius.

3.2. Network Design

The overall decaptioning algorithm is illustrated in

Fig. 1. Our core design is a hybrid encoder-decoder model,

where the encoder consists of two sub-networks: 3D CNN

and 2D CNN. The decoder follows a normal 2D CNN de-

sign as in other image generation networks. The network is

designed to be fully convolutional, which can handle arbi-

trary size input. The final output video is obtained by ap-

plying f in an auto-regressive manner as in Fig. 2.

Two-stream encoder. Our strategy is to collect potential

hints from multiple source frames that can provide visible

pixels revealed from the scene dynamics. Also, we enforce

the generation of the target frame to be consistent with the

previous generation. We construct a two-stream hybrid en-

coder where each source stream is trained to achieve our

objectives. The first encoder stream consists in 3D con-

volutions which can directly capture spatio-temporal fea-

tures from the neighboring frames. This can help in un-

derstanding the short-term video-level context which is re-

quired to recover the target frame. The input tensor shape is

H ×W × T ×C, where H ,W and C are the height, width

and channels of the input frame {X}, and T = 2N +1. We

use N = 2 in our network (T = 5). Here, the goal is to re-

move text overlays in the center input frame (3th out of 5).

The temporal dimension gradually reduces into 1 passing

through the 3D convolution layers in this stream.

The second stream is a 2D CNN which takes the previ-

ously generated frame, of size H×W×1×C, as input. This
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stream provides a reference for the current generation to be

temporally coherent with. Moreover, the encoded feature

is combined with the temporally-pooled one-frame feature

from the first stream by element-wise summation. Since the

features from the two streams are comparatively different

on the corrupted regions, the combined hybrid feature map

implicitly encodes the knowledge on where to attend.

Bottleneck and temporal-pooling skip connections.

The encoder is followed by bottleneck layers that con-

sist of several dilated convolutions, as suggested in [13].

The large receptive field size helps to capture wide spatial

context which supports the recovery of the corrupted pixels.

The following is a 2D CNN decoder which is symmetric to

the 2D encoder stream.

We apply skip connections only between the 3D encoder

stream and the decoder. Each skip connections pass through

a 3D convolution layer that pools the temporal dimension

into one frame, so that the feature map can be directly con-

catenated with the decoder features of equal dimension. De-

spite the concern raised by Yu et al. [33] that the skip con-

nections carry almost zero features on the corrupted regions,

our temporal-pooling skip connections are immune to this

problem since they can adaptively aggregate low-level fea-

tures that are complementary to the occluded points in the

center frame.

Our full network is trained to generate the residual frame

{Rt}, which is added with the input center frame {Xt} to

produce the final output {Ŷt}.

3.3. Frame Sampling

As we mentioned earlier, our task can greatly benefit

from the video dynamics. If the scene moves or the subti-

tles disappear in the neighboring frames, the occluded parts

will be revealed, which provides critical clues to the under-

lying content. To maximize this gain, we attempt to find the

optimal frame sampling interval for our model. With the

minimum interval of 1, the input frames will contain non-

significant dynamics. If we jump with large stride, on the

other hand, irrelevant new scenes will be included. We em-

pirically find that the stride of 3 performs the best in our

preliminary experiment. Since we use T = 5, our model

has about 15 frame-term view range.

3.4. Loss Functions

We train the sequential video decaptioning model f by

solving the following objective function,

min
f

(λRLR(f) + λTLT (f)) , (2)

where LR is an image reconstruction loss, and LT is

a temporal consistency loss. λR and λT denote to the

weighting coefficients which are set to 1 and 2 throughout

the experiments.

To address image reconstruction, a simple way is to min-

imize the L1 loss following the previous studies [19, 34].

For the structural details, We apply the SSIM loss [28] with

a small patch window according to the setting of the com-

petition evaluation metric. Inspired by [8], we also use a

first-order matching term, which compares image gradients

of the prediction with the ground truth, and encourages the

prediction to have not only close-by values but also similar

local structure. To this end, the image reconstruction loss

LR includes three terms as

L1 =
∥

∥

∥
Ŷt − Yt

∥

∥

∥

1

, (3)

LSSIM = (
(2µ

Ŷt

µYt
+ c1)(2σŶtYt

+ c2)

(µ2

Ŷt

+ µ2
Yt

+ c1)(σ2

Ŷt

+ σ2
Yt

+ c2)
), (4)

Lgrad. =
∥

∥

∥
∇W (Ŷt − Yt)

∥

∥

∥

1

+
∥

∥

∥
∇H(Ŷt − Yt)

∥

∥

∥

1

, (5)

LR = L1 + LSSIM + Lgrad., (6)

where Ŷt, Yt denote the predicted and target groundtruth

frames respectively. µ, σ denote the average, variance.

c1, c2 denote two stabilization constants which are respec-

tively set to 0.012, 0.032. ∇W ,∇H are the image gradients

along the horizontal and vertical axis.

