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Abstract

Recent success suggests that deep neural control net-

works are likely to be a key component of self-driving ve-

hicles. These networks are trained on large datasets to imi-

tate human actions, but they lack semantic understanding of

image contents. This makes them brittle and potentially un-

safe in situations that do not match training data. Here,

we propose to address this issue by augmenting training

data with natural language advice from a human. Advice

includes guidance about what to do and where to attend.

We present a first step toward advice giving, where we train

an end-to-end vehicle controller that accepts advice. The

controller adapts the way it attends to the scene (visual

attention) and the control (steering and speed). Attention

mechanisms tie controller behavior to salient objects in the

advice. We evaluate our model on a novel advisable driving

dataset with manually annotated human-to-vehicle advice

called Honda Research Institute-Advice Dataset (HAD). We

show that taking advice improves the performance of the

end-to-end network, while the network cues on a variety of

visual features that are provided by advice. The dataset is

available at https://usa.honda-ri.com/HAD.

1. Introduction

Dramatic progress in self-driving vehicle control has

been made in the last several years. The recent achieve-

ments [3, 27] suggest that deep neural models can be ap-

plied to vehicle controls in an end-to-end manner by ef-

fectively learning latent representations from data. Ex-

plainability of these deep controllers has increasingly

been explored via a visual attention mechanism [8], a

deconvolution-style approach [2], and a natural language

model [9]. Such explainable models will be an important el-

ement of human-vehicle interaction because they allow peo-

ple and vehicles to understand and anticipate each other’s

actions, hence to cooperate effectively.

However, the network’s understanding of a scene is lim-

ited by the training data: image areas are only attended to if

they are salient to the (training) driver’s subsequent action.

End-user Input image

Human-to-Vehicle Advice

e.g., “pedestrians are in crosswalk”

Visual

encoder

Vehicle

controller

Textual

encoder

without advice with advice

control 

commands

Visualizing 

model’s attention

Figure 1: Our model takes human-to-vehicle advice as an

input, i.e., “pedestrians are in crosswalk”, and grounds it

into the vehicle controller, which then predicts a sequence

of control commands, i.e., a steering wheel angle and a ve-

hicle’s speed. Our driving model also provides a visual ex-

planation in the form of attention - highlighted regions have

a direct influence on the function being estimated. Visual-

izing attention maps helps the end-users acknowledge the

acceptance of their advice.

We have found that this leads to semantically-shallow mod-

els that under-attend to important cues (like pedestrians)

that do not predict vehicle behavior as well as other cues,

like the presence of a stop light or intersection. We also

believe its important for driving models to be able to adapt

the “style” of the journey to user input (fast, gentle, scenic

route, avoid freeways etc). We use the term “advice” to

cover high-level instructions to the vehicle controller about

how to drive, including what to attend to. We distinguish

advice from explicit commands to the vehicle: which may

be problematic if the passenger is not fully attending to the

vehicle’s environment.

The goal of this work is to augment imitation learning

datasets with long-term advice from humans (e.g., driving

instructors) and in the shorter term, from passengers in the

vehicle. In full generality, advice might take the form of

condition-action rules “if you see a child’s toy on the side-

walk, slow down”. For the present paper, we study the sim-
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pler task of accepting short-term textual advice about action

or perception.

In this work, we propose a novel driving model that

takes natural language inputs (i.e., human-to-vehicle ad-

vice) from an end-user. Here, we focus on two forms of

advice: (1) goal-oriented advice (top-down signal) – to in-

fluence the vehicle in a navigation task (e.g., “drive slow

in a school zone”), (2) stimulus-driven advice (bottom-up

signal) – conveys some visual stimuli that the user expects

their attention to be actively looked by the vehicle controller

(e.g., “there is a pedestrian crossing”). As shown in Fig-

ure 1, the controller needs three main capabilities to handle

such advice. (i) Perceptual primitives to evaluate the con-

troller’s behavior. (ii) The ability to understand the user’s

utterance and to ground it in the trained perceptual primi-

tives. (iii) Explainability of the controller’s internal state to

communicate with the vehicle. We propose that such capa-

bilities can be learned during off-line training.

