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Abstract

Metric Learning for visual similarity has mostly adopted

binary supervision indicating whether a pair of images are

of the same class or not. Such a binary indicator covers only

a limited subset of image relations, and is not sufficient to

represent semantic similarity between images described by

continuous and/or structured labels such as object poses,

image captions, and scene graphs. Motivated by this, we

present a novel method for deep metric learning using con-

tinuous labels. First, we propose a new triplet loss that al-

lows distance ratios in the label space to be preserved in

the learned metric space. The proposed loss thus enables

our model to learn the degree of similarity rather than just

the order. Furthermore, we design a triplet mining strategy

adapted to metric learning with continuous labels. We ad-

dress three different image retrieval tasks with continuous

labels in terms of human poses, room layouts and image

captions, and demonstrate the superior performance of our

approach compared to previous methods.

1. Introduction

The sense of similarity has been known as the most ba-

sic component of human reasoning [36]. Likewise, un-

derstanding similarity between images has played essen-

tial roles in many areas of computer vision including image

retrieval [19, 43, 44, 50], face identification [12, 39, 46],

place recognition [4], pose estimation [45], person re-

identification [10, 40], video object tracking [42, 47], lo-

cal feature descriptor learning [25, 58], zero-shot learn-

ing [7, 57], and self-supervised representation learning [52].

Also, the perception of similarity has been achieved by

learning similarity metrics from labeled images, which is

called metric learning.

Recent approaches in metric learning have improved

performance dramatically by adopting deep Convolutional

Neural Networks (CNNs) as their embedding functions.

Specifically, such methods train CNNs to project images

onto a manifold where two examples are close to each

other if they are semantically similar and far apart other-

Figure 1. A conceptual illustration for comparing existing meth-

ods [4, 16, 27, 32, 45] and ours. Each image is labeled by human

pose, and colored in red if its pose similarity to the anchor is high.

(a) Existing methods categorize neighbors into positive and neg-

ative classes, and learn a metric space where positive images are

close to the anchor and negative ones far apart. In such a space,

the distance between a pair of images is not necessarily related to

their semantic similarity since the order and degrees of similarities

between them are disregarded. (b) Our approach allows distance

ratios in the label space to be preserved in the learned metric space

so as to overcome the aforementioned limitation.

wise. While in principle such a metric can be learned using

any type of semantic similarity labels, previous approaches

typically rely on binary labels over image pairs indicating

whether the image pairs are similar or not. In this aspect,

only a small subset of real-world image relations has been

addressed by previous approaches. Indeed, binary similar-

ity labels are not sufficient to represent sophisticated rela-

tions between images with structured and continuous labels,

such as image captions [30, 35, 56], human poses [3, 21],

camera poses [5, 13], and scene graphs [24, 31]. Met-
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ric learning with continuous labels has been addressed

in [4, 16, 27, 32, 45]. Such methods, however, reduce the

problem by quantizing continuous similarity into binary la-

bels (i.e., similar or dissimilar) and applying the existing

metric learning techniques. Therefore, they do not fully ex-

ploit rich similarity information in images with continuous

labels as illustrated in Figure 1(a) and require a careful tun-

ing of parameters for the quantization.

In this paper, we propose a novel method for deep metric

learning to overcome the aforementioned limitations. We

first design a new triplet loss function that takes full advan-

tage of continuous labels in metric learning. Unlike exist-

ing triplet losses [39, 53, 54] that are interested only in the

equality of class labels or the order of label distances, our

loss aims to preserve ratios of label distances in the learned

embedding space. This allows our model to consider de-

grees of similarities as well as their order and to capture

richer similarity information between images as illustrated

in Figure 1(b).

Current methods construct triplets by sampling a posi-

tive (similar) and a negative (dissimilar) examples to obtain

the binary supervision. Here we propose a new strategy for

triplet sampling. Given a minibatch composed of an anchor

and its neighbors, our method samples every triplet includ-

ing the anchor by choosing every pair of neighbors in the

minibatch. Unlike the conventional approaches, our method

does not need to introduce quantization parameters to cate-

gorize neighbors into the two classes and can utilize more

triplets given the same minibatch.

Our approach can be applied to various problems with

continuous and structured labels. We demonstrate the effi-

cacy of the proposed method on three different image re-

trieval tasks using human poses, room layouts, and image

captions, respectively, as continuous and structured labels.