With the recurrence (second) stream in the encoder, we

optimize our model with additional temporal warping loss

which is widely used in video generation works [11,17,27].

The temporal consistency loss LT is defined as

LT =
T−1
∑

t=1

M t
t−1

∥

∥

∥
Ŷt − φ(Yt−1)

∥

∥

∥

1

, (7)

where M represents the binary occlusion mask and φ

denotes the flow warping operation. We use opti-

cal flow between consecutive target frames obtained by

FlowNet2 [14], to compute our temporal loss. For the train-

ing, we set the number of recurrences to 5 (T = 5).

4. Implementation

Dataset. We used the ECCV Chalearn 2018 LAP Video

Decaptioning Challenge dataset for training, validation, and

testing. It is a large dataset of 5 seconds (125 frames) MP4

video clips in 128×128 pixel RGB frames, containing both

encrusted subtitles ({X}) and without subtitles ({Y }). The

dataset contains a wide variety of captions with different

colors, size, positions, and shadows. The training and vali-

dation set consist in 70K and 5K sample pairs of input and

ground truth video clips, respectively. The testing set con-

sists of 5K input video clips without ground truth. We con-

vert every video clip into PNG images in our experiments.

Training. We adopt horizontal flipping and color jitter-

ing for data augmentation. We train our model for 200

epochs with a batch size of 128. Adam optimizer is used
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Architecture Losses Recurrence Evaluation Metric

Exp 3D-3D 2D-2D 3D-2D L1 grad. L1 SSIM Enc. Stream MSE PSNR DSSIM

1 X X 0.0031 28.4590 0.0652

2 X X 0.0012 33.6803 0.0279

3 X X 0.0011 34.1029 0.0261

4 X X X 0.0010 34.2251 0.0276

5 X X X X 0.0010 34.6544 0.0225

6 (Our full model) X X X X X 0.0010 34.7055 0.0222
Table 1. The ablation studies on architectural design, loss functions, and recurrence stream. We evaluate on ChaLearn 2018 LAP Inpainting

Track2 validation set.

Ours + GAN loss - Skip

MSE 0.0010 0.0015 0.0010

PSNR 34.7055 31.2257 34.3892

DSSIM 0.0222 0.0384 0.0233
Table 2. The ablation studies on additional GAN loss and without

residual learning. We evaluate on ChaLearn 2018 LAP Inpainting

Track2 validation set.

Value MSE PSNR DSSIM

3 0.0011 33.7895 0.0247

Number 5 0.0010 34.7055 0.0222

of frames 7 0.0010 34.5063 0.0229

9 0.0010 34.6260 0.0226
Table 3. The ablation studies on the hyperparamter: number of

input frames. We evaluate on ChaLearn 2018 LAP Inpainting

Track2 validation set.

Encoder version Temporal Errors

without recurrence (Ours-Exp 5) 0.00117

with recurrence (Ours-Exp 6) 0.00090
Table 4. Temporal errors (warping errors) of our full model with

and without temporal consistency constraints. We evaluate on 500

clips of ChaLearn 2018 LAP Inpainting Track2 validation set.

with β = (0.9, 0.999) and a learning rate of 0.001. The train-

ing takes 3 days on two NVIDIA GTX 1080 Ti GPUs. For

the competition, we train our model without the recurrence

stream in the encoder and the warping loss.

Testing. For the pixels where the absolute difference be-

tween the input middle frame {Xt} and the prediction {Ŷt}
is less than 0.01 in [0, 1] scale, we copy the values from the

input frame. Finally, we convert PNG files back to MP4

videos.

Evaluation Metric. To evaluate the quality of the recon-

struction, the mean square error (MSE), the peak signal-to-

noise ratio (PSNR), and the structural dissimilarity (DSSIM

– i.e. (1-SSIM)/2) are used.

5. Experimental Results

5.1. Ablation Study

In order to evaluate the effectiveness of different compo-

nents of the proposed BVDNet, we conduct ablation studies

using the publicly released validation set.

