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Abstract

We introduce a novel unsupervised domain adaptation

approach for object detection. We aim to alleviate the im-

perfect translation problem of pixel-level adaptations, and

the source-biased discriminativity problem of feature-level

adaptations simultaneously. Our approach is composed of

two stages, i.e., Domain Diversification (DD) and Multi-

domain-invariant Representation Learning (MRL). At the

DD stage, we diversify the distribution of the labeled data

by generating various distinctive shifted domains from the

source domain. At the MRL stage, we apply adversarial

learning with a multi-domain discriminator to encourage

feature to be indistinguishable among the domains. DD

addresses the source-biased discriminativity, while MRL

mitigates the imperfect image translation. We construct

a structured domain adaptation framework for our learn-

ing paradigm and introduce a practical way of DD for im-

plementation. Our method outperforms the state-of-the-art

methods by a large margin of 3% ∼ 12% in terms of mean

average precision (mAP) on various datasets.

1. Introduction

Object detection is a fundamental problem in computer

vision as well as machine learning. With the recent ad-

vances of the convolutional neural networks (CNNs), CNN-

based methods [13, 12, 35, 30, 34, 26, 8, 46, 29] have

achieved significant progress in object detection based on

fine benchmarks [10, 27, 25]. Despite the promising re-

sults, all of these object detectors suffer from the degen-

erative problem when applied beyond these benchmarks.

Building datasets for a specific application can temporarily

resolve this problem, nevertheless, the time and monetary

costs incurred when manually annotating such datasets are

not negligible [40, 33]. Moreover, since the intrinsic causes

of the degenerative problem have been avoided instead of

resolved, another generalization issue arises when extend-

ing the same application to different environments. To ad-

Figure 1. Overview of our learning paradigm. We illustrate a con-

ceptual diagram of the distributions of the domains on the right

side. S and T represent for the source and the target domain, re-

spectively, and each Ri represents the ith diversified domain.

dress this issue, an unsupervised domain adaptation method

for object detection [3] was recently proposed.

Unsupervised domain adaptation has been studied to

address the degeneration issue between related domains,

which is closely related to the aforementioned degener-

ative problem. With the rise of the deep neural net-

works, recent unsupervised deep domain adaptation meth-

ods [31, 11, 42, 2, 36, 1, 17] are mainly based on feature-

level adaptation and pixel-level adaptation. Feature-level

adaptation methods [31, 11, 42, 2] align the distributions

of the source and the target domain toward a cross-domain

feature space. These approaches expect the model super-

vised by the labeled source domain to infer on the target do-

main effectively. However, the supervision of the inference

layer mainly relies on the source domain only in the feature-

level adaptation methods. Thus, the feature extractor of the

model is enforced to manufacture the features in a way dis-

criminative for the source domain data, which is not suitable
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for the target domain. Moreover, since the object detection

data is interwoven with the instances of interest and the rel-

atively unimportant background, it is further hard for the

source-biased feature extractor to extract discriminative fea-

tures for the target domain instances. Thus, object detectors

adapted at the feature-level are at risk of the source-biased

discriminativity and it can leads to false recognition on the

target domain. On the other hand, pixel-level adaptation

methods [36, 1, 17] focus on visual appearance translation

toward the opposite domain. The model can then take ad-

vantage of the information from the translated source im-

ages [17, 1] or infer pseudo label of the translated target

images [22]. Most existing pixel-level adaptation meth-

ods [36, 1, 17] are based on the assumption that the image

translator can perfectly convert one domain to the opposite

domain such that the translated images can be regarded as

those from the opposite domain. However, these methods

reveal imperfect translation in many adaptation cases since

the performance of the translator heavily depends on the ap-

pearance gap between the source and the target domain, as

shown in Fig. 2. Regarding these incompletely translated

source images as from the target domain can cause new do-

main discrepancy issue.

To tackle the aforementioned limitations, we introduce

a novel domain adaptation paradigm for object detection.