In all the tasks, our method outperforms the state of the art,

and our new loss and the triplet mining strategy both con-

tribute to the performance boost. Moreover, we find that our

approach learns a better metric space even with a signif-

icantly lower embedding dimensionality compared to pre-

vious ones. Finally, we show that a CNN trained by our

method with caption similarity can serve as an effective vi-

sual feature for image captioning, and it outperforms an Im-

ageNet pre-trained counterpart in the task.

2. Related Work

In this section, we first review loss functions and tuple

mining techniques for deep metric learning, then discuss

previous work on metric learning with continuous labels.

2.1. Loss Functions for Deep Metric Learning

Contrastive loss [6, 12, 17] and triplet loss [39, 50, 54]

are standard loss functions for deep metric learning. Given

an image pair, the contrastive loss minimizes their distance

in the embedding space if their classes are the same, and

separates them a fixed margin away otherwise. The triplet

loss takes triplets of anchor, positive, and negative images,

and enforces the distance between the anchor and the posi-

tive to be smaller than that between the anchor and the neg-

ative. One of their extensions is quadruple loss [10, 42],

which considers relations between a quadruple of images

and is formulated as a combination of two triplet losses. A

natural way to generalize the above losses is to use a higher

order relations. For example, n-tuplet loss [41] takes as its

input an anchor, a positive, and n− 2 negative images, and

jointly optimizes their embedding vectors. Similarly, lifted

structured loss [44] considers all positive and negative pairs

in a minibatch at once by incorporating hard-negative min-

ing functionality within itself. For the same purpose, in [48]

the area of intersection between similarity distributions of

positive and negative pairs are minimized, and in [28, 43]

clustering objectives are adopted for metric learning.

All the aforementioned losses utilize image-level class

labels or their equivalent as supervision. Thus, unlike ours,

it is not straightforward for them to take relations between

continuous and/or structured labels of images into account.

2.2. Techniques for Mining Training Tuples

Since tuples of k images are used in training, the number

of possible tuples increases exponentially with k. The mo-

tivation of mining techniques is that some of such a large

number of tuples do not contribute to training or can even

result in decreased performance. A representative exam-

ple is semi-hard triplet mining [39], which utilizes only

semi-hard triplets for training since easy triplets do not up-

date the network and hardest ones may have been corrupted

due to labeling errors. It also matters how to measure the

hardness. A common strategy [39, 44] is to utilize pair-

wise Euclidean distances in embedding space, e.g., negative

pairs with small Euclidean distances are considered hard.

In [19, 20, 55], an underlying manifold of embedding vec-

tors, which is ignored in Euclidean distances, is taken into

account to improve the effectiveness of mining techniques.

Also, in [57] multiple levels of hardness are captured by a

set of embedding models with different complexities.

Although the above techniques substantially improve the

quality of learned embedding space, they are commonly

based on binary relations between image pairs, thus they are

not directly applicable for metric learning with continuous

labels.

2.3. Metric Learning Using Continuous Labels

There have been several metric learning methods using

data with continuous labels. For example, similarities be-

tween human pose annotations have been used to learn an

image embedding CNN [27, 32, 45]. This pose-aware CNN

then extracts pose information of given image efficiently
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Figure 2. The binary quantization strategies and their limitations. The orange circle indicates a rare example dissimilar to most of the

others, and the orange pentagon is a common example similar with a large number of samples. (a) If the quantization is done by a single

distance threshold, populations of positive and negative examples would be significantly imbalanced. (b) In the case of nearest neighbor

search, positive neighbors of a rare example would be dissimilar and negative neighbors of a common example would be too similar.

without explicit pose estimation, which can be transferred to

other tasks relying on pose understanding like action recog-

nition. Also, in [16] caption similarities between image

pairs are used as labels for metric learning, and the learned

embedding space enables image retrieval based on more

comprehensive understanding of image content. Other ex-

amples of continuous labels that have been utilized for met-

ric learning include GPS data for place recognition [4] and

camera frusta for camera relocalization [5].

However, it is hard for the above methods to take full ad-

vantage of continuous labels because they all use conven-

tional metric learning losses based on binary relations. Due

to their loss functions, they quantize continuous similarities

into binary levels through distance thresholding [4, 32, 45]

or nearest neighbor search [16, 27]. Unfortunately, both

strategies are unnatural for continuous metric learning and

have clear limitations as illustrated in Figure 2. Further-

more, it is not straightforward to find a proper value for their

quantization parameters since there is no clear boundary be-

tween positive and negative examples whose distances to

the anchors are continuous. To the best of our knowledge,

our work is the first attempt to directly use continuous labels

for metric learning.

