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Abstract

Network compression reduces the computational com-

plexity and memory consumption of deep neural networks

by reducing the number of parameters. In SVD-based net-

work compression the right rank needs to be decided for

every layer of the network. In this paper we propose an ef-

ficient method for obtaining the rank configuration of the

whole network. Unlike previous methods which consider

each layer separately, our method considers the whole net-

work to choose the right rank configuration. We propose

novel accuracy metrics to represent the accuracy and com-

plexity relationship for a given neural network. We use

these metrics in a non-iterative fashion to obtain the right

rank configuration which satisfies the constraints on FLOPs

and memory while maintaining sufficient accuracy. Exper-

iments show that our method provides better compromise

between accuracy and computational complexity/memory

consumption while performing compression at much higher

speed. For VGG-16 our network can reduce the FLOPs by

25% and improve accuracy by 0.7% compared to the base-

line, while requiring only 3 minutes on a CPU to search

for the right rank configuration. Previously, similar re-

sults were achieved in 4 hours with 8 GPUs. The proposed

method can be used for lossless compression of a neural

network as well. The better accuracy and complexity com-

promise, as well as the extremely fast speed of our method

makes it suitable for neural network compression.

1. Introduction

Deep convolutional neural networks have been consis-

tently showing outstanding performance in a variety of ap-

plications, however, this performance comes at a high com-

putational cost compared to past methods. The millions

of parameters of a typical neural network require immense

computational power and memory for storage. Thus, model

compression is required to reduce the number of parame-

ters of the network. Our aim in this paper is to develop

a method that can optimize trained neural networks for re-

duction in computational power and memory usage while
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Figure 1. Convolutional and fully-connected layers and their de-

composed counterparts. Each layer is split into two with low-rank

decomposition.

providing competitive accuracy.

Generally, filter pruning techniques have been used for

network compression. The aim of such approaches is to

develop pruning policies, which can satisfy the target con-

straints on FLOPs and memory. Layer wise search-based

heuristic methods [11, 18, 23], reinforcement learning [1, 4,

10], and genetic and evolutionary algorithms [22, 25] have

been used to define the pruning policy. A greedy selec-

tion method based on a heuristic metric has been proposed

in [5, 21] to prune multiple filters of the network together.

Another approach towards network compression is using

kernel decomposition over each filter in the network. Con-

volutional and fully connected layers can be represented as

matrix multiplications, and kernel decomposition can be ap-

plied to these matrices [2, 7, 12, 15, 28]. Kernel decompo-

sition with singular value decomposition (SVD) automati-

cally assigns importance (the singular values) to the decom-

posed kernels. This automatic sorting makes filter pruning

easier, as the decomposed kernels with the lower parameters

are the first to be pruned. Simply put, low-rank approxima-

tion of a layer decomposes it into two matrix multiplications

for network compression as shown in Fig. 1.

With kernel decomposition schemes, the problem boils

down to the choice of the optimal compression ratio for each

layer of the network. We need to find the right rank con-

figuration (i.e. compression ratios) for the whole network

that satisfies constraints on speed, memory and accuracy.

This is different from past methods which use a solver to
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Figure 2. Interpolated function of layer-wise accuracy metric in

AlexNet. (a) yp,l based on normalized PCA-energy. (b) ym,l

based on normalized accuracy using partial training dataset.

minimize the approximation error at the fixed rank [19, 20]

and a training technique to better compensate for accuracy

loss [3,27]. An iterative search-based approach was adopted

in [9, 14, 28] to obtain the right rank configuration. In [28],

the authors define an PCA energy-based accuracy feature

and use it to select a layer to be compressed in every it-

eration. The final rank of each layer is the result of itera-

tive layer-wise network compression. Reinforcement learn-

ing was used in [9] to find the rank of each layer indepen-

dently. Unlike [28] and [9], which optimize each layer sepa-

rately, [14] searched for the right rank configuration for the

whole network. Although, [14] shows better performance

compared to [28] and [9], it still takes significant amount of

time due to its iterative search for the right rank configura-

tion.

