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Abstract

In this paper, we propose a novel edge-labeling graph
neural network (EGNN), which adapts a deep neural net-
work on the edge-labeling graph, for few-shot learning.
The previous graph neural network (GNN) approaches in
few-shot learning have been based on the node-labeling
framework, which implicitly models the intra-cluster sim-
ilarity and the inter-cluster dissimilarity. In contrast, the
proposed EGNN learns to predict the edge-labels rather
than the node-labels on the graph that enables the evolution
of an explicit clustering by iteratively updating the edge-
labels with direct exploitation of both intra-cluster similar-
ity and the inter-cluster dissimilarity. It is also well suited
for performing on various numbers of classes without re-
training, and can be easily extended to perform a transduc-
tive inference. The parameters of the EGNN are learned
by episodic training with an edge-labeling loss to obtain a
well-generalizable model for unseen low-data problem. On
both of the supervised and semi-supervised few-shot image
classification tasks with two benchmark datasets, the pro-
posed EGNN significantly improves the performances over
the existing GNNZ.

1. Introduction

A lot of interest in meta-learning [!] has been re-
cently arisen in various areas including especially task-
generalization problems such as few-shot learning [2, 3, 4,

,0,7,8,9,10, 11,12, 13, 14, 15], learn-to-learn [16, 17,

], non-stationary reinforcement learning[ 19, 20, 21], and
continual learning [22, 23]. Among these meta-learning
problems, few-shot leaning aims to automatically and ef-
ficiently solve new tasks with few labeled data based on

knowledge obtained from previous experiences. This is in
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Figure 1: Alternative node and edge feature update in
EGNN with edge-labeling for few-shot learning

contrast to traditional (deep) learning methods that highly
rely on large amounts of labeled data and cumbersome man-
ual tuning to solve a single task.

Recently, there has also been growing interest in graph
neural networks (GNNs) to handle rich relational structures
on data with deep neural networks [24, 25, 26, 27, 28,

, 30, 31, 32, 33, 34]. GNNs iteratively perform a fea-
ture aggregation from neighbors by message passing, and
therefore can express complex interactions among data in-
stances. Since few-shot learning algorithms have shown
to require full exploitation of the relationships between a
support set and a query [2, 3, 5, 10, 11], the use of GNNs
can naturally have the great potential to solve the few-shot
learning problem. A few approaches that have explored
GNNs for few-shot learning have been recently proposed
[6, 12]. Specifically, given a new task with its few-shot sup-
port set, Garcia and Bruna [6] proposed to first construct a
graph where all examples of the support set and a query are
densely connected. Each input node is represented by the
embedding feature (e.g. an output of a convolutional neural
network) and the given label information (e.g. one-hot en-
coded label). Then, it classifies the unlabeled query by iter-
atively updating node features from neighborhood aggrega-
tion. Liu et al. [12] proposed a transductive propagation net-
work (TPN) on the node features obtained from a deep neu-
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ral network. At test-time, it iteratively propagates one-hot
encoded labels over the entire support and query instances
as a whole with a common graph parameter set. Here, it
is noted that the above previous GNN approaches in few-
shot learning have been mainly based on the node-labeling
framework, which implicitly models the intra-cluster simi-
larity and inter-cluster dissimilarity.

On the contrary, the edge-labeling framework is able to
explicitly perform the clustering with representation learn-
ing and metric learning, and thus it is intuitively a more con-
ducive framework for inferring a query association to an ex-
isting support clusters. Furthermore, it does not require the
pre-specified number of clusters (e.g. class-cardinality or
ways) while the node-labeling framework has to separately
train the models according to each number of clusters. The
explicit utilization of edge-labeling which indicates whether
the associated two nodes belong to the same cluster (class)
have been previously adapted in the naive (hyper) graphs for
correlation clustering [35] and the GNNs for citation net-
works or dynamical systems [36, 37], but never applied to
a graph for few-shot learning. Therefore, in this paper, we
propose an edge-labeling GNN (EGNN) for few-shot lean-
ing, especially on the task of few-shot classification.