3. Our Framework

To address limitations of existing methods described

above, we propose a new triplet loss called log-ratio loss.

Our loss directly utilizes continuous similarities without

quantization. Moreover, it considers degrees of similari-

ties as well as their rank so that the resulting model can

infer sophisticated similarity relations between continuous

labels. In addition, we present a new, simple yet effective

triplet mining strategy supporting our log-ratio loss since

the existing mining techniques in Section 2.2 cannot be used

together with our loss.

In the following sections, we briefly review the conven-

tional triplet loss [39] for a clear comparison, then present

details of our log-ratio loss and the new triplet mining tech-

nique.

3.1. Review of Conventional Triplet Loss

The triplet loss takes a triplet of an anchor, a positive,

and a negative image as input. It is designed to penalize

triplets violating the rank constraint, namely, that the dis-

tance between the anchor and the positive must be smaller

than that between the anchor and the negative in the embed-

ding space. The loss is formulated as

ℓtri(a, p, n) =
[

D(fa, fp)−D(fa, fn) + δ
]

+

, (1)

where f indicates an embedding vector, D(·) means the

squared Euclidean distance, δ is a margin, and [·]+ denotes

the hinge function. Note that the embedding vectors should

be L2 normalized since, without such a normalization, their

magnitudes tend to diverge and the margin becomes trivial.

For training, gradients of ℓtri with respect to the embedding

vectors are computed by

∂ℓtri(a, p, n)

∂fp
= 2(fp − fa) · ✶

(

ℓtri(a, p, n) > 0
)

, (2)

∂ℓtri(a, p, n)

∂fn
= 2(fa − fn) · ✶

(

ℓtri(a, p, n) > 0
)

, (3)

∂ℓtri(a, p, n)

∂fa
= −

∂ℓtri(a, p, n)

∂fp
−

∂ℓtri(a, p, n)

∂fn
, (4)

where ✶ is the indicator function. One may notice that the

gradients only consider the directions between the embed-

ding vectors and the rank constraint violation indicator. If

the rank constraint is satisfied, all the gradients are zero.

3.2. Log­ratio Loss

Given a triplet with samples, we propose a log-ratio loss

that aims to approximate the ratio of label distances by the

ratio of distances in the learned embedding space. Specifi-

cally, we define the loss function as

ℓlr(a, i, j) =

{

log
D(fa, fi)

D(fa, fj)
− log

D(ya, yi)

D(ya, yj)

}2

, (5)

where f indicates an embedding vector, y is a continuous la-

bel, and D(·) denotes the squared Euclidean distance. Also,
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(a, i, j) is a triplet of an anchor a and its two neighbors i

and j without positive-negative separation, unlike p and n

in Eq. (1). By approximating ratios between label distances

instead of the distances themselves, the proposed loss en-

ables to learn a metric space more flexibly regardless of the

scale of the labels.

The main advantage of the log-ratio loss is that it allows

a learned metric space to reflect degrees of label similarities

as well as the rank of them. Ideally, the distance between

two images in the learned metric space will be proportional

to their distance in the label space. Hence, an embedding

network trained with our loss can represent continuous sim-

ilarities between images more thoroughly than those focus-

ing only on the rank of similarities like the triplet loss. This

property of the log-ratio loss can be also explained through

its gradients, which are given by

∂ℓlr(a, i, j)

∂fi
=

(fi − fa)

D(fa, fi)
· ℓ′lr(a, i, j), (6)

∂ℓlr(a, i, j)

∂fj
=

(fa − fj)

D(fa, fj)
· ℓ′lr(a, i, j), (7)

∂ℓlr(a, i, j)

∂fa
= −

∂ℓlr(a, i, j)

∂fi
−

∂ℓlr(a, i, j)

∂fj
, (8)

where ℓ′lr(a, i, j) is a scalar value computed by

ℓ′lr(a, i, j) = 4

{

log
D(fa, fi)

D(fa, fj)
− log

D(ya, yi)

D(ya, yj)

}

. (9)

As shown in Eq. (6) and (7), the gradients of the log-ratio

loss are determined not only by the directions between the

embedding vectors but also by ℓ′lr(a, i, j) that quantifies the

discrepancy between the distance ratio in the label space

and that in the embedding space. Thus, even when the rank

constraint is satisfied, the magnitudes of the gradients could

be significant if ℓ′lr(a, i, j) is large. In contrast, the gradients

of the triplet loss in Eq. (2) and (3) become zero under the

same condition.