In this paper, we propose Efficient Neural network Com-

pression (ENC) to obtain the optimal rank configuration

for kernel decomposition. The proposed method is non-

iterative; therefore, it performs compression much faster

compared to numerous recent methods. Specifically, we

propose three methods: ENC-Map, ENC-Model and ENC-

Inf. ENC-Map uses a mapping function to obtain the right

rank configuration from the given constraint on complexity.

ENC-Model uses a metric representative of the accuracy

of the whole network to find the right rank configuration.

ENC-Inf uses both the accuracy model and inference on a

validation dataset to arrive at the right rank configuration.

The code for our method is available online.1

The rest of the paper is structured as follows. Section

2 and 3 describe the accuracy metrics. Section 4 discusses

ENC-Map. Search-based methods, ENC-Model and ENC-

Inf, are given in Section 5. Experiments are discussed in

Section 6 and Section 7 concludes the paper.

2. Layer-wise Accuracy Metrics

The error of the neural network can be divided over the

constituent layers of the network. In other words, each layer

1https://github.com/Hyeji-Kim/ENC

contributes to the error or accuracy of the neural network. In

this section, we describe a couple of metrics, which repre-

sents the accuracy contributed by a layer as a function of the

rank of that layer. This layer-wise accuracy metrics can be

used to predict the contribution of an individual layer to the

overall accuracy of the network. The first metric is based

on heuristics while the second involves computing the ac-

curacy over a validation dataset.

PCA energy-based Metric. After singular value de-

composition (SVD), the number of principal components

retained directly affects the complexity as well as the accu-

racy. The un-normalized PCA energy is given by σ′

l(rl) =
∑rl

d=1
σl(d), where rl is the rank of the l-th layer in the

neural network and σl(d) is the d-th singular value after

performing SVD on the parameters on l-th layer. In de-

tail, σ′

l(rl) is the sum of the first rl diagonal entries of the

diagonal matrix after decomposition. It is obvious that the

accuracy decreases with the decrease in un-normalized PCA

energy. The PCA energy of the l-th layer with a rank rl is

obtained by performing min-max normalization to the un-

normalized PCA energy, i.e.,

yp,l(rl) =
σ′

l(rl)− σ′

l(1)

σ′

l(r
max
l )− σ′

l(1)
. (1)

Here rmax
l is the maximum or initial rank.

Measurement-based Metric. The second metric for

layer-wise accuracy that we use in this paper is based on

evaluation of the neural network on a validation dataset. For

the l-th layer, the accuracy model is obtained by changing

rl while keeping the rest of the network unchanged. Empir-

ical models are developed for each layer. Note that the pos-

sible number of ranks for a layer occupies a large linear dis-

crete space, making it impractical to evaluate the accuracy

over the validation dataset. Therefore, we use VBMF [24]

to sample ranks over which the accuracy is estimated, and

the ranks are sampled to make the measured accuracy in-

crease. Then, we follow it up by Piecewise Cubic Hermite

Interpolating Polynomial (PCHIP) algorithm. We denote

the measurement-based layer-wise accuracy metric of the

l-th layer by ym,l(rl).
In Fig. 2, we show the result of interpolation with both

the PCA energy-based and measurement-based approaches.

Both the metrics show different profiles. This is because the

PCA energy is not a representation of accuracy in itself but

monotonic with the overall accuracy.

3. Accuracy Metric

In this section, we describe how we can use the layer-

wise metrics to represent the accuracy of the complete neu-

ral network. We estimate the joint distribution of the output

of the neural network and the configuration of its layers.

The configuration of the layers of a neural network is de-

fined only by the choice of the rank for each layer.
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Our aim is to maximize the accuracy of the network with

a given set of constraints. Let us define the configuration of

a neural network through the rank configuration, which is a

set of ranks of each layer, i.e.,

R = {r1, r2, ..., rL}, (2)

where rl is the rank of the l-th layer. The overall accuracy

of the network can be represented by the joint distribution

of accuracy of individual layers. Precisely,

P(A;R) = P(a1, a2, ..., aL;R), (3)

where al is the accuracy provided by the l-th layer. Practi-

cally, the accuracy contribution of a layer also depends on

the ranks of other layers. However, the accuracy model can

be simplified as the function of layer-wise accuracy metric

contribution of a layer by applying the layer-wise accuracy

metrics in Sec. 2, yp,l(rl) and ym,l(rl), which depend on

the rank of the layer only. Considering the independence,

we can model the overall accuracy metric as

P(A;R) =

L
∏

l=1

P(al; rl). (4)

This representation has been inspired by [28] where the

product of layer-wise accuracy metrics is used to estimate

the overall accuracy.