The proposed EGNN consists of a number of layers
in which each layer is composed of a node-update block
and an edge-update block. Specifically, across layers, the
EGNN not only updates the node features but also ex-
plicitly adjusts the edge features, which reflect the edge-
labels of the two connected node pairs and directly exploit
both the intra-cluster similarity and inter-cluster dissimilar-
ity. As shown in Figure 1, after a number of alternative
node and edge feature updates, the edge-label prediction
can be obtained from the final edge feature. The edge loss
is then computed to update the parameters of EGNN with a
well-known meta-learning strategy, called episodic training
[2, 9]. The EGNN is naturally able to perform a transduc-
tive inference to predict all test (query) samples at once as a
whole, and this has shown more robust predictions in most
cases when a few labeled training samples are provided. In
addition, the edge-labeling framework in the EGNN enables
to handle various numbers of classes without remodeling or
retraining. We will show by means of experimental results
on two benchmark few-shot image classification datasets
that the EGNN outperforms other few-shot learning algo-
rithms including the existing GNNs in both supervised and
semi-supervised cases.

Our main contributions can be summarized as follows:

e The EGNN is first proposed for few-shot learning with
iteratively updating edge-labels with exploitation of
both intra-cluster similarity and inter-cluster dissimi-
larity. It is also able to be well suited for performing
on various numbers of classes without retraining.

e It consists of a number of layers in which each layer is
composed of a node-update block and an edge-update
block where the corresponding parameters are esti-
mated under the episodic training framework.

e Both of the transductive and non-transductive learning
or inference are investigated with the proposed EGNN.

e On both of the supervised and semi-supervised few-
shot image classification tasks with two benchmark
datasets, the proposed EGNN significantly improves
the performances over the existing GNNs. Addition-
ally, several ablation experiments show the benefits
from the explicit clustering as well as the separate uti-
lization of intra-cluster similarity and inter-cluster dis-
similarity.

2. Related works

Graph Neural Network Graph neural networks were
first proposed to directly process graph structured data with
neural networks as of form of recurrent neural networks
[28, 29]. Li et al. [31] further extended it with gated re-
current units and modern optimization techniques. Graph
neural networks mainly do representation learning with a
neighborhood aggregation framework that the node features
are computed by recursively aggregating and transforming
features of neighboring nodes. Generalized convolution
based propagation rules also have been directly applied to
graphs [34, 38, 39], and Kipf and Welling [30] especially
applied it to semi-supervised learning on graph-structured
data with scalability. A few approaches [0, 12] have ex-
plored GNNs for few-shot learning and are based on the
node-labeling framework.

Edge-Labeling Graph Correlation clustering (CC) is a
graph-partitioning algorithm [40] that infers the edge la-
bels of the graph by simultaneously maximizing intra-
cluster similarity and inter-cluster dissimilarity. Finley and
Joachims [41] considered a framework that uses structured
support vector machine in CC for noun-phrase clustering
and news article clustering. Taskar [42] derived a max-
margin formulation for learning the edge scores in CC for
producing two different segmentations of a single image.
Kim et al. [35] explored a higher-order CC over a hy-
pergraph for task-specific image segmentation. The atten-
tion mechanism in a graph attention network has recently
extended to incorporate real-valued edge features that are
adaptive to both the local contents and the global layers
for modeling citation networks [36]. Kipf et al. [37] intro-
duced a method to simultaneously infer relational structure
with interpretable edge types while learning the dynamical
model of an interacting system. Johnson [43] introduced the
Gated Graph Transformer Neural Network (GGT-NN) for
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natural language tasks, where multiple edge types and sev-
eral graph transformation operations including node state
update, propagation and edge update are considered.

Few-Shot Learning One main stream approach for few-
shot image classification is based on representation learning
and does prediction by using nearest-neighbor according to
similarity between representations. The similarity can be a
simple distance function such as cosine or Euclidean dis-
tance. A Siamese network [44] works in a pairwise man-
ner using trainable weighted L distance. A matching net-
work [2] further uses an attention mechanism to derive an
differentiable nearest-neighbor classifier and a prototypical
network [3] extends it with defining prototypes as the mean
of embedded support examples for each class. DEML [45]
has introduced a concept learner to extract high-level con-
cept by using a large-scale auxiliary labeled dataset show-
ing that a good representation is an important component to
improve the performance of few-shot image classification.

A meta-learner that learns to optimize model parameters
extract some transferable knowledge between tasks to lever-
age in the context of few-shot learning. Meta-LSTM [§]
uses LSTM as a model updater and treats the model param-
eters as its hidden states. This allows to learn the initial
values of parameters and update the parameters by read-
ing few-shot examples. MAML [4] learns only the initial
values of parameters and simply uses SGD. It is a model
agnostic approach, applicable to both supervised and rein-
forcement learning tasks. Reptile [46] is similar to MAML
but using only first-order gradients. Another generic meta-
learner, SNAIL [10], is with a novel combination of tempo-
ral convolutions and soft attention to learn an optimal learn-
ing strategy.