Our learning paradigm consists of Domain Diversification

(DD) and Multi-domain-invariant Representation Learning

(MRL), as shown in Fig. 1. Unlike most existing domain

adaptation methods, DD intentionally causes several dis-

tinctive shifted domains from the source domain to enrich

the distribution of the labeled data. On the other hand, MRL

boosts the domain invariance of the features by unifying the

scattered domains. Using the aforementioned approaches,

we propose a universal domain adaptation framework for

object detection. Our framework trains domain-invariant

object detection layers with diversified annotated data while

simultaneously encouraging dispersed domains toward a

common feature space. To demonstrate the effectiveness

of our method, we conduct extensive experiments on Real-

world Datasets [10], Artistic Media Datasets [22], and Ur-

ban Scene Datasets [7, 37] based on Faster R-CNN. Our

framework achieves state-of-the-art performance on various

datasets.

In summary, we have three contributions in our paper:

• We propose a novel learning paradigm for unsuper-

vised domain adaptation. Our learning approach ad-

dresses the source-biased discriminativity issue and

the imperfect translation issue.

• We structurize our learning paradigm by integrating

DD and MRL in the form of a framework.

• We conduct extensive experiments to validate the ef-

fectiveness of our method on various datasets. Our

(a) Source domain (b) Target domain (c) Translated domain

Figure 2. Examples of the imperfect image translation. The first

and second rows visualize examples of the translated image from

the real-world to artistic media and between urban scenes, respec-

tively.

method outperforms the state-of-the-art methods with

a large margin by 3% ∼ 12% mAP.

2. Related work

2.1. CNN­based Object Detection

Traditional methods [44, 9] use a sliding window frame-

work with handcrafted features and shallow inference mod-

els. With rise of the convolutional neural networks, R-

CNN [13] obtains a promising result with a selective search

algorithm and classification through the CNN features. Fast

R-CNN [12] reduces the bottleneck of R-CNN by shar-

ing features among regions in the same image. Faster R-

CNN [35] adopts a fully convolutional network called a Re-

gion Proposal Network (RPN) to mitigate another bottle-

neck caused by the selective search algorithm. YOLO [34]

achieves significant improvement in the inference speed us-

ing a single-staged network. SSD [30] uses multi-scale

features to enhance the relatively low accuracy of YOLO.

RetinaNet [26] further improves the performance of single-

staged object detectors using the focal loss to reduces the

performance degradation caused by easy negative exam-

ples. While these methods push the limit on the large-scale

datasets with rich annotations, generalization errors which

arises during their application have not been investigated

thus far.

2.2. Unsupervised Domain Adaptation

Domain adaptation has been studied intensely in rela-

tion to the image classification task [21, 41]. Traditional

methods focus on reducing domain discrepancy through

instance re-weighting [21, 41, 14] and shallow feature

alignment strategies [16, 32]. With the success of deep

learning scheme, early deep domain adaptation mainly

arises into Maximum Mean Discrepancy (MMD) minimiza-

tion [31, 42, 2] or feature confusion through adversarial
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(a) Feature-level adaptation (b) Pixel-level adaptation (c) Domain Diversification (d) MRL with Domain Diversification

Figure 3. Comparison of distribution transformation by different domain adaptation methods. MRL refers to Multi-domain-invariant

Representation Learning. S and T denote the source domain and the target domain, respectively. R1, R2, R3, and R4 are shifted domains

of the source domain. The arrows indicate the feature-level adaptation trends. The domains with asterisks denote the results of feature-level

adaptation. The domains with a boundary imply that the object detection network is supervised by these domains.

learning [11]. Recently, as the image-to-image translation

has become highlighted with promising results [23, 24, 28,

49] through Generative Adversarial Networks (GANs) [15],

pixel-level adaptation methods [36, 20, 1] have been devel-

oped to address the domain shift issue by translating source

domain images into the target style. As unsupervised do-

main adaptation attracted considerable interest with its ef-

fectiveness, recent works [17, 47, 6, 5, 38, 43, 19, 48] have

been attempted to address the generalization issue in the se-

mantic segmentation task.