To estimate the accuracy, we define three types of overall

accuracy metric; measurement-based Am(R), PCA energy-

based Ap(R), and the combination of two metrics, Ac(R).
The layer-wise metric based on the measured accuracy can

be directly used to replace P(al; rl), i.e.,

Am(R) =

L
∏

l=1

ym,l(rl). (5)

Although the normalized PCA energy of (1) is not defined

from the accuracy, it was shown in [28] that the PCA energy

of a layer is proportional to the accuracy of the network,

allowing us to use the PCA energy as the accuracy metric.

Thus, we define the PCA energy-based accuracy metric as

Ap(R) =

L
∏

l=1

yp,l(rl). (6)

In our experiments, we have noticed that the PCA energy

metric does not accurately represent the accuracy at very

low complexity. Also, as the network is redundant, the

measurement-based metric can not sufficiently represent the

effect of complexity reduction against accuracy at higher

complexities. Therefore, we define a combined metric. This

metric takes into consideration both the PCA energy and the

measurement based layer-wise accuracy metrics. We have

weighted the PCA energy only with the network complexity

to reduce the influence of the Ap(R) at lower complexities

and the Am(R) at higher complexities. Mathematically,

Ac(R) =

{

Ap(R)×
C(R)

Corig

}

+Am(R), (7)

where C(R) is the complexity of the rank configuration R

and Corig is the total complexity of the network. The com-

plexity C(R) is defined by

C(R) =

L
∑

l=1

Cl(rl) =

L
∑

l=1

clrl, (8)

where Cl(rl) is the complexity of the l-th layer. The com-

plexity coefficient cl for spatial [12] and channel [7] decom-

position is cl = WlHlDl(Il +Ol) and cl = WlHl(IlD
2
l +

Ol), respectively. Here Wl and Hl are the width and height

of output feature map, Dl is the size of filter window, Il and

Ol are the number of input channels and filters.

As will be seen shortly, we are not interested in the exact

value of the estimated accuracy but rather the relative value

of accuracy metric obtained from the various rank configu-

rations. In other words, we use the accuracy metric to ex-

tract some partial rank configurations with the largest value

of accuracy metric.

4. ENC-Map: Rank Configuration with

Accuracy-Complexity Mapping

In this section, we present a simple method to choose

the rank configuration for a neural network by mapping

complexity against accuracy. The mapping is performed

through the rank configurations, as both complexity and

accuracy are functions of rank configurations. At first,

we intuitively though that all layers having same accuracy

penalty would be better compression strategy than having

same compression ratio (i.e. uniform). Therefore, we only

consider the rank configurations for which layer-wise met-

rics are equal for every layer. Mathematically,

Re = R | yi,l(rl) = yi,k(rk), (9)

where l, k ∈ 1, 2, ..., L and i ∈ {p,m} . Next the com-

plexity of Re, C(Re), is computed using (8). The accuracy

metric and complexity are plotted against each other over

Re, which provides a mapping between complexity and ac-

curacy metric. The mapping is mathematically given as

fC−A : R→ R. (10)

Also note that the mappings from complexity and accuracy

metric to the rank configuration and vice versa do exist as

well, i.e.,

fC−R : R→ R
L. (11)
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Figure 3. Extraction of candidate rank configurations (as an exam-

ple of two-layered CNN). The effective space is defined by bound-

aries of rank configuration, Rmax and Rmin, and step size tl,

where the complexity is around target complexity Ct with space

margin ±δs. The candidate rank configurations are lying on Ct

with the complexity margin ±δm denoted as star points.