3. Method

In this section, the definition of few-shot classification
task is introduced, and the proposed algorithm is described
in detail.

3.1. Problem definition: Few-shot classification

The few-shot classification aims to learn a classifier
when only a few training samples per each class are given.
Therefore, each few-shot classification task 7 contains a
support set S, a labeled set of input-label pairs, and a query
set Q, an unlabeled set on which the learned classifier is
evaluated. If the support set S contains K labeled samples
for each of N unique classes, the problem is called N-way
K -shot classification problem.

Recently, meta-learning has become a standard method-
ology to tackle few-shot classification. In principle, we can
train a classifier to assign a class label to each query sam-
ple with only the compact support set of the task. How-
ever, a small number of labeled support samples for each

task are not sufficient to train a model fully reflecting the
inter- and intra-class variations, which often leads to un-
satisfactory classification performance. Meta-learning on
explicit training set resolves this issue by extracting trans-
ferable knowledge that allows us to perform better few-shot
learning on the support set, and thus classify the query set
more successfully.

As an efficient way of meta-learning, we adopt episodic
training [2, 9] which is commonly employed in various lit-
eratures [3, 4, 5]. Given a relatively large labeled training
dataset, the idea of episodic training is to sample training
tasks (episodes) that mimic the few-shot learning setting of
test tasks. Here, since the distribution of training tasks is as-
sumed to be similar to that of test tasks, the performances of
the test tasks can be improved by learning a model to work
well on the training tasks.

More concretely, in episodic training, both training and
test tasks of the N-way K-shot problem are formed as
follows: 7 = S|UQ where S = {(x;, %)} and
Q = {(xiy:)} Y >]<VKXJ}<T+1. Here, T is the number of query
samples, and x; and y; € {C1,---Cn} = Cy C C are the
ith input data and its label, respectively. C is the set of all
classes of either training or test dataset. Although both the
training and test tasks are sampled from the common task
distribution, the label spaces are mutually exclusive, i.e.
CirainNCiest = (0. The support set S in each episode serves
as the labeled training set on which the model is trained to
minimize the loss of its predictions over the query set Q.
This training procedure is iteratively carried out episode by
episode until convergence.

Finally, if some of N x K support samples are unlabeled,
the problem is referred to as semi-supervised few-shot clas-
sification. In Section 4, the effectiveness of our algorithm
on semi-supervised setting will be presented.

3.2. Model

This section describes the proposed EGNN for few-shot
classification, as illustrated in Figure 2. Given the feature
representations (extracted from a jointly trained convolu-
tional neural network) of all samples of the target task, a
fully-connected graph is initially constructed where each
node represents each sample, and each edge represents the
types of relationship between the two connected nodes;
Let G = (V,&;T) be the graph constructed with samples
from the task 7, where V := {Vi};—y |7 and £ =
{Eij}ij=1,...,7| denote the set of nodes and edges of the
graph, respectively. Let v; and e;; be the node feature of V;
and the edge feature of E;;, respectively. |7| = N x K +T
is the total number of samples in the task 7. Each ground-
truth edge-label y;; is defined by the ground-truth node la-

bels as:
Yij = { 0, otherwise. M
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Figure 2: The overall framework of the proposed EGNN model. In this illustration, a 2-way 2-shot problem is presented as
an example. Blue and green circles represent two different classes. Nodes with solid line represent labeled support samples,
while a node with dashed line represents the unlabeled query sample. The strength of edge feature is represented by the color
in the square. Note that although each edge has a 2-dimensional feature, only the first dimension is depicted for simplicity.

The detailed process is described in Section 3.2.

Each edge feature e;; = {e;;qa}3_; € [0,1]? is a 2-
dimensional vector representing the (normalized) strengths
of the intra- and inter-class relations of the two connected
nodes. This allows to separately exploit the intra-cluster
similarity and the inter-cluster dissimilairity.

Node features are initialized by the output of the convo-
lutional embedding network v¥ = feo.p(Xi; Oems ), where
Ocmp 18 the corresponding parameter set (see Figure 3.(a)).
Edge features are initialized by edge labels as follows:

[1]|0], ify; =1 and 4,j < N x K,
e}, = [0][1], ify;;=0and i,j <N xK, (2
[0.5]]0.5], otherwise,

where || is the concatenation operation.