Despite the recent success of unsupervised domain adap-

tation in various computer vision tasks, unsupervised do-

main adaptation for the object detection task has not been

explored so far except few pioneers [22, 3]. Inoue et al. [22]

adopt a conventional unsupervised pixel-level domain adap-

tation method as part of a two-staged weakly supervised do-

main adaptation framework. Chen et al. [3] align distribu-

tions of the source and the target domain at the image level

and instance level to address various causes of the domain

shift separately. While these methods address the problem

of degeneracy without considering the limitations of exist-

ing domain adaptation approaches, we aim to mitigate these

issues through a two-step learning paradigm.

3. Methods

We propose a novel learning paradigm to alleviate the

source-biased discriminativity in feature-level adaptation

and the imperfect translation in pixel-level adaptation. We

start by explaining the two stages of our method, Domain

Diversification and Multi-domain-invariant Representation

Learning. Then, a universal domain adaptation framework

for object detection is introduced. Figure 3 shows con-

ceptual description of feature-level adaptation, pixel-level

adaptation, and our method.

(a) Given image (b) Images with appearance shift

Figure 4. Examples of variously shifted images for given images.

3.1. Domain Diversification

Without loss of generality, we assume that there exist

numerous possibilities of shifted domains that preserve the

corresponding semantic information of the source domain

but appear in different ways. For instance, as shown in

Fig. 4, we can easily conceive of various visually shifted

images from a given image regardless of the existence of

a feasible image translator. Along the same line, numer-

ous variations of image translators can achieve considerable

domain shift from the given source domain, which we call

domain shifters. Domain Diversification (DD) is a method

which diversifies the source domain by intentionally gener-

ating distinctive domain discrepancy through these domain

shifters. The diversified distribution of the labeled data en-

courages the model to infer among data with large intra-

class variance discriminatively. Thus, the model is enforced

to extract semantic features that are not biased to a particular

domain. This allows the model to extract unbiased semantic

features from the target domain, which is more discrimina-

tive than the source-biased features. With the better dis-

criminativity of target domain features, we can assimilate

the domains with less feature collapse, resulting in more
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desirable adaptation.

Among the plenteous possibilities of domain shifters, in-

spired by the limitation of pixel-level adaptation, we practi-

cally realize the possibilities using the imperfections of the

image translation. Let us denote a source domain sample as

xs and a target domain sample as xt with domain distribu-

tions ps and pt, respectively. In general, image translation

methods aim to train a generator G by optimizing the trans-

lated image G(xs) to which appears to be sampled from the

target domain. However, since the generator network has

high enough capacity for various translations, the adversar-

ial loss alone cannot guarantee the conversion of a given xs

to the desired target image. To redeem this instability, image

translation methods add constraints to the objective function

Lim to reduce the possibility of the undesirable generators:

Lim(G,D,M) = LGAN(G,D) + αLcon(G,M), (1)

LGAN(G,D) = Ext∼pt(xt)[logD(xt)]

+ Exs∼ps(xs)[log(1−D(G(xs)))], (2)

where D is the discriminator for adversarial learning,

Lcon(G,M) is the constraint loss with a possibly existing

additional module M and α is a weight that balances the

two losses. Here, the additional module implies a supple-

mental network necessary for a sophisticated constraint.

In this basic setting, we observe that varying the learning

trend with alternative constraints causes the generator G to

diversify the appearance of the translated images. Based on

this observation, we apply several variants of constraints to

achieve distinct domain shifters. The objective function for

the domain shifter can be written as:

LDS(G,D,M) = LGAN(G,D) + βLcon(G,M), (3)

where Lcon(G,D,M) is the loss for constraints that en-

courages the domain shifter to be differentiated, M denotes

possibly existing additional modules for the constraint loss,

and β is a weight that balances the two losses. Practical im-

plementation details for diversifying domain shifters will be

introduced in section 4.2.