Using this mapping, the respective rank configuration is cal-

culated from the inverse function of layer-wise accuracy

metric, where a = yk,l(rl) is converted to rl = y−1

k,l (a)
and k ∈ {p,m}. Note that the inverse exists as yk,l(rl)
is an increasing function as shown in Fig. 2. Here, a is the

achievable layer-wise accuracy metric obtained from fC−A,

while satisfying constraints on complexity. This method is

called ENC-Map as we use a simple mapping to obtain the

right rank configuration.

5. ENC-Model/Inf: Rank Configuration in

Combinatorial Space

The method described in the previous section strongly

depends on the equal layer-wise metrics. Therefore, we ex-

tend the rank configuration to the combinatorial problem

to choose the optimal rank configuration in the non-equal

layer-wise metrics.

The combinatorial space is defined by the Cartesian

product of the vector space of rank for each layer. In this

space, we extract the partial rank configurations that sat-

isfy the target complexity called candidate rank configura-

tions as illustrated in Fig. 3. To quickly extract the candi-

date rank configurations and find the optimal rank configu-

ration in non-iterative manner, we perform two steps. First,

we limit the range of the ranks with ENC-Map. Then, we

extract the candidate rank configurations by hierarchically

grouping the layers to reduce the number of effective layers

for sub-space generation.

5.1. Limiting the Search Space

To limit the search space, we use the simple method de-

scribed in the previous section. We obtain the upper and

lower bounds on the search space near the target complex-

ity by using the mapping in (11) by

Rmax = fC−R(Ct + δs), (12)
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Figure 4. Distribution of normalized rank configurations for VGG-

16 (Ct=25%, δs=10%). A final rank configuration Ro is selected

within the boundaries, Rmax(C=35%) and Rmin(C=15%).

Rmin = fC−R(Ct − δs). (13)

Here Ct is the complexity constraint and δs is the space

margin. The final rank configuration, Ro, is defined within

the space boundaries, Rmax and Rmin, as shown in Fig. 4.

5.2. Minoffsetting the Search Space

In the limited space by the Rmax and Rmin, we are only

interested in the candidate rank configurations R as

R =
⋃

R | Ct − δm < C(R) < Ct + δm, (14)

for R ∈ [Rmin, Rmax]. R includes the rank configurations

for which the complexity is roughly equal to Ct. Note that

we slightly expand the search space by using the param-

eter δm. To simplify the computations, we shift the space

boundaries from [Rmin, Rmax] to [0, Rmax−Rmin]. Then,

we generate the differential search space and extract the dif-

ferential candidate rank configurations R̂ defined by

R̂ =
⋃

R | ∆Ct − δm < C(R) < ∆Ct + δm, (15)

for ∆Ct = C(Rmax) − Ct and R ∈ [0, Rmax − Rmin].

Note that R = Rmax − R̂.

5.3. Hierarchical Extraction of R̂

It is not feasible to generate the complete combinatorial

search space for deep neural network, since the space com-

plexity is exponential to the number of layers. Hence, we hi-

erarchically generate the sub-spaces by grouping some lay-

ers in a top-down manner as illustrated in Fig. 5 and extract

the candidate rank configurations.

As denoted in (8), the complexity is the weighted sum

of the complexity coefficient and rank of each layer. From

the min-offset space, layers having same complexity coeffi-

cient ci can simply be grouped from {ri, ri+1, ri+2, ...} to

r′i. The groped rank r′i is defined by

r′i = [0 : min({ti}) :
∑

{max(ri)}], (16)
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Figure 5. Hierarchical space generation (as an example of 12-

layered network). There are 3 hierarchy level and five sub-spaces

(X1, ...,X5). The maximum space complexity is O(n5) of X1.

where i is the index of first layer in a group. Here, the range

of rank in min-offset space is represented with the vector

space and the ti means the step size of vector space.

As an example, a 12-layered CNN is illustrated in Fig. 5.

The maximum number of layers in a bottom group is set to

3, so that there are 3-hierarchical levels for layer grouping.