The EGNN consists of L layers to process the graph,
and the forward propagation of EGNN for inference is an
alternative update of node feature and edge feature through
layers.

In detail, given vf71 and ef; ! from the layer ¢ — 1, node
feature update is firstly conducted by a neighborhood ag-
gregation procedure. The feature node v! at the layer ¢
is updated by first aggregating the features of other nodes
proportional to their edge features, and then performing the
feature transformation; the edge feature ef;l at the layer
¢ — 1 is used as a degree of contribution of the correspond-

ing neighbor node like an attention mechanism as follows:
¢ ¢ S0—1_6—1 ~0—1_L—17. ot
Vi :fv([zeijl v ||Zeij2 vi i0y), 3
J J

where €4 = Zi;dw’ and f! is the feature (node) trans-

formation network, as shown in Figure 3.(b), with the pa-
rameter set 6. It should be noted that besides the con-
ventional intra-class aggregation, we additionally consider
inter-class aggregation. While the intra-class aggregation
provides the target node the information of “similar neigh-
bors”, the inter-class aggregation provides the information
of “dissimilar neighbors”.

Then, edge feature update is done based on the newly
updated node features. The (dis)similarities between every
pair of nodes are re-obtained, and the feature of each edge is
updated by combining the previous edge feature value and
the updated (dis)similarities such that

, FEvE v 00)e!
éijl = Vil .0\ 0—1 ; —1y° (4)
Do fEvE v 00 e /(Do) €k )
. (- by
€ij2 = - -1y’
! Sk(1 = FUVE VE 08)) el | (Ck €ixa)
efj = éfj/HéfjHI; (6)

where f! is the metric network that computes similarity
scores with the parameter set 0§ (see Figure 3.(c)). In spe-
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Figure 3: Detailed network architectures used in EGNN.
(a) Embedding network fe,,;. (b) Feature (node) transfor-
mation network f£. (c) Metric network f.

cific, the node feature flows into edges, and each element
of the edge feature vector is updated separately from each
normalized intra-cluster similarity or inter-cluster dissim-
ilarity. Namely, each edge update considers not only the
relation of the corresponding pair of nodes but also the re-
lations of the other pairs of nodes. We can optionally use
two separate metric networks for the computations of each
of similarity or dissimilarity (e.g. separate f. gsim instead
of (]- - fe,sim))~

After L number of alternative node and edge feature up-
dates, the edge-label prediction can be obtained from the
final edge feature, i.e. §;; = ef5,. Here, §;; € [0,1] can be
considered as a probability that the two nodes V; and V; are
from the same class. Therefore, each node V; can be classi-
fied by simple weighted voting with support set labels and
edge-label prediction results. The prediction probability of

node V; can be formulated as P(y; = Cx|T) = pgk):

) = Softmax( S Guydly = ck)) )

{J:5#in(x;,y;) €S}

where 6(y; = Ci) is the Kronecker delta function that is
equal to one when y; = Ci, and zero otherwise. Alternative
approach for node classification is the use of graph cluster-
ing; the entire graph G can be first partitioned into clusters,
using the edge prediction and an optimization for valid par-
titioning via linear programming [35], and then each cluster
can be labeled with the support label it contains the most.
However, in this paper, we simply apply Eq. (7) to ob-
tain the classification results. The overall algorithm for the

Algorithm 1: The process of EGNN for inference
t Input: G = (V,&;T),where T =S Q,
S ={(xny) "™, Q= P oV
Parameters: 0.,,,, U {0°,0}L
Output: {@z}fgva}TH
Initialize: v{ = ferp(Xi; Ocmb), €0, Vi, j
for/{=1,--- Ldo
/* Node feature update */
for:=1,--- |[V]do
7 ‘ v/  NodeUpdate({vi '}, {ef;l};ef)
8 end
/* Edge feature update */
9 for (i,j)=1,--- ,|E| do
10 | !, < EdgeUpdate({v(},{e};'};0!)
11 end
12 end
/* Query node label prediction */
13 {5 }CN K41 ¢ Edge2NodePred({y;};} ", {ef;})

A W N

=)

EGNN inference at test-time is summarized in Algorithm 1.
The non-transductive inference means the number of query
samples T = 1 or it performs the query inference one-by-
one, separately, while the transductive inference classifies
all query samples at once in a single graph.