The impact of 3D encoder stream. One of our core de-

sign choices is to use a 3D CNN encoder stream in con-

junction with a following 2D decoder. To validate the effec-

tiveness of this design, we construct two naive baselines to

compare with: a 3D encoder-3D decoder and a 2D encoder-

2D decoder models. We note that all models in this ex-

periment contain a single-stream encoder without the recur-

rence stream encoder for a clearer comparison. We con-

struct all the models with a comparable number of param-

eters. As shown in Exp 1, 2, and 3 in Table 1, our 3D-

2D model shows the best performances in all three metrics.

This implies that spatio-temporal feature extraction from

the neighboring frames indeed helps our target task, pro-

viding our model with a distinct advantage over the frame-

by-frame competitor. On the other hand, it is empirically

shown that adopting heavy 3D-3D operations does more

harm than good. This implies that making use of the neigh-

boring frames does not always work, rather the careful ar-

chitectural design is required.

The impact of loss functions. We test our loss func-

tions both quantitatively and qualitatively. First, we remove

each loss terms gradually from our full loss function. Again,

we use models with the single-stream encoder, and thus the

temporal warping loss is not considered in this experiment.

As shown in Exp 3, 4, and 5 in Table 1, the best scores are

obtained in all metrics when all L1, gradient L1, and SSIM

losses are used together.

We also provide qualitative analysis as shown in Fig. 3.

The model trained with the L1 loss alone produces rela-

tively blurry outputs. We alleviated this problem by adding

the gradient L1 loss and the SSIM loss. We attempt to use

the adversarial loss, but it tends to decrease the performance

on the evaluation metrics (see Table 2). We observe that

the gradient L1 and SSIM losses together help recover finer

structures (texture and edge) and achieve better evaluation
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(a) input (b) L1 (c) L1 + grad.L1 (d) L1+grad.L1+SSIM (e) target (groundtruth)

Figure 3. The impact of each loss terms. (a) An input center frame. (b-d) The reconstructed frames with: (b) L1 loss, (c) L1 + gradient

L1 loss, and (d) L1 + gradient L1 + SSIM loss. (e) Ground truth frame. Best viewed when zoomed-in.

(a) (b)

Figure 4. The impact of recurrence on temporal consistency. For each sample, we visualize four consecutive input frames in the top

row. In the bottom rows are the zoomed-in views of our results without recurrence (2nd row), with recurrence (3rd row), and the ground

truth frames (4th row). Without the recurrence, the change in the subtitles leads to temporally flickering artifacts (a)

scores as well. In short, the L1 loss plays a role of capturing

the overall structure of the corrupted region. The gradient

L1 loss and the SSIM loss reduce the artifacts, encouraging

the preservation of the local structures.

The impact of the recurrence encoder stream. We in-

vestigate the effectiveness of our recurrence stream in the

encoder, together with the temporal warping loss. We eval-

uate both frame-level image quality and temporal consis-

tency. As shown in Exp 5 and 6 in Table 1, the recur-

rence stream improves the visual quality of the video re-

sults. In addition, we quantitatively compare the temporal

consistency of our models with and without the recurrence

stream. We measure the temporal error over a video se-

quence, which is the average pixel-wise Euclidean color dif-
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ference between consecutive frames. We use FlowNet2 [14]

to obtain pseudo-groundtruth optical flows as in the train-

ing. Table 4 shows that the temporal error is significantly

reduced by having the recurrence stream in the encoder. Our

approach does not sacrifice either visual quality and tempo-

ral stability. This is also shown qualitatively in Fig. 4. These

results imply that the recurrence stream helps our model

to better detect and inpaint the corrupted regions automati-

cally, in a temporally coherent manner.

Adding GAN loss. The adversarial training encourages

the decaptioning results to move towards the natural im-

age manifold. We test the effect of the adversarial train-

ing by adding the GAN loss on top of our full loss func-

tion. We use 8 × 8 PatchGAN [15] as our discriminator

network that aims to classify whether 8 × 8 overlapping

image patches are real or fake. However, we observe no

visible qualitative improvement and the quantitative perfor-

mance slightly dropped (Table 2), which is consistent with

the results in [26].

Removing residual image shortcut. We investigate the

importance of the residual learning. If we remove the

skip connection from the input center frame to the decoder

output, the network should predict the uncorrupted output

without referencing the input pixels. As shown in the Ta-

ble 2, adopting the residual learning scheme shows better

performances, demonstrating that devoting to the pixels to

be recovered is more effective for video decaptioning.