Our contributions are as follows. (1) We propose a novel

advisable driving model that takes human-to-vehicle ad-

vice and grounds it into the vehicle controller. (2) We in-

ternalize the (stimulus-driven) advice – aligning its atten-

tion to make the model refer to the important salient ob-

jects even when advice is not available. (3) We generated a

large-scale dataset called Honda Research Institute-Advice

Dataset (HAD) with over 5,600 video clips (over 32 hours)

with human-to-vehicle advice annotations, e.g., “there is a

pedestrian pushing a stroller through the crosswalk”. The

dataset will be available and will provide a new test-bed for

measuring progress towards developing advisable models

for self-driving cars.

2. Related Work

End-to-End Learning for Self-driving Vehicles. Recent

successes [3, 27] suggest that a driving policy can be suc-

cessfully learned by neural networks as a supervised learner

over observation (i.e., raw images)-action (i.e., steering)

pairs collected from human demonstration. Bojarski et

al. [3] trained a deep neural network to map a dashcam

image to steering controls, while Xu et al. [27] explored

a stateful model using a dilated deep neural network and

recurrent neural network so as to predict a vehicle’s dis-

cretized future motion given input images. Other variants

of deep neural architecture have been explored [5, 4].

Explainability of deep neural networks has become a

growing field in computer vision and machine learning

communities. Kim et al. [8] utilized a recurrent attention

model followed by a causal filtering that removes spurious

attention blobs and visualizes causal attention maps. We

start our work with this attention-based driving model. At-

tention model visualizes controller’s internal state by vi-

sualizing attention maps, which end-users may use as a

ground and an acknowledgment of their advice. Other ap-

proaches [2, 9] can also be applied to provide richer expla-

nations, but we leave it for future work.

Advice-taking models. Recognition of the value of advice-

taking has a long history in AI community [15], but a few

attempts have been made to exploit textual advice. Sev-

eral approaches have been proposed to translate the natural

language advice in formal semantic representations, which

is then used to bias actions for simulated soccer task [11],

mobile manipulation tasks [16, 17, 24], and a navigation

task [1]. These approaches consider high-level action se-

quences to be given in the task space of the agent. Instead,

we consider the visual imitation learning setting, where the

model has its own perceptual primitives that are trained

by observing third-person demonstration and types of ad-

vice. Recent work suggests that incorporation of natural

language human feedback can improve a text-based QA

agent [12, 26] and image captioning task [13]. Despite

their potential, there are various challenges (e.g., safety and

liability) with collecting human feedback on the actions

taken by self-driving cars. Other notable approaches (in

the reinforcement learning setting) may include the work

by Tung et al. [25] that learns a visual reward detector con-

ditioned on natural language action descriptions, which is

then used to train agents. To our best knowledge, ours is the

first attempt to take human-to-vehicle advice in natural lan-

guage and ground it in a real-time deep vehicle controller.

3. Advisable Driving Model

As we summarized in Figure 2, our model involves three

main parts: (1) a Visual encoder, which extract high-level

visual descriptions by utilizing the convolutional neural net-

work (CNN). (2) An Advice encoder, which is a natural lan-

guage model that encodes end-user’s utterance into a latent

vector and ground it into the vehicle controller. (3) An In-

terpretable vehicle controller, which is trained to predict

two control commands (widely used for self-driving vehicle

control) in an end-to-end manner, i.e., a vehicle’s speed and

a steering wheel angle. Our controller uses a visual (spatial)

attention mechanism [8], which visualizes controller’s in-

ternal state by highlighting image regions where the model

fixates on for the network’s output.