The maximum space complexity is reduced fromO(n12) to

O(n5) in X1. At the top-level space, X1 is composed of

5 vector spaces, and we only retain the rank configurations

that satisfy Ct in X1. The sub-space X2 is defined by two

vector spaces, which are also the grouped variables from

the bottom layers in X4 and X5. To simplify the extrac-

tion strategy, in our experiments, we choose the partial sets

in each bottom sub-spaces (X3,X4,X5), by measuring the

accuracy metric of each rank configuration.

5.4. Choice of Rank Configuration

Apart from the simple method described in Sec. 4, we

use two methods, ENC-Model and ENC-Inf, for obtaining

the optimal rank configuration for a given neural network.

For both the methods, we prepare a subset R using (14)

including the candidate rank configurations.

In ENC-Model, we choose a rank configuration Ro that

maximizes A(R) which can be one of Am(R), Ap(R), and

Ac(R) denoted in (5, 6, 7). I.e.,

Ro = argmax
R

A(R)|R ∈ R. (17)

In ENC-Inf, we choose N rank configurations, which

provide the largest values of A(R). These N rank con-

figurations are stored in RA and then evaluated over the

validation dataset to choose a best rank configuration.

The complete process is given in Algorithm 1. The ENC-

Map provides a quick and dirty solution, whereas ENC-

Model and ENC-Inf approaches are relatively slower. How-

ever, even our slowest method easily outperforms state-of-

the-art approaches in speed.

The proposed method can be used to reduce both the

FLOPs and the memory consumption of a neural network.

The constraint Ct can represent both the number of FLOPs

or the number of parameters of the neural network. Also,

Algorithm 1 : Optimal Rank Configuration

INPUTS: h← A neural network, Ct ← Target complex-

ity, method← ENC-Map, ENC-Model, ENC-Inf

OUTPUT: Ro ← Rank configuration

Parameters: δs ← Parameter for limiting the search

space, δm ← Parameter for marginal error of Ct, N ←
Number of rank configurations for evaluation

//Layer-wise metrics

Compute yp,l , ym,l for all l ∈ 1...L
Compute fC−A, fC−R

if method == ENC-Map then

Ro = fC−R(Ct)
else

//Candidate rank-set generation

Rmax = fC−R(Ct + δs)
Rmin = fC−R(Ct − δs)
R = {∪R | Ct − δm < C(R) < Ct + δm}

for R ∈ [Rmin, Rmax]
//Accuracy estimate for the

// whole neural network

Compute A of R

if method == ENC-Model then

Ro = argmaxR A(R) s.t. R ∈ [Rmin, Rmax]
else if method == ENC-Inf then

Compute RA ∈ R
N×L

Evaluate accuracy of each row of RA over

the validation dataset

Select Ro from RA with best evaluation

end if

end if

our proposed methods can provide rank configurations un-

der both complexity and accuracy constraints. Till now,

the discussion followed complexity constrained systems. In

other words, given a complexity constraint our aim is to ob-

tain a rank configuration that maximizes the accuracy. How-

ever, shifting to accuracy constrained systems is straight-

forward. Given an accuracy constraint, we use the inverse

mapping of fC−A, fA−C , to obtain the complexity corre-

sponding to a given accuracy. The obtained complexity is

input to Algorithm 1 to obtain the rank configuration.

6. Experimental Results

In this section, we present the experimental evaluation

of the proposed methods. We first present a comparison of

the proposed methods. We discuss the scenarios that dictate

the choice of any of the proposed methods. Afterwards,

we compare the proposed methods against some recently

proposed neural-network optimizing methods.

For our experiments, we have optimized AlexNet [17],

VGG-16 [26] and ResNet-56 [8] networks. For AlexNet

and VGG-16, we have used the ImageNet [6] dataset. For
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Figure 6. Performance comparison of overall accuracy metrics. Baseline top-1 accuracy is 56.6% for AlexNet, 70.6% for VGG-16, and

93.1% for ResNet-56. The results are without fine-tuning. Smaller ∆ Acc. is better.

ResNet-56, we have used the Cifar-10 [16] dataset. We have

performed the same pre-processing (image cropping and re-

sizing) as described in the original papers [8, 17, 26]. Also,

we have used 4% and 10% of the ImageNet and Cifar-10

training datasets as the validation datasets.