3.3. Training

Given M training tasks {7,57*"}M_  at a certain itera-
tion during the episodic training, the parameters of the pro-
posed EGNN, 0,.,,,, U {05, 05}L_,, are trained in an end-to-

end fashion by minimizing the following loss function:

£:
L

L M
MLV, Vi o), ®)

1 m=1

where Y,,, . and Y,fw are the set of all ground-truth query
edge-labels and the set of all (real-valued) query-edge pre-
dictions of the m'™ task at the /" layer, respectively, and the
edge loss L. is defined as binary cross-entropy loss. Since
the edge prediction results can be obtained not only from
the last layer but also from the other layers, the total loss
combines all losses that are computed in all layers in order

to improve the gradient flow in the lower layers.

4. Experiments

We evaluated and compared our EGNN ! with state-of-
the-art approaches on two few-shot learning benchmarks,
i.e. minilmageNet [2] and tieredlmageNet [7].

IThe code and models are available on https://github.com/
khy0809/fewshot-egnn.
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4.1. Datasets

minilmageNet It is the most popular few-shot learn-
ing benchmark proposed by [2] derived from the original
ILSVRC-12 dataset [47]. All images are RGB colored, and
of size 84 x 84 pixels, sampled from 100 different classes
with 600 samples per class. We followed the splits used
in [8] - 64, 16, and 20 classes for training, validation and
testing, respectively.

tieredlmageNet Similar to minilmageNet dataset,
tieredImageNet [7] is also a subset of ILSVRC-12 [47].
Compared with minilmageNet, it has much larger number
of images (more than 700K) sampled from larger number
of classes (608 classes rather than 100 for minilmageNet).
Importantly, different from minilmageNet, tieredlmageNet
adopts hierarchical category structure where each of
608 classes belongs to one of 34 higher-level categories
sampled from the high-level nodes in the Imagenet. Each
higher-level category contains 10 to 20 classes, and divided
into 20 training (351 classes), 6 validation (97 classes) and
8 test (160 classes) categories. The average number of
images in each class is 1281.

4.2. Experimental setup

Network Architecture For feature embedding module,
a convolutional neural network, which consists of four
blocks, was utilized as in most few-shot learning models
[2, 3, 4, 6] without any skip connections 2 More concretely,
each convolutional block consists of 3 x 3 convolutions, a
batch normalization and a LeakyReLU activation. All net-
work architectures used in EGNN are described in details in
Figure 3.

Evaluation For both datasets, we conducted a 5-way 5-
shot experiment which is one of standard few-shot learn-
ing settings. For evaluation, each test episode was formed
by randomly sampling 15 queries for each of 5 classes,
and the performance is averaged over 600 randomly gen-
erated episodes from the test set. Especially, we addition-
ally conducted a more challenging 10-way experiment on
minilmagenet, to demonstrate the flexibility of our EGNN
model when the number of classes are different between
meta-training stage and meta-test stage, which will be pre-
sented in Section 4.5.

Training The proposed model was trained with Adam op-
timizer with an initial learning rate of 5 x 10~* and weight
decay of 1076, The task mini-batch sizes for meta-training
were set to be 40 and 20 for 5-way and 10-way experi-
ments, respectively. For minilmageNet, we cut the learn-

2Resnet-based models are excluded for fair comparison.

(a) minilmageNet

Model Trans. 5-Way 5-Shot
Matching Networks [2] No 55.30
Reptile [46] No 62.74
Prototypical Net [3] No 65.77
GNN [6] No 66.41
EGNN No 66.85
MAML [4] BN 63.11
Reptile + BN [40] BN 65.99
Relation Net [5] BN 67.07
MAML+Transduction [4] Yes 66.19
TPN [12] Yes 69.43
TPN (Higher K) [12] Yes 69.86
EGNN-+Transduction Yes 76.37
(b) tieredlmageNet
Model Trans. 5-Way 5-Shot
Reptile [46] No 66.47
Prototypical Net [3] No 69.57
EGNN No 70.98
MAML [4] BN 70.30
Reptile + BN [46] BN 71.03
Relation Net [5] BN 71.31
MAML+Transduction [4] Yes 70.83
TPN [12] Yes 72.58
EGNN+Transduction Yes 80.15
Table 1: Few-shot classification accuracies on

minilmageNet and tieredlmageNet. All results are averaged
over 600 test episodes. Top results are highlighted.

ing rate in half every 15,000 episodes while for tieredIma-
geNet, the learning rate is halved for every 30,000 because
it is larger dataset and requires more iterations to converge.
All our code was implemented in Pytorch [48] and run with
NVIDIA Tesla P40 GPUs.