3.1. Preprocessing

Following [8], we use raw images that are down-sampled

to 10Hz and are resized to have input dimensionality as

90×160×3. For better generalization, each image is then

normalized by subtracting its mean from the raw pixels and

dividing by its standard deviation. Following Liu et al. [14],

we marginally change its saturation, hue, and brightness for

achieving robustness during a training phase.
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Figure 2: Our model consists of three main parts: (1) a visual encoder (CNN here), (2) an advice encoder, which encodes

end-user’s utterance (advice) and ground it into the vehicle controller (see green arrows), and (3) an interpretable vehicle

controller, which predicts two vehicle control commands (i.e., a speed and a steering angle command) from an input raw

image stream in an end-to-end manner. Our model also utilizes a (spatial) visual attention mechanism to visualize where and

what the model sees (see yellow arrows).

3.2. Convolutional Feature Encoder

We utilize a convolutional neural network (CNN) to ob-

tain a set of visually-descriptive latent vectors at time t,
where each vector contains a high-level visual description

in certain input region. In this paper, we refer these latent

vectors to as a convolutional feature cube Xt. By feeding an

image through the model at each time t, we collect a Xt of

size w×h×d. Note that Xt has l (=w×h) (spatially) differ-

ent vectors, each of which is a d-dimensional feature slice

corresponding to a certain input region. Choosing a subset

of these vectors will allow us to focus selectively on differ-

ent parts of images (i.e., attention). Formally, Xt = {xt,1,

xt,2, . . ., xt,l}, where xt,i ∈ Rd for i ∈ {1, 2, . . . , l}.

3.3. Advice Encoder

Our advice encoder takes a variable-length advice and

yields a latent vector, which then feeds to the controller

LSTM (called Control LSTM). Our advice-taking driving

model needs to understand the end-users utterance and to

ground it into the vehicle controller. We assume that advice

will often be given offline, or at the beginning of a ride, e.g.,

“look out for pedestrians” or “drive gently (occupant gets

carsick)”. Thus, advice encoding will be prepared ahead of

the controller generates control commands.

We train our advice encoder to deal with both types of

advice (i.e., the goal-oriented and the stimulus-driven ad-

vice) without any input-level separation. We use a LSTM

(called Advice LSTM, which is different from Control

LSTM) to encode an input sentence (i.e., human-to-vehicle

advice) and to yield a fixed-size latent vector, which is com-

mon practice in sequence-to-sequence models. Inspired by

the knowledge from the Visual Question Answering (VQA)

task, we follow the work by Park et al. [18] and use an

element-wise multiplication to combine the latent vector

from our advice encoder and the visual feature vector from

our visual encoder.

Formally, our advice LSTM yields a d-dimensional la-

tent vector u ∈ Rd. By combining this vector with the vi-

sual feature xt,i using element-wise multiplication, we ob-

tain a feature vector zt,i = xt,i ⊙ u, which is then fed into

vehicle controller. Note that vehicle controller takes a new

image at every time t (thus, update xt,i) but the latent vector

u remains the same during a period of the event.

Note that we focus on two forms of advice: (i) stimulus-

driven and (ii) goal-oriented advice. The former advice

(e.g., watch out a pedestrian) about perception can be

grounded into a context yt,i via attention maps. We, how-

ever, argue that attention maps may not be sufficient to

ground the latter advice (e.g., go straight), which needs

a more direct influence to the controller via an additional

element-wise multiplication.

Synthetic Token. We use a synthetic token <none> to

indicate unavailable advice input. Since users will not be

aware of the full state of the vehicle (they are not driving),

the controller should mainly be in charge. Thus, we aug-

ment replicate of the dataset that however has a <none>

token as the advice input, which exposes the model to events

that do not have advice as an input.
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3.4. Interpretable Vehicle Controller

Providing a controller’s internal state is important for ad-

visable systems since it will be used as a ground or an ac-

knowledgment of their advice taken. To this end, we utilize

the attention-based driving model [8] that provides the con-

troller’s internal state by visualizing attention maps – i.e.,

where the model visually fixates on image regions that are

relevant to the decision.