The parameters δs and δm were set to 10% of the origi-

nal total complexity and 0.5% of the target complexity, re-

spectively. For ENC-Model and ENC-Inf, we use the accu-

racy metric Am(R) for AlexNet, Ac(R) for VGG-16, and

Ap(R) for ResNet-56 as A(R). Also, note that we have per-

formed channel decomposition to the first layer whenever

required and spatial decomposition to the rest of the layers

using truncated SVD. For VGG-16, the first layer was de-

composed to half the original rank following [14] and for

ResNet-56, the first layer was not compressed at all.

The experiments were conducted on a system with four

Nvidia GTX 1080ti GPUs and an Intel Zeon E5-2620 CPU.

The experiments conducted on the CPU used a single core

and code optimization was not performed. The Caffe [13]

library was used for development.

6.1. Comparison of Layerwise accuracy metrics

This section presents the comparison of the two layer-

wise accuracy metrics based on the results of the ENC-Map

as shown in Fig. 6. We note that the PCA energy-based met-

ric shows poor performance with the shallower AlexNet.

This is expected as the PCA energy is not based on actual

inference and expected to show poorer performance com-

pared to the measurement-based layer-wise accuracy met-

ric. However, with the deeper VGG-16 and ResNet-56, the

performance of PCA energy-based and the measurement-

based layer-wise accuracy metric is almost same. The rea-

son is that the complexity difference from rank reduction on

each layer is less as the layer is deeper, so that the accuracy

difference is also smaller. The measurement-based metric

can not completely represent the overall accuracy.

The PCA energy-based and measurement-based metrics

require 5 seconds and 5 minutes for ResNet-56. Note that

once these metrics are evaluated, they can be used for differ-

ent complexity constraints. For every new neural network

that needs to be optimized, these metrics need to evaluated

beforehand.

6.2. Comparison of the Fast, Search without Infer
ence, and Search with Inference Methods

In this section, we compare the performance of ENC-

Map, ENC-Model and ENC-Inf against each other. In

Fig. 6, it is seen that at lower compression (or relatively

higher complexity requirements), the performance of all the

three methods is almost the same. It means that the ENC-

Map is the best solution at lower compression. At higher

compression, the optimal rank configuration is more sensi-

tive to the complexity and accuracy metric. Therefore, the

performance of ENC-Map is lower than ENC-Model and

ENC-Inf, and ENC-Inf using validation accuracy shows rel-

atively the best performance. The time taken by each model

is given in Table 1.

6.3. Performance Comparison with Other Methods

The overall results are summarized in Table 1. Here we

use the decrease in accuracy (i.e. ∆Acc.), which is the dif-

ference of accuracy of the original and optimized neural

networks, as a metric to evaluate different methods. Lower

decrease in accuracy is desired. For a complexity metric,

we use the percentage of (1−compression ratio) as FLOPs.

Also, we mention the results with uniform rank reduction,

which applies the same rank reduction ratio to every layer

of the neural network.

AlexNet with ImageNet. In [15], the authors show

the compression results for FLOPs and parameters. It is

not possible to use ENC-Map under both these constraints

as it provides mapping only from one of these constraints

to the accuracy. However, ENC-Model and ENC-Inf can

be used by populating R by rank configurations that sat-
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Model
Target

Complexity

Searching

Policy

Top-1/Top-5 ∆Acc.[%] Search

Time
w/o FT w/ FT

AlexNet

(56.6% / 79.9%)

@ImageNet

FLOPs 37.5%

Parameters 18.4%

[15]

Y-D et al. [15] - / - - / 1.6 -

ENC-Inf - / - -0.1 / -0.2 3m @4GPUs

ENC-Model - / - -0.1 / -0.2 1m @CPU

VGG-16

(70.6% / 89.9%)

@ImageNet

FLOPs 25%

Uniform 29.9 / 23.6 0.8 / 0.5 -

Heuristic [9] - / 11.7 - / - -

ADC [9] - / 9.2 - / - 4h @8GPUs

ARS [14] 13.0 / 9.1 -0.3 / -0.1 7h @4GPUs
(in our impl.)