3.2. Multi­domain­invariant Representation Learn­
ing

In conventional pixel-level adaptations, substantial train-

ing of the inference layer heavily depends on the translated

source images. However, these methods run the risk of im-

perfect image translation, which can cause another domain

shift issue with the target domain. To address this limita-

tion, we design an adversarial learning scheme called Multi-

domain-invariant Representation Learning (MRL), which

encourages domain-invariant features among the diversely

scattered domains through adversarial learning. We assume

that we have (n + 2) number of diversified domains with

a pairwise domain gap, following the pixel-level adapta-

tion methods. For instance, we regard the translated source

domain as separate from the source or the target domain

and consider the three domains for conventional pixel-level

adaptation methods. In most existing feature-level adapta-

tion methods, the adversarial learning is applied through the

binary discriminator. However, these domains have pair-

wise domain shifts given by the domain adaptation problem

or caused by the imperfect image translation. Thus, regard-

ing multiple domains as the same domain during adversarial

learning can fatally disturb the model from learning com-

mon features. Thus, we use the discriminator with (n + 2)
outputs so as to learn to distinguish the domains using the

cross entropy loss.

Adversarial learning methods attain domain-invariant

features by inducing a feature which confuses the domain

discriminator. Thus, in conventional cross-domain adap-

tation problems, confusion in the discriminator can be

achieved by designating each domain to resemble the other.

However, in a multi-domain situation, it is not desirable to

specify each domain to resemble each specific target do-

main. To address this issue, inspired by [11], we attach

a gradient reverse layer (GRL) at the front-end of the dis-

criminator. Since the GRL forces the generator to manu-

facture the features of the given images as if they were not

sampled from its domain, the features of each domain are

encouraged to be domain-invariant. The objective function

for MRL can be written as:

Lmrl(x
f , Dxf ) = −

n+1∑

i=0

∑

u,v

1{i}(Dxf )log(p(u,v)
i (xf ))

(4)

where xf is the feature map given for the discriminator, 1{i}

is the indicator function for a singleton {i}, p
(u,v)
i is the

domain probability for the ith domain of the feature vector

located at (u, v) of xf , and Dxf is the ground-truth for the

domain label of xf .

3.3. Structured Domain Adaptation framework for
Object Detection

In this section, we structurize our learning paradigm by

integrating DD and MRL into a framework. Without loss

of generality, we assume that there is n number of domain

shifters Gi for i = 1, ..., n. Our framework aims to learn

domain-invariant representation and adapt the object detec-

tor for these representations simultaneously. To achieve the

goal, every (n+2) number of domains is utilized for MRL,

while the source domain and the shifted domains encourage

the localization layers and the classification layers of the

object detector. The objective function for the framework

can be written as follows:

L(xs, xt, ys) = LMRL(x
s, xt) + LLOC(x

s, ys)

+ LCLS(x
s, ys), (5)
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Figure 5. The architecture of our domain adaptation framework for object detection. Our framework is built on the object detection network.

LMRL(x
s, xt) = Lmrl(GBase(x

s), 0)

+ Lmrl(GBase(x
t), n+ 1)

+

n∑

i=1

Lmrl(GBase(Gi(x
s)), i), (6)

LLOC(x
s, ys) = Lloc(x

s, ys) +

n∑

i=1

Lloc(Gi(x
s), ys), (7)

LCLS(x
s, ys) = Lcls(x

s, ys) +

n∑

i=1

Lcls(Gi(x
s), ys), (8)

Here, xs and xt are images of the source and the target

domain, GBase is the base convolutional network in Fig. 5

and ys is the label information for xs. In addition, Lloc and

Lcls denote the regression loss and classification loss for the

given image, respectively. The overall framework is shown

in Fig. 5.

4. Experiments

4.1. Datasets

We verify the effectiveness of our learning paradigm

in two different settings: 1) adaptation from real-world to

artistic media; 2) adaptation among urban scenes.

Real-world Dataset. PASCAL VOC [10] is a real-world

image dataset used for several computer vision tasks.

PASCAL VOC 2007 dataset consists of 2,501 train images,

2,510 validation images, and 4,952 test images, while

PASCAL VOC 2012 dataset contains 5,717 train images

and 5,823 validation images. Annotations are provided

for 20 categories. We use train set and validation set on

PASCAL VOC 2007 and train set and validation set on

PASCAL VOC 2012 as a real-world dataset.

Artistic Media Datasets (AMDs). We use Clipart1k, Wa-

tercolor2k, and Comic2k [22] for artistic media domains.