Number of input frames. In Table 3, we perform an ex-

periment to determine the hyperparameter T for our model,

which is the number of input frames. The number of input

frames directly relates to the size of input batches, which

enables to control the amount of temporal information to be

considered at once. Table 3 shows the comparison results

with four different input frame values. We observe that the

performance tends to be good with larger input frames in

general, while the value of 5 gives the best results. This

indicates that having proper temporal view range is crucial

for video decaptioning.

5.2. Model Inference Time

Our full model has a total of 23 layers and 10.5M param-

eters. Our model is implemented on Pytorch v0.3, CUDNN

v6.0, CUDA v8.0, and run on the hardware with Intel(R)

Xeon(R) (2.10GHz) CPU and NVIDIA GTX 1080 Ti GPU.

The model runs at 62.5 fps on a GPU for frames of resolu-

tion 128 × 128 px.

5.3. Final Challenge Results

Quantitative results. Table 5 summarizes the top en-

tries from the leaderboard of ECCV ChaLearn 2018

Inpainting Challenge Track2. We participated with

our model without the recurrence stream and achieved

the first place on the final test phase. The source

MSE PSNR DSSIM

stephane 0.0022 30.1856 0.0613

hcilab 0.0012 33.0228 0.0424

anubhap93 0.0012 32.0021 0.0499

arnavkj95 0.0012 32.1713 0.0482

Ours 0.0011 33.3527 0.0404
Table 5. Final performances of the top entries in the ECCV

ChaLearn 2018 LAP Inpainting Challenge Track2 test phase. We

note that stephane’s is the baseline from the organizers [4].

code and factsheet are publicly available at http:

//chalearnlap.cvc.uab.es/challenge/26/

track/31/result/fact-sheet/237/.

Our full model is even stronger on the validation set as

shown in Table 4, but we cannot evaluate the full model on

the testing set because the test server is closed.

Qualitative results. We visualize the learned feature

maps of our full model in Fig. 5. We observe a hierarchical

attention where the 3D encoder layers captures low-level

features such as background texture features along time

axis, and the 2D decoder layers then gradually attend to the

exact corrupted region to recover the original content.

Fig. 6 shows examples of our decaptioning results. Our

full model successfully recovers the video frames with

smooth temporal transition even when there are active ob-

ject movements as in Fig. 6-(a). Also, fine details and tex-

tures are well reconstructed even when heavy illumination

change exists as in Fig. 6-(b). Even when there are non-

caption texts in the video, e.g. Fig. 6-(c), our algorithm is

able to separate between the text overlays and texts coming

from the video. However, the results are relatively blurry

when the input frames have a solid shadow which makes

complete occlusions, as in Fig. 6-(d). This is probably due

to the lack of samples with such solid shadows in the given

training set.

6. Conclusion

In this paper, we propose a deep network model for fast

blind video decaptioning that learns to remove text over-

lays in videos. Our model collects hints from not only the

current frame but also the future and the past neighboring

frames. In addition, it generates each frame conditionally

to the previous output frame for the temporal consistency

preserving. We design an encoder-decoder model, where

the hybrid encoder consists of a 3D CNN stream and a re-

current feedback stream. The spatio-temporal features from

these multiple source streams are extracted and fed into the

image-based decoder. The skip connections from the 3D

encoder stream aggregate low-level features along the time

axis, so that they can complement the corrupted feature

points. Based on our residual learning algorithm and robust

loss function design, the proposed framework is ranked in
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(a) input (b) enc-64

(c) enc-32 (d) dec-32 (e) dec-64 (f) output

Figure 5. Visualization of learned feature activation. For the visualization, we average each feature maps along the channel axis,

perform zero-one normalization, and up-sample to 128× 128 px. The numbers in the labels denote spatial resolution of the feature maps.

We observe hierarchical attention operations across the network. In the early encoder layers (b, c), low-level features such as background

textures ( e.g.around the subtitles) are aggregated along the time dimension. The latter decoder layers (d, e) then gradually focus on the

exact target regions ( e.g.on the subtitles) which require high-level semantics to be synthesized.