ENC-Inf 10.7 / 7.3 -0.6 / -0.2 5m @4GPUs

ENC-Model 11.3 / 7.9 -0.7 / -0.2 3m @CPU

ENC-Map 14.5 / 10.2 -0.2 / -0.1 4s @CPU

ResNet-56

(93.1% / -)

@Cifar-10

FLOPs 50%

Uniform 12.7 / - 0.2 / - -

AMC [10]∗ 2.7∗ / - 0.9∗ / - 1h @GPU

ENC-Inf 2.9 / - 0.1 / - 3m @4GPUs

ENC-Model 3.5 / - 0.1 / - 1m @CPU

ENC-Map 3.3 / - 0.1 / - 3s @CPU

Table 1. Performance comparison of network compression techniques. The proposed methods, uniform, [9], heuristic in [9], and [14] use

the SVD based spatial decomposition. [15] uses the Tucker decomposition based channel decomposition. [10] uses the channel pruning.

Baseline accuracy of [10]∗ is 92.8%. Smaller ∆Acc. is better.
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Figure 7. Performance comparison for AlexNet. (a) compression

of only convolutional layers. (b) compression of whole layers in-

cluding fully-connected layers. Smaller error is better.

isfy both the FLOPs and parameters constraints. We have

used N=50 here and optimize both convolutional and fully-

connected layers. Initial learning rate of 10−3 was used,

which was reduced by a factor of 2 after every 2 epochs till

the 16-th. Fine-tuning takes around 9 hours. As denoted

in Table 1, our method shows 1.8% higher top-5 accuracy

than [15] at the same complexity. To find the rank configu-

ration, our algorithm only takes only a minute with a single

core CPU with ENC-Model and 3 minutes on 4 GPUs with

ENC-Inf. Fig. 7 indicates that our method outperforms the

state-of-the-art. The FLOPs saving ratios of reffed works in

Fig. 7 are calculated in our experiment. We achieve 43.33%

and 42.40% top-1 error at 30.7% and 95.0% FLOPs for

Fig. 7(a). Also, we attain the 20.4% top-5 error at 30%

FLOPs for Fig. 7(b). Compared to [19, 27] using the ac-

curacy compensation techniques such as knowledge trans-

fer [19] and force regularization [27], our method uses only

fine-tuning which is the most simple and effective strategy.

VGG-16

(FLOPs 20%)

Top-5

∆Acc.
Search Range

Asym.3D [28] 1.0%

Layer-by-layerY-D et al. [15] 0.5%

CP-3C [11] 0.3%

ENC-Inf 0.0% Whole-network

Table 2. Comparison over target complexity of 20% FLOPs with

VGG-16. Baseline top-5 accuracy is 89.9%.

VGG-16 with ImageNet. We optimize the convo-

lutional layers under a FLOPs constraint. The complex-

ity constraint is set to 25% and 20% FLOPs to compare

with [9, 14] and [11, 15, 28], respectively. For ENC-Inf, we

set N=40. The layers 7-8, 9-10, and 11-13 are grouped

each other for top-level sub-spaces. The compressed net-

work was fine-tuned with an initial learning rate of 10−5,

which was decreased by a factor of 10 at the fourth epoch.

Fine-tuning takes about 1 day. With 25% FLOPs reduc-

tion, ENC-Inf takes only 5 minutes at 4 GPUs, and it shows

the 2.3% and 0.3% higher top-1 accuracy without and with

fine-tuning, respectively, compared to [14]. As denoted in

Table 1, our ENC-Map is extremely fast. It can find the

result in only 4 seconds with a single core CPU, while the

previous research takes 4 hours at 8 GPUs [9] and 7 hours

at 4 GPUs [14]. Results with 20% FLOPs reduction are

given in Table 2. It is seen that our method outperforms the

layer-by-layer strategies.

12575



Model
Searching

Policy
FLOPs

Top-1

∆Acc.

AlexNet ENC-Inf 31% 0.0%

VGG-16 ENC-Model 24% -0.4%

ResNet-56 ENC-Map 55% -0.1%

Table 3. Lossless compression with full fine-tuning.