These datasets are collected from a website called Behance

for the image classification task by [45]. Recently, Inoue

et al. [22] notated labels for the object detection task.

Each dataset consists of 1,000, 2,000, and 2,000 images,

respectively, while half of them are for the test set.

Urban Street Datasets (USDs). We use Cityscapes [7]

and Foggy Cityscapes [37] for urban scene datasets. Both

of them consist of 2,975 train images and 500 validation

images with 8 categories.

Experiment Setup. To validate our method for adap-

tation tasks from real-world to artistic media, we

conduct experiments for Real-world→Clipart1k, Real-

world→Watercolor2k, and Real-world→Comic2k. Whole

images of each AMD are used for the target domain data

during training, while each test set is used for evalua-

tion. For urban scenes, we conduct the experiment for

Cityscapes→Foggy Cityscapes. We use Cityscapes train set

and Foggy Cityscapes validation set.

4.2. Implementation Details for Domain Shifters

To verify the effectiveness of DD, we generated 3

distinct shifted domains for each adaptation task. Under

the universality for domain shifter architecture, we adopt

the residual generator and the discriminator from Cycle-

GAN [49]. To distinctively shift the source domain, we

consider two factors in the objective function, i.e., color

preservation and reconstruction. Figure 6 shows the visual

differences caused by each configuration of the factors.

Domain shift considering color preservation: To con-

straint the domain shifter to preserve color, we adopt the L1

loss between an input image and a translated image. How-

ever, since the instability of the training increases as we give

the less effective constraint, we only assign the constraint to

the target domain for the diverse shift. Thus, the constraint

loss for the domain shifter can be written as:

Lcon,1(G) = Ex∼pt(x)[‖(G(x)− x)‖1]. (9)

Domain shift considering reconstruction: To consider the

reconstruction, we need one more pair of domain shifter G′

and discriminator D′ for inverse translation. Moreover, we

need additional generative adversarial losses necessary for
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Figure 6. Qualitative results for the shifted domains with various configurations of constraint factors. CP and R denote color preservation

constraint and reconstruction constraint, respectively.

training G′. Thus, the constraint loss for the domain shifter

can be written as:

Lcon,2(G,G′, D′) = Ex∼ps(xs)[logD
′(xs)]

+ Ext∼pt(xt)[log(1−D′(G′(x)))]

+ Exs∼ps(xs)[‖(G
′(G(xs))− xs)‖1]

+ Ext∼pt(xt)[‖(G(G′(xt))− xt)‖1].
(10)

Domain shift considering both reconstruction and color

preservation: To consider two factors simultaneously, we

apply the sum of two constraint loss terms with additional

modules G′ and D′:

Lcon,3(G,G′, D′) = Lcon,1(G) + Lcon,2(G,G′, D′). (11)

4.3. Implementation Details for Object Detection

In our experiments, we use Faster R-CNN [35] as our

base object detector with VGG-16 [39] pretrained on Ima-

geNet. Each batch consists of (n + 2) images where n is a

number of shifted domains. We alleviate the memory issue

through gradient accumulation. We train the network for

80k iterations, 50k iteration with a learning rate of 0.001

and the last 30k iterations with a learning rate of 0.0001.

All implementations are done in PyTorch and on a single

GeForce Titan XP GPU.

For PASCAL VOC and AMDs, we resize the images to

have a length of 600 pixels as its shorter side. For USDs,

we match the shorter side of the image to be a length of 500

pixels. We evaluate mean average precisions (mAP) in the

test phase, following the IoU threshold of 0.5 in [22] and

[4]. We follow [35] for unspecified hyper-parameters.

4.4. Performance Comparison

In this section, we compare our method to the state-

of-the-art methods (i.e., Domain Adaptive Faster R-CNN

(DAF) [3] and Domain Transfer (DT) stage of [22]). For

our methods, We apply three shifted domains implemented

in section 4.2.