Another advantage of the log-ratio loss is that it is

parameter-free. Unlike ours, the triplet loss requires the

margin, which is a hyper-parameter tuned manually and

forces embedding vectors to be L2 normalized. Last but

not least, we empirically find that the log-ratio loss can out-

perform the triplet loss even with embeddings of a signifi-

cantly lower dimensionality, which enables a more efficient

and effective image retrieval.

3.3. Dense Triplet Mining

The existing triplet mining methods in Section 2.2 can-

not be used in our framework since they are specialized to

handle images annotated by discrete and categorical labels.

Hence, we design our own triplet mining method that is well

matched with the log-ratio loss.

First of all, we construct a minibatch B of training sam-

ples with an anchor, k nearest neighbors of the anchor in

terms of label distance, and other neighbors randomly sam-

pled from the remaining ones. Note that including near-

est neighbors helps speed up training. Since the label dis-

tance between an anchor and its nearest neighbor is rela-

tively small, triplets with a nearest neighbor sample in gen-

eral induce large log-ratios of label distances in Eq. (9),

which may increase the magnitudes of the associated gra-

dients consequently.

Given a minibatch, we aim to exploit all triplets sharing

the anchor so that our embedding network can observe the

greatest variety of triplets during training. To this end, we

sample triplets by choosing every pair of neighbors (i, j)
in the minibatch and combining them with the anchor a.

Furthermore, since (a, i, j) and (a, j, i) have no difference

in our loss, we choose only (a, i, j) and disregard (a, j, i)
when D(ya, yi) < D(ya, yj) to avoid duplication. We call

the above procedure dense triplet mining. The set of triplets

densely sampled from the minibatch B is then given by

T (B) =
{

(a, i, j) | D(ya, yi) < D(ya, yj), (10)

i ∈ B \ {a}, j ∈ B \ {a}
}

.

Note that our dense triplet mining strategy can be com-

bined also with the triplet loss, which is re-formulated as

ℓdense
tri (a, i, j) =

[

D(fa, fi)−D(fa, fj) + δ
]

+

(11)

subject to (a, i, j) ∈ T (B).

where the margin δ is set small compared to that of ℓtri in

Eq. (1) since the label distance between i and j could be

quite small when they are densely sampled. This dense

triplet loss is a strong baseline of our log-ratio loss. How-

ever, it still requires L2 normalization of embedding vec-

tors and ignores degrees of similarities as the conventional

triplet loss does. Hence, it can be regarded as an interme-

diary between the existing approaches in Section 2.3 and

our whole framework, and will be empirically analyzed for

ablation study in the next section.

4. Experiments

The effectiveness of the proposed framework is validated

on three different image retrieval tasks based on contin-

uous similarities: human pose retrieval on the MPII hu-

man pose dataset [3], room layout retrieval on the LSUN

dataset [59], and caption-aware image retrieval on the MS-

COCO dataset [30]. We also demonstrate that an image

embedding CNN trained with caption similarities through

our framework can be transferred to image captioning as an

effective visual representation.

In the rest of this section, we first define evaluation met-

ric and describe implementation details, then present qual-
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itative and quantitative analysis of our approach on the re-

trieval and representation learning tasks.

4.1. Evaluation: Measures and Baselines

Evaluation metrics. Since image labels are continuous

and/or structured in our retrieval tasks, it is not appropri-

ate to evaluate performance based on standard metrics like

Recall@k. Instead, following the protocol in [27], we adopt

two evaluation metrics, mean label distance and a modified

version of nDCG [8, 27]. The mean label distance is the

average of distances between queries and retrieved images

in the label space, and a smaller means a better retrieval

quality. The modified nDCG considers the rank of retrieved

images as well as their relevance scores, and is defined as

nDCGK(q) =
1

ZK

K
∑

i=1

2ri

log2 (i+ 1)
, (12)

where K is the number of top retrievals of our interest and

ZK is a normalization factor to guarantee that the maximum

value of nDCGK is 1. Also, ri = − log2 (‖yq − yi‖2+1)
denotes the relevance between query q and the ith retrieval,

which is discounted by log2 (i+ 1) to place a greater em-

phasis on one returned at a higher rank. A higher nDCG

means a better retrieval quality.