Visual Attention. Visual attention provides introspective

explanations by filtering out non-salient image regions,

while image areas inside the attended region have poten-

tial causal effect on the output. The goal of visual attention

mechanism is to find a context Yt = {yt,1,yt,2, . . . ,yt,l}
by minimizing a loss function, where yt,i = π(αt,i,xt,i) =
αt,ixt,i for i = {1, 2, . . . , l}. Note that a scalar attention

weight value αt,i in [0, 1] is associated with a certain grid of

input image in such that
∑

i αt,i = 1. We use a multi-layer

perceptron fattn to generate αt,i, i.e., αt,i = fattn(xt,i,ht−1)
conditioned on the previous hidden state ht−1, and the cur-

rent feature vector xt,i. Softmax regression function is then

used to obtain the final attention weight.

Outputs. The outputs of our model are two continuous val-

ues of a speed v̂(t) and a steering wheel angle ŝ(t). We

utilize additional hidden layers fv and fs, each of which are

conditioned on the current hidden state ht (of the control

LSTM) and a context vector ct. We generate the context

vector by utilizing a function fconcat, which concatenates

{ct,i}
l
i=1 = {yt,i ⊙ u}li=1 to output 1-D vector ct.

Internalizing Advice. Stimulus-driven advice provides

rich messages about visual saliencies (e.g., traffic lights,

pedestrians, signs, etc) that the vehicle controller should

typically see these objects while driving. Thus, to inter-

nalize such advice, we argue that the driving model must

attend to those areas even when such advice is not avail-

able. We add a loss term, i.e., the Kullback-Leibler diver-

gence (DKL), between two attention maps (i.e., generated

with and without advice) to make the driving model refer to

the same salient objects:

La = λa

∑

t

DKL(α
w
t ||α

wo
t ) = λa

∑

t

l∑

i=1

αw
t,i(log

αw
t,i

αwo
t,i

)

(1)

where αw and αwo are the attention maps generated by the

vehicle controller with and without advice given, respec-

tively. We use a hyperparameter λa to control the strength

of the regularization term.

Loss function. Existing models have been trained mainly

by minimizing the proportional control error term (i.e., the

difference between human-demonstrated and predicted).

However, these systems are prone to suffer from two major

issues. (i) Oscillation of control predictions – its prediction

Table 1: Examples of processing annotated descriptions.

Type Step Textual Annotation

action desc. Initial annotation The driver went straight and stopped at an intersection.

→ Present tense The driver goes straight and stops at an intersection.

→ Imperative Go straight and stop at an intersection.

attention desc. Initial Annotation There was a pedestrian pushing a stroller through the crosswalk.

→ Present tense There is a pedestrian pushing a stroller through the crosswalk.

has repeated variation against a target value. (ii) Variations

in task performance between drivers.

Inspired by proportional-integral-derivative (PID) con-

troller [19], we use the following loss function, which con-

sists of three terms: (i) Lp, which is proportional to the er-

ror (i.e., |ev(t)| + |es(t)|), where we use the error terms

ev(t) = v(t)− v̂(t) and es(t) = s(t)− ŝ(t). (ii) Ld, which is

proportional to the derivative of the error (i.e., d
dt
ev(t) and

d
dt
es(t)), and (iii) Li, which is proportional to the integral of

the error, which we use the difference in the vehicle’s future

course θ(t) – a cardinal direction in which a vehicle is to

be steered. With the bicycle model assumption [19] - which

assumes that left and right front wheels are represented by

one front wheel, we can approximate a steering wheel angle

st ≈ L/r, where L is the length of wheelbase and r is the

radius of the vehicle’s path. Then, we can approximate the

vehicle’s course θ(t) ≈ v(t)τ
r

≈ s(t)v(t) after the unit time

τ = 1. Thus, we use the following loss function L:

L = La +
1

T

T−1∑

t=0

[

Lp

︷ ︸︸ ︷

|ev(t)|+ |es(t)|+λi

Li
︷ ︸︸ ︷

|θ(t)− θ̂(t)|

+λd

(
|
d

dt
ev(t)|

2 + |
d

dt
es(t)|

2
)

︸ ︷︷ ︸

Ld

]
(2)

where T is the number of timesteps. We use hyperparame-

ters λd and λi to control the strength of the terms.