4.3. Few-shot classification

The few-shot classification performance of the proposed
EGNN model is compared with several state-of-the-art
models in Table la and 1b. Here, as presented in [12],
all models are grouped into three categories with regard
to three different transductive settings; “No” means non-
transductive method, where each query sample is predicted
independently from other queries, “Yes” means transduc-
tive method where all queries are simultaneously processed
and predicted together, and “BN” means that query batch
statistics are used instead of global batch normalization pa-
rameters, which can be considered as a kind of transductive
inference at test-time.

The proposed EGNN was tested with both transduc-
tive and non-transductive settings. As shown in Table 1a,
EGNN shows the best performance in 5-way 5-shot set-
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ting, on both transductive and non-transductive settings on
minilmagenet. Notably, EGNN performed better than node-
labeling GNN [6], which supports the effectiveness of our
edge-labeling framework for few-shot learning. Moreover,
EGNN with transduction (EGNN + Transduction) outper-
formed the second best method (TPN [12]) on both datasets,
especially by large margin on minilmagenet. Table 1b
shows that the transductive setting on tieredlmagenet gave
the best performance as well as large improvement com-
pared to the non-transductive setting. In TPN, only the la-
bels of the support set are propagated to the queries based on
the pairwise node feature affinities using a common Lapla-
cian matrix, so the queries communicate to each other only
via their embedding feature similarities. In contrast, our
proposed EGNN allows us to consider more complicated
interactions between query samples, by propagating to each
other not only their node features but also edge-label infor-
mation across the graph layers having different parameter
sets. Furthermore, the node features of TPN are fixed and
never changed during label propagation, which allows them
to derive a closed-form, one-step label propagation equa-
tion. On the contrary, in our EGNN, both node and edge
features are dynamically changed and adapted to the given
task gradually with several update steps.

4.4. Semi-supervised few-shot classification

For semi-supervised experiment, we followed the same
setting described in [6] for fair comparison. It is a 5-way
5-shot setting, but the support samples are only partially la-
beled. The labeled samples are balanced among classes so
that all classes have the same amount of labeled and unla-
beled samples. The obtained results on minilmagenet are
presented in Table 2. Here, “LabeledOnly” denotes learn-
ing with only labeled support samples, and “Semi” means
the semi-supervised setting explained above. Different re-
sults are presented according to when 20% and 40%, 60%
of support samples were labeled, and the proposed EGNN
is compared with node-labeling GNN [6]. As shown in Ta-
ble 2, semi-supervised learning increases the performances
in comparison to labeled-only learning on all cases. No-
tably, the EGNN outperformed the previous GNN [6] by a
large margin (61.88% vs 52.45%, when 20% labeled) on
semi-supervised learning, especially when the labeled por-
tion was small. The performance is even more increased
on transductive setting (EGNN-Semi(T)). In a nutshell, our
EGNN is able to extract more useful information from un-
labeled samples compared to node-labeling framework, on
both transductive and non-transductive settings.

4.5. Ablation studies

The proposed edge-labeling GNN has a deep architec-
ture that consists of several node and edge-update layers.
Therefore, as the model gets deeper with more layers, the

Labeled Ratio (5-way 5-shot)
Training method 20% 40%  60% 100%
GNN-LabeledOnly [6] | 50.33  56.91 - 66.41
GNN-Semi [6] 5245 58.76 - 66.41
EGNN-LabeledOnly 52.86 - - 66.85
EGNN-Semi 61.88 62.52 63.53 66.85
EGNN-LabeledOnly(T) | 59.18 - - 76.37
EGNN-Semi(T) 63.62 6432 66.37 76.37

Table 2: Semi-supervised few-shot classification accuracies
on minilmageNet.

# of EGNN layers
Feature type 1 2 3
Intra & Inter | 67.99 73.19 76.37
Intra Only 67.28 7220 74.04

Table 3: 5-way 5-shot results on minilmagenet with differ-
ent numbers of EGNN layers and different feature types

interactions between task samples should be propagated
more intensively, which may leads to performance improve-
ments. To support this statement, we compared the few-shot
learning performances with different numbers of EGNN
layers, and the results are presented in Table 3. As the num-
ber of EGNN layers increases, the performance gets bet-
ter. There exists a big jump on few-shot accuracy when the
number of layers changes from 1 to 2 (67.99% — 73.19%),
and a little additional gain with three layers (76.37 %).