Common baselines. In the three retrieval tasks, our method

is compared with its variants for ablation study. These ap-

proaches are denoted by combinations of loss function L

and triplet mining strategy M , where Log-ratio is our log-

ratio loss, Triplet means the triplet loss, Dense denotes the

dense triplet mining, and Binary indicates the triplet min-

ing based on binary quantization. Specifically, M (Binary)

is implemented by nearest neighbor search, where 30 neigh-

bors closest to anchor are regarded as positive. Our model is

then represented as L(Log-ratio)+M (Dense). We also com-

pare our model with the same network trained with the mar-

gin based loss and distance weighted sampling [55], a state-

of-the-art approach in conventional metric learning. Fi-

nally, we present scores of Oracle and ImageNet pretrained

ResNet-34 as upper and lower performance bounds. Note

that nDCG of Oracle is always 1.

4.2. Implementation Details

Datasets. For the human pose retrieval, we directly adopt

the dataset and setting of [27]. Among in total 22,285 full-

body pose images, 12,366 images are used for training and

9,919 for testing, while 1,919 images among the test set are

used as queries for retrieval. For the room layout retrieval,

we adopt the LSUN room layout dataset [59] that contains

4,000 training images and 394 validation images of 11 lay-

out classes. Since we are interested in continuous and fine-

grained labels only, we use only 1,996 images of the 5th

layout class, which is the class with the largest number of

images. Among them 1,808 images are used for training

and 188 for testing, in which 30 images are employed as

queries. Finally, for the caption-aware image retrieval, the

MS-COCO 2014 caption dataset [30] is used. We follow the

Karpathy split [22], where 113,287 images are prepared for

training and 5,000 images for validation and testing, respec-

tively. The retrieval test is conducted only on the testing set,

where 500 images are used as queries.

Preprocessing and data augmentation. For the human

pose retrieval, we directly adopt the data augmentation tech-

niques used in [27]. For the room layout retrieval, the im-

ages are resized to 224 × 224 for both training and testing,

and flipped horizontally at random during training. For the

caption-aware retrieval, images are jittered in both scale and

location, cropped to 224 × 224, and flipped horizontally at

random during training. Meanwhile, test images are simply

resized to 256× 256 and cropped at center to 224× 224.

Embedding networks and their training. For the human

pose and room layout retrieval, we choose ResNet-34 [18]

as our backbone network and append a 128-D FC layer on

top for embedding. They are optimized by the SGD with

learning rate 10−2 and exponential decay for 15 epochs. For

the caption-aware image retrieval, ResNet-101 [18] with a

1,024 dimensional embedding layer is adopted since cap-

tions usually contain more comprehensive information than

human poses and room layouts. This network is optimized

by the ADAM [23] with learning rate 5 · 10−6 for 5 epochs.

All the networks are implemented in PyTorch [34] and pre-

trained on ImageNet [38] before being finetuned.

Hyper-parameters. The size of minibatch is set to 150 for

the human pose, 100 for the room layout, and 50 for the

caption-aware image retrieval, respectively. On the other

hand, k, the number of nearest neighbors in the minibatch

for the dense triplet mining, is set to 5 for all experiments.

For the common baselines, the margin δ of the conventional

triplet loss is set to 0.2 and that of the dense triplet loss 0.03.

4.3. Human Pose Retrieval

The goal of human pose retrieval is to search for images

similar with query in terms of human poses they exhibit.

Following [27], the distance between two poses is defined

as the sum of Euclidean distances between body-joint lo-

cations. Our model is compared with the previous pose re-

trieval model called thin-slicing [27] and a CNN for explicit

pose estimation [11] as well as the common baselines.

Quantitative evaluation results of these approaches are

summarized in Figure 3(a), where our model clearly out-

performs all the others. In addition, through comparisons

between ours and its two variants L(Triplet)+M (Dense) and

L(Triplet)+M (Binary), it is demonstrated that both of our

log-ratio loss and the dense triplet mining contribute to the

improvement. Qualitative examples of human pose retrieval

are presented in Figure 4. Our model and thin-slicing over-
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(a) Human pose retrieval (b) Room layout retrieval (c) Caption-aware image retrieval

𝐿(Triplet) + 𝑀(Binary)𝐿(Triplet) + 𝑀(Dense)

Thin-slicing + 𝑀(Dense)

Chen& Yuille [11]

Baselines for pose retrieval

Our model𝐿(Log-ratio) + 𝑀(Dense)

Common baselines

ImageNet pretrained

Margin based loss [55] 

Oracle

Thin-slicing [27]

Figure 3. Quantitative evaluation of the three retrieval tasks in terms of mean label distance (top) and mean nDCG (bottom).

OracleQuery Thin-slicing ResNet34

(a)

Ours

(b)

(c)

(d)

(e)

Figure 4. Qualitative results of human pose retrieval.

all successfully retrieve images exhibiting similar human

poses with queries, while ResNet-34 focuses mostly on ob-

ject classes and background components. Moreover, ours

tends to capture subtle characteristics of human poses (e.g.,

bending left-arms in Figure 4(b)) and handle rare queries

(e.g., Figure 4(e)) better than thin-slicing.

Finally, we evaluate the human pose retrieval perfor-

mance by varying embedding dimensionality to show how

much effective our embedding space is. As illustrated in

Figure 5, when decreasing the embedding dimensionality

to 16, the performance of our model drops marginally while

(Log-ratio) + (Dense)  128-D(Log-ratio) + (Dense)  64-D

Baselines(Triplet) + (Dense)  128-D(Triplet) + (Dense)  64-D(Triplet) + (Dense)  32-D(Triplet) + (Dense)  16-D

Our models

(Log-ratio) + (Dense)  32-D(Log-ratio) + (Dense)  16-D

Figure 5. Performance versus embedding dimensionality.

that of L(Triplet)+M (Dense) is reduced significantly. Con-

sequently, the 16-D embedding of our model outperforms

128-D embedding of L(Triplet)+M (Dense). This result

demonstrates the superior quality of the embedding space

learned by our log-ratio loss.

4.4. Room Layout Retrieval

The goal of this task is to retrieve images whose 3-D

room layouts are most similar with that of query image,

with no explicit layout estimation in test time. We de-

fine the distance between two rooms i and j in terms of

their room layouts as 1 − mIoU(Ri, Rj), where R denotes

the groundtruth room segmentation map and mIoU denotes

mean Intersection-over-Union.

Since this paper is the first attempt to tackle the room lay-

out retrieval task, we compare our approach only with the

common baselines. As shown quantitatively in Figure 3(b),

the advantage of the dense triplet mining is not significant in
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Figure 6. Qualitative results of room layout retrieval. For an easier evaluation, the retrieved images are blended with their groundtruth

masks, and their mIoU scores are reported together. Binary Tri.: L(Triplet)+M (Binary). ImgNet: ImageNet pretraiend ResNet101.

this task, probably because room layout labels of the train-

ing images are diverse and sparse so that it is not straight-

forward to sample triplets densely. Nevertheless, our model

outperforms all the baselines by a noticeable margin thanks

to the effectiveness of our log-ratio loss.

Qualitative results of the room layout retrieval are illus-

trated in Figure 6. As in the case of the pose retrieval, re-

sults of the ImageNet pretrained model are frequently af-

fected by object classes irrelevant to room layouts (e.g., bed

in Figure 6(b) and sofa in Figure 6(d)), while those of our

approach are accurate and robust against such distractors.

4.5. Caption­aware Image Retrieval

An image caption describes image content thoroughly. It

is not a simple combination of object classes, but involves

richer information including their numbers, actions, interac-

tions, relative locations. Thus, using caption similarities as

supervision allows our model to learn image relations based

on comprehensive image understanding.

Motivated by this, we address the caption-aware image

retrieval task, which aims to retrieve images described by

most similar captions with query. To define a caption-aware

image distance, we adopt a sentence distance metric called

Word Mover’s Distance (WMD) [26]. Let W (x, y) be the

WMD between two captions x and y. As each image in our

target dataset [30] has 5 captions, we compute the distance

between two caption sets X and Y through WMD by

W (X,Y ) =
∑

x∈X

min
y∈Y

W (x, y) +
∑

y∈Y

min
x∈X

W (x, y). (13)

We train our model and the common baselines with the

WMD labels. As shown in Figure 3(c), our model out-

performs all the baselines, and both of the log-ratio loss

and the dense triplet mining clearly contribute to the per-

formance boost, while the improvement is moderate due to

the difficulty of the task itself. As illustrated in Figure 7, our

model successfully retrieves images that contain high-level

image content described by queries like object-object inter-

actions (e.g., person-umbrella in Figure 7(a)), object actions

(e.g.,holding something in Figure 7(b,d)), and specific ob-

jects of interest (e.g., hydrant in Figure 7(c)). In contrast,

the two baselines in Figure 7 often fail to retrieve relevant

images, especially those for actions and interactions.

4.6. Representation Learning for Image Captioning

An ImageNet pretrained CNN has been widely adopted

as an initial or fixed visual feature extractor in many im-

age captioning models [9, 14, 37, 51]. As shown in Fig-

ure 7, however, similarities between image pairs in the Im-

ageNet feature space do not guarantee their caption similar-

ities. One way to further improve image captioning quality

would be exploiting caption labels for learning a visual rep-

resentation specialized to image captioning.

We are motivated by the above observation, and be-

lieve that a CNN learned with caption similarities through

our continuous metric learning framework can be a way to

implement the idea. To this end, we adopt our caption-

aware retrieval model described in Section 4.5 as an initial,

caption-aware visual feature extractor of two image cap-

tioning networks: Att2all2 [37] and Topdown [2]. Specifi-

cally, our caption-aware feature extractor is compared with

the ImageNet pretrained baseline of ours, and (14 × 14 ×
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Figure 7. Qualitative results of caption-aware image retrieval. Binary Tri.: L(Triplet)+M (Binary). ImgNet: ImageNet pretraiend ResNet101.

Model Train B4 C M R S

ATT

Img
XE 0.3302 1.029 0.2585 0.5456 0.192

RL 0.3348 1.131 0.2630 0.5565 0.1965

Cap
XE 0.3402 1.052 0.2608 0.5504 0.1942

RL 0.3465 1.159 0.2673 0.5613 0.2010

TD

Img
XE 0.3421 1.087 0.2691 0.5543 0.2011

RL 0.3573 1.201 0.2739 0.5699 0.2085

Cap
XE 0.3479 1.097 0.2707 0.5573 0.2012

RL 0.3623 1.213 0.2758 0.5718 0.2107

Table 1. Captioning performance on the Karpathy test split [22].

We report scores obtained by a single model with the beam search

algorithm (beam size = 2). ATT: Att2all2 [37]. TD: Topdown [2].

Img: ImageNet pretrained feature. Cap: Caption-aware feature.

XE: Pretrained with cross-entropy. RL: Finetuned by reinforce-

ment learning. B4: BLEU-4 [33]. C: CIDEr-D [49]. M: ME-

TEOR [15]. R: ROGUE-L [29]. S: SPICE [1].

2048) average pooled outputs of their last convolution lay-

ers are utilized as caption-aware and ImageNet pretrained

features. For training the two captioning networks, we di-

rectly follow the training scheme proposed in [37], which

first pretrains the networks with cross-entropy (XE) loss

then finetunes them using reinforcement learning (RL) with

the CIDEr-D [49] metric.

Table 1 quantitatively summarizes captioning perfor-

mance of the ImageNet pretrained feature and our caption-

aware feature. The scores of reproduced baseline are similar

or higher than those reported in its original paper. Nonethe-

less, our caption-aware feature consistently outperforms the

baseline in all evaluation metrics and for both of two cap-

tioning models. Also, qualitative examples of captions gen-

erated by the models in Table 1 are presented in Figure 8,

where baselines generate incorrect captions while the mod-

GT1: a tennis player swinging the rackets towards the ball

GT2: a man swings his acket to hit a tennis ball

Img XE:  a tennis player in a red shirt is playing tennis

Cap XE:  a tennis player swinging a racket at a ball 

Img RL: a man holding a tennis ball on a tennis court 

Cap RL: a man hitting a tennis ball with a tennis racket 

Figure 8. Captions generated by the Topdown attention [2]. GT:

groundtruth caption. Img: ImageNet pretrained feature. Cap:

Caption-aware feature. XE: Pretrained with cross-entropy. RL:

Finetuned by reinforcement learning.

els based on our caption-aware feature avoid choosing the

wrong word and generate better captions.

5. Conclusion

We have presented a novel loss and tuple mining strat-

egy for deep metric learning using continuous labels. Our

approach has achieved impressive performance on three dif-

ferent image retrieval tasks with continuous labels using hu-

man poses, room layouts and image captions. Moreover, we

have shown that our framework can be used to learn visual

representation with continuous labels. In the future, we will

explore the effect of label distance metrics and a hard tuple

mining technique for continuous metric learning to further

improve the quality of learned metric space.
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