(a) (b)

(c) (d)

Figure 6. Qualitative decaptioning results. For each example, the top rows are the input sequences and the bottom rows are the decap-

tioning results using our full model. For visualization, we determine the time interval between the frames to be 0.1 seconds. Our model

performs well on various types of subtitles with complex background variations and also is able to separate the non-caption texts in a video.

the first place in the ECCV Chalearn 2018 LAP Inpainting

Track2 - Video decaptioning Challenge. We hope our pro-

posed model will become an important basic architecture

for solving real-world video restoration tasks.

Acknowledgements Dahun Kim was partially supported

by Global Ph.D. Fellowship Program through the National

Research Foundation of Korea (NRF) funded by the Min-

istry of Education (NRF-2018H1A2A1062075).

4270



References

[1] C. Ballester, M. Bertalmio, V. Caselles, G. Sapiro, and

J. Verdera. Filling-in by joint interpolation of vector fields

and gray levels. IEEE transactions on image processing,

10(8):1200–1211, 2001.

[2] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Gold-

man. Patchmatch: A randomized correspondence algorithm

for structural image editing. ACM Transactions on Graphics

(ToG), 28(3):24, 2009.

[3] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester. Image

inpainting. In Proceedings of the 27th annual conference on

Computer graphics and interactive techniques, pages 417–

424, 2000.

[4] Chalearn-Baseline. Eccv 2018 chalearn challenge track2 of-

ficial website. http://chalearnlap.cvc.uab.es/

challenge/26/track/31/baseline/, 2018.

[5] S.-C. S. Cheung, J. Zhao, and M. V. Venkatesh. Efficient

object-based video inpainting. In Image Processing, 2006

IEEE International Conference on, pages 705–708. IEEE,

2006.

[6] C. Dong, C. C. Loy, K. He, and X. Tang. Image

super-resolution using deep convolutional networks. IEEE

transactions on pattern analysis and machine intelligence,

38(2):295–307, 2016.

[7] A. A. Efros and T. K. Leung. Texture synthesis by non-

parametric sampling. In iccv, page 1033. IEEE, 1999.

[8] D. Eigen and R. Fergus. Predicting depth, surface normals

and semantic labels with a common multi-scale convolu-

tional architecture. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2650–2658, 2015.

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in neural information

processing systems, pages 2672–2680, 2014.

[10] M. Granados, J. Tompkin, K. Kim, O. Grau, J. Kautz, and

C. Theobalt. How not to be seenobject removal from videos

of crowded scenes. In Computer Graphics Forum, vol-

ume 31, pages 219–228. Wiley Online Library, 2012.

[11] H. Huang, H. Wang, W. Luo, L. Ma, W. Jiang, X. Zhu,

Z. Li, and W. Liu. Real-time neural style transfer for videos.

In 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 7044–7052. IEEE, 2017.

[12] J.-B. Huang, S. B. Kang, N. Ahuja, and J. Kopf. Temporally

coherent completion of dynamic video. ACM Transactions

on Graphics (TOG), 35(6):196, 2016.

[13] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Globally and

locally consistent image completion. ACM Transactions on

Graphics (TOG), 36(4):107, 2017.

[14] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and

T. Brox. Flownet 2.0: Evolution of optical flow estimation

with deep networks. In IEEE conference on computer vision

and pattern recognition (CVPR), volume 2, page 6, 2017.

[15] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image

translation with conditional adversarial networks. In CVPR,

pages 1125–1134, 2017.

[16] J. Jia, Y.-W. Tai, T.-P. Wu, and C.-K. Tang. Video repair-

ing under variable illumination using cyclic motions. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

28(5):832–839, 2006.

[17] W.-S. Lai, J.-B. Huang, O. Wang, E. Shechtman, E. Yumer,

and M.-H. Yang. Learning blind video temporal consistency.

In ECCV, 2018.

[18] C.-H. Ling, C.-W. Lin, C.-W. Su, Y.-S. Chen, H.-Y. M. Liao,

et al. Virtual contour guided video object inpainting us-

ing posture mapping and retrieval. IEEE Trans. Multimedia,

13(2):292–302, 2011.

[19] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and

B. Catanzaro. Image inpainting for irregular holes using par-

tial convolutions. arXiv preprint arXiv:1804.07723, 2018.

[20] X. Mao, C. Shen, and Y.-B. Yang. Image restoration us-

ing very deep convolutional encoder-decoder networks with

symmetric skip connections. In Advances in neural informa-

tion processing systems, pages 2802–2810, 2016.

[21] A. Newson, A. Almansa, M. Fradet, Y. Gousseau, and
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