4. Honda Research Institute-Advice Dataset

In order to evaluate the advisable driving model, we have

collected Honda Research Institute-Advice Dataset (HAD).

In this section, we describe our dataset in terms of the driv-

ing videos used to collect human-annotated textual advice,

our annotation process, and analysis of the advice collected.

Driving Videos and Vehicle Control Commands. We use

5,675 video clips (over 32 hours), each of which is on aver-

age 20 seconds in length. Each video contains around 1-2

driving activities, e.g., passing through an intersection, lane

change, stopping, etc. These videos are randomly collected

from a large-scale driving video dataset called HDD [20].

This dataset contains camera videos – which are captured

by a single front-view camera mounted in a fixed position

on the roof top of the vehicle. These videos are mostly cap-

tured during urban driving near the San Francisco Bay Area,
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Figure 3: (A) Examples of input images, which are sampled at every 5 seconds. We also provide examples of the goal-

oriented advice and the stimulus-driven advice, which are collected from human annotators followed by a post-processing.

We highlight a visual cue (e.g., pedestrians), which are mentioned in advice, with a blue circle on the images. (B) The counts

of top-20 most frequent words used in both types of advice.

which contain the typical driver’s activities (i.e., turning,

merging, lane following, etc) on various road types (i.e.,

highway, residential roads with and without lane markings,

etc). Alongside the video data, the dataset provides a set of

time-stamped controller area network (CAN) bus records,

which contain human driver control inputs (i.e., steering

wheel angle).

Annotations. We provide a 20 seconds driving video and

ask a human annotator to describe, from a point of view of a

driving instructor, what the driver is doing (action descrip-

tion for goal-oriented advice) and what the driver should

pay attention (attention description for stimulus-driven ad-

vice). We require that the annotators enter the action de-

scription and attention description separately, for exam-

ple, “The driver crossed lanes from right to left lane” and

“There was construction happening on the road”, respec-

tively. Each video clip has 4-5 action descriptions (25,549

in total) and 3-4 attention descriptions (20,080 in total). We

then change the descriptions into the present tense (e.g.,

“The driver crosses lanes from right to left lane”). Espe-

cially for action descriptions, we change them to impera-

tive sentences (e.g., “Cross lanes from right to left lane”),

which are used to offer advice. To ensure the quality of the

collected descriptions, we ask another human annotator to

proofread the descriptions/advice to correct typographical

errors and mistakes in grammar and spelling. In our analy-

sis of annotations, we found that this two-stage annotation

is helpful for the annotator to understand the task and per-

form better. In Figure 3 (A), we provide examples of two

types of advice collected along with dashboard camera im-

ages (sampled at every 5 seconds).

Dataset Characteristics. Figure 3 (B) shows word counts

of the top-20 most frequent words used in the goal-oriented

advice and the stimulus-driven advice, respectively. Note

that we exclude prepositions, conjunctions, and definite and

indefinite articles. Most common goal-oriented advice is

related to changes in speed (i.e., stop, slow), driving (i.e.,

drive, straight, go, etc), and turning (i.e., left, right, turns).

Many also include a list of concepts relevant to a driving,

such as traffic light/sign, lane, intersection. The stimulus-

driven advice covers a diverse list of concepts relevant to

the driving scenario, such as the state of traffic/lane, traf-

fic light/sign, pedestrians crossing the street, passing other

parked/crossing cars, etc. Although less frequent, some

contain references