Searching

Policy

Fine-tuning

Epochs
FLOPs

Top-1

∆Acc.

ADC [9] 0 64% 0.0%

ENC-Model 0 57% -0.1%

ENC-Model

0.1 41% -0.1%

0.2 39% -0.1%

1 33% 0.0%

Table 4. Fast lossless compression with brief fine-tuning for VGG-

16. Baseline top-1 accuracy is 70.6%. Smaller ∆Acc. is better.

ResNet-56 with Cifar10. The search space is defined

in 3-level hierarchy. The layers 2-19, 21-37, and 39-55

are placed in separated groups excluding first convolutional

layer and fully-connected layer. We set the the maximum

number of bottom layers in a group as four. The second-

level spaces are defined by the number of bottom layers

such as Fig. 5. For ENC-Inf, we set N=20. The compressed

ResNet-56 is fine-tuned with an initial learning rate of 10−3,

which is reduced by a factor of 10 at the 16th, 24th and 32nd

epoch. Fine-tuning takes around 1 hour. ENC-Map and

ENC-Model achieve a 0.1% accuracy loss (i.e. 93.1% top-1

accuracy) with 50% FLOPs reduction after fine-tuning. The

times taken by ENC-Map and ENC-Inf are 3 seconds with

single core CPU and 5 minutes with 4 GPUs, respectively.

It is much more efficient compared to the learning based

state-of-the-art, which takes 1 hour on a single GPU [10].

6.4. Lossless Compression

The idea of lossless compression is to set the target accu-

racy to that of the original neural network and then optimize

the network. However, since we use fine-tuning after opti-

mization, we can set the target accuracy to slightly lower

than that of the original neural network. The remaining ac-

curacy is recovered by fine-tuning. To set the reduced ac-

curacy constraint, we use the accuracy estimation method

in [14]. Then, the complexity constraint (i.e. FLOPs) is

calculated from the mapping function between the accu-

racy and complexity constraints. As summarized in Table 3,

our compression methods achieve a significant reduction in

FLOPs without accuracy loss.

The combination of our fast compression method and

brief fine-tuning can further reduce the FLOPs without ac-

curacy loss. Table 4 shows the result of lossless compres-

Figure 8. Normalized CPU latency of optimized models. The

latency of baseline CNN is 10.59s in VGG-16, 142.2ms in ResNet-

56, and 825.0ms in AlexNet for single image classification.

sion with fine-tuning under 1 epoch. The accuracy thresh-

olds considering fine-tuning are calculated for 0.1, 0.2, and

1 epochs using the method in [14]. We reduced the FLOPs

by 41% with VGG-16 without any accuracy loss. The pro-

cess took only 0.1 epoch or 22 minutes with a single GPU.

Also, our method with 1 epoch fine-tuning takes 3.7 hours

with a single GPU, and it provides better compression (33%

FLOPs) compared to the 4 hour search (64% FLOPs) in [9].

6.5. Results on an Embedded Board

We evaluate the latency of the compressed network mod-

els for inference on the ODROID-XU4 board with Samsung

Exynos5422 mobile processor. Fig. 8 shows that the FLOPs

saving ratio in our paper is directly related to the real la-

tency for single image inference. We use ENC-Model for

optimizing the convolutional layers of AlexNet, VGG-16,

and ResNet-56 in Fig. 8. We note that the latency of con-

volutional layers is 72% and 62% of total latency for the

baseline ResNet-56 and AlexNet, respectively, and the bias

latency in Fig. 8 is due to the other operations including

batch normalization and fully-connected layers. The results

of AlexNet-conv indicate that the theoretical FLOPs reduc-

tion of convolutional layers corresponds to the latency im-

provement of those layers.

7. Conclusion

In this paper, we propose the efficient neural network

compression methods. Our methods are based on low-rank

kernel decomposition. We propose a holistic, model-based

approach to obtain the rank configuration that satisfies

the given set of constraints. Our method can compress

the neural network while providing competitive accuracy.

Moreover, the time taken by our method for compression

is in seconds or minutes, whereas previously proposed

methods take hours to achieve similar results.
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