Table 1, 2, 3, and Fig. 7 present the comparison results on

Faster R-CNN backbone. Our learning paradigm achieves

the highest class-wise AP among all methods in all adapta-

tion tasks except table class in Clipart1k, car class in Water-

color2k. and bus class in Cityscapes. Specifically, for the

animal classes in AMDs, our proposed method obtains sig-

nificantly higher class-wise performance than other meth-

ods. To interpret the results in detail, we observe that it

is hard to train object detectors with the real-world data to

infer discriminatively among animal classes in the artistic

media data. However, our learning scheme significantly im-

proves the performance values for the animal classes. More-

over, our method exceeds the state-of-the-art methods by

3% ∼ 12% mAP. Especially for the Real-world → AMD

tasks, our method outperforms the state-of-the-art methods

by around 9% ∼ 12% mAP. These results demonstrate that

our method is effective at learning domain-invariant dis-

criminative features and adapting object detection layers to

the common feature space, which is further analyzed in sec-

tion 4.6 and 4.7. Several qualitative results are shown in

Fig. 8.

4.5. Ablation Study on Numbers of Shifted Domains

We investigate the effectiveness of the DD stage and the

MRL stage on different numbers of the shifted domains.

We used the Real-world → Clipart1k task as a study case.

As shown in Table 4, the overall results of each learning

scheme are improved as the number of shifted domains in-

creases. Furthermore, using DD with MRL significantly

boosts the performance for overall cases. It is noteworthy

that the improvement in performance through MRL is am-

plified as the number of domains increases. These results

validate our hypothesis that DD enhances the domain adap-

tation effect of the following feature-level adaptation by al-

leviating the source-biased discriminativity.
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Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Baseline 13.9 51.5 20.4 10.1 29.5 35.1 24.6 3.0 34.7 2.6 25.7 13.3 27.2 47.9 37.5 40.6 4.6 9.1 27.5 40.2 24.9

DT [22] 16.4 62.5 22.8 31.9 44.1 36.3 27.9 0.7 41.9 13.1 37.6 5.2 28.0 64.8 58.2 42.7 9.2 19.8 32.8 47.3 32.1

DAF (Img) [4] 20.0 49.9 19.5 17.0 21.2 24.7 20.0 2.0 30.2 10.5 15.4 3.3 25.9 49.3 32.9 23.6 14.3 5.5 30.1 32.0 22.4

Ours (n=3) 25.8 63.2 24.5 42.4 47.9 43.1 37.5 9.1 47.0 46.7 26.8 24.9 48.1 78.7 63.0 45.0 21.3 36.1 52.3 53.4 41.8

Table 1. Quantitative results for object detection of Clipart1k [22] by adapting from PASCAL VOC [10].

Method V → Wa V → Co

Baseline 39.8 21.4

DT [22] 40.0 23.5

DAF (Img) [4] 34.3 23.2

Ours (n=3) 52.0 34.5

Table 2. Quantitative results for object detection of Water-

color2k [22] and Comic2k [22] by adapting from PASCAL

VOC [10]. We denote PASCAL VOC, Watercolor2k, and

Comic2k as V, Wa, and Co, respectively.

(a) Watercolor2k (b) Comic2k

Figure 7. Comparison results for the class-wise AP of Water-

color2k test set and Comic2k test set [22].

4.6. Study on Alleviation of the Source­biased Dis­
criminativity

To further verify the alleviation of the source-biased dis-

criminativity by DD, we investigate the localization perfor-

mance of RPN and the classification accuracy of the Fast

R-CNN module on the Faster R-CNN baseline. To compare

the positive impact of the domain adaptation methods on

the localization capability, We compute mean Intersection-

over-Union (mIoU) of the best overlaps predicted from RPN

for each instance. The classification accuracy is evalu-

ated with the target domain instances. To evaluate the

inference capability of the classification layer in the Fast

R-CNN module, we provide the ground-truth value for

bounding boxes. We conduct the experiments for the Real-

world→Clipart1k case.