Another key ingredient of the proposed EGNN is to use
separate exploitation of intra-cluster similarity and inter-
cluster dissimilarity in node/edge updates. To validate
the effectiveness of this, we conducted experiment with
only intra-cluster aggregation and compared the results with
those obtained by using both aggregations. The results are
also presented in Table 3. For all EGNN layers, the use of
separate inter-cluster aggregation clearly improves the per-
formances.

It should also be noted that compared to the previous
node-labeling GNN, the proposed edge-labeling framework
is more conducive in solving the few-shot problem under
arbitrary meta-test setting, especially when the number of
few-shot classes for meta-testing does not match to the one
used for meta-training. To validate this statement, we con-
ducted a cross-way experiment with EGNN, and the result
is presented in Table 4. Here, the model was trained with 5-
way S-shot setting and tested on 10-way 5-shot setting, and
vice versa. Interestingly, both cross-way results are similar
to those obtained with the matched-way settings. There-
fore, we can observe that the EGNN can be successfully
extended to modified few-shot setting without re-training
of the model, while the previous node-labeling GNN [6] is
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Model Train way Test way | Accuracy
Prototypical [3] 5 5 65.77
Prototypical 5 10 51.93
Prototypical 10 10 49.29
Prototypical 10 5 66.93
GNN [6] 5 5 66.41
GNN 5 10 N/A
GNN 10 10 51.75
GNN 10 5 N/A
EGNN 5 5 76.37
EGNN 5 10 56.35
EGNN 10 10 57.61
EGNN 10 5 76.27
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Figure 4: t-SNE visualization of node features. From top to
bottom: GNN [6], EGNN. From left to right: initial embed-
ding, Istlayer, 2nd layer, 3rd layer. ’x’ represents query, '0’

Table 4: Cross-way few-shot learning results on minilma-
genet 5-shot setting.

not even applicable to cross-way setting, since the size of
the model and parameters are dependent on the number of
ways.

Figure 4 shows t-SNE [49] visualizations of node fea-
tures for the previous node-labeling GNN and EGNN. The
GNN tends to show a good clustering among support sam-
ples after the first layer-propagation, however, query sam-
ples are heavily clustered together, and according to each la-
bel, query samples and their support samples never get close
together, especially even with more layer-propagations,
which means that the last fully-connect layer of GNN ac-
tually seems to perform most roles in query classification.
In contrast, in our EGNN, as the layer-propagation goes on,
both the query and support samples are pulled away if their
labels are different, and at the same time, equally labeled
query and support samples get close together.

For further analysis, Figure 5 shows how edge features
propagate in EGNN. Starting from the initial feature where
all query edges are initialized with 0.5, the edge feature
gradually evolves to resemble ground-truth edge label, as
they are passes through the several EGNN layers.

5. Conclusion

This work addressed the problem of few-shot learning,
especially on the few-shot classification task. We proposed
the novel EGNN which aims to iteratively update edge-
labels for inferring a query association to an existing sup-
port clusters. In the process of EGNN, a number of alter-
native node and edge feature updates were performed using
explicit intra-cluster similarity and inter-cluster dissimilar-
ity through the graph layers having different parameter sets,
and the edge-label prediction was obtained from the final
edge feature. The edge-labeling loss was used to update
the parameters of the EGNN with episodic training. Ex-

represents support. Different colors mean different labels.

Figure 5: Visualization of edge feature propagation. From
left to right: initial edge feature, 1st layer, 2nd layer,
ground-truth edge labels. Red color denotes higher value
(es;1 = 1), while blue color denotes lower value (e;;1 = 0).
This illustration shows 5-way 3-shot setting, and 3 queries
for each class, total 30 task-samples. The first 15 samples
are support set, and latter 15 are query set.

perimental results showed that the proposed EGNN outper-
formed other few-shot learning algorithms on both of the
supervised and semi-supervised few-shot image classifica-
tion tasks. The proposed framework is applicable to a broad
variety of other meta-clustering tasks. For future work, we
can consider another training loss which is related to the
valid graph clustering such as the cycle loss [35]. Another
promising direction is graph sparsification, e.g. construct-
ing K -nearest neighbor graphs [50], that will make our al-
gorithm more scalable to larger number of shots.
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