As shown in Table 5, all domain adaptation methods sig-

nificantly improve the localization capability of RPN than

baseline. However, the domain adaptation methods with

Method person rider car truck bus train mcycle bicycle mAP

Baseline 17.7 24.7 27.2 12.6 14.8 9.1 14.3 23.2 17.9

DT [22] 25.4 39.3 42.4 24.9 40.4 23.1 25.9 30.4 31.5

DAF (Img) [4] 22.9 30.7 39.0 20.1 27.5 17.7 21.4 25.9 25.7

DAF (Ins) [4] 23.6 30.6 38.6 20.8 40.5 12.8 17.1 26.1 26.3

DAF (Cons) [4] 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6

Ours (n=3) 30.8 40.5 44.3 27.2 38.4 34.5 28.4 32.2 34.6

Table 3. Quantitative results for object detection of Foggy

Cityscapes [37] by adapting from Cityscapes [7].

DD Configuration DD DD+MRL offset

#SD CP R CP + R mAP

0 24.9 - -

1 X 31.2 32.4 +1.2

2 X X 32.5 37.8 +5.3

3 X X X 33.8 41.8 +8.0

Table 4. Results of the ablation study on configuration of the

shifted domains. DD and MRL denote domain diversification and

multi-domain-invariant representation learning, respectively. The

offset denotes the performance improvement of the object detec-

tor through MRL. CP, R, CP+R denote the shifted domains trained

with color preservation constraint, reconstruction constraint, and

both constraints, respectively, and SD denotes shifted domains.

DD achieve significanly higher classification accuracy than

the methods without DD. Moreover, even though both DAF

and MRL are in a frame of feature-level adaptation, the clas-

sification results of two methods show considerable gap.

These results demonstrate the importance of the discrimina-

tive feature when adapting the domains in feature level. Fur-

thermore, we can confirm our demonstration that feature-

level adaptation suffers from the source-biased discrimina-

tivity and DD is effective at alleviating this issue.

4.7. Error Analysis on Top Ranked Detections

We analyze detection errors to investigate the positive

impact of our method on domain adaptation in details. We

study Real-world→Clipart1k case for the analysis. Since

the Clipart1k test set only has 500 images, we classify the

most confident 1,000 detections for each domain adaptation

method. With reference to [18], we categorize the detection

results into three groups: correct detection, mislocalization

error, and background error. Correct detection denotes cor-

rect class with IoU greater than 0.5, mislocalization error

612462



(a) Input image (b) Baseline (c) DAF (Img) [3] (d) DT [22] (e) Ours (DD) (f) Ours (DD+MRL) (g) Ground-truth

Figure 8. Qualitative results for object detection of the AMDs by adapting from PASCAL VOC [10]. Images in the first, second, and third

rows are from the test sets of Clipart1k, Watercolor2k, and Comic2k [22], respectively. Best view in color.

Method Acc (%) mIoU (%)

Baseline 30.6 56.5

DAF (Img) 38.0 65.9

Ours (DD) 50.2 66.6

Ours (DD+MRL) 52.5 68.5

Table 5. Comparison results for the instance classification accu-

racy of the Fast R-CNN module and mean IoU of RPN for the test

set of Clipart1k [22]. Each adaptation method only uses annota-

tions in PASCAL VOC [10].

denotes correct class with IoU between 0.1 and 0.5, and

background error denotes wrong class or correct class with

IoU less than 0.1, where IoU denotes Intersection-over-

Union.

As shown in Fig. 9, both DD with and without MRL re-

duce background detection errors compared to other meth-

ods. However, while both reduce background errors, DD

with MRL significantly increases the number of correct de-

tection than DD.

5. Conclusion

In this paper, we have introduced a learning paradigm

for object detection to alleviate the chronic limitations of

domain adaptation approaches. Our learning paradigm

achieves the goal with the incorporation of Domain

Diversification (DD) and Multi-domain-invariant Repre-

sentation Learning (MRL). DD mitigates the source-biased

discriminativity of feature-level adaptation by diversifying

(a) Correct (b) Mislocalization (c) Background

Figure 9. Error Analysis of the most confident 1,000 detections for

each domain adaptation methods.

the distribution of the labeled data. MRL addresses the

imperfect image translation by encouraging the unbi-

ased semantic representation among multiple domains.

We structurized our learning paradigm into a domain

adaptation framework for object detection networks. We

confirmed the positive impact of DD and MRL through

in-depth analysis, which verifies the effectiveness of our

two schemes. Our method outperforms state-of-the-art

methods in various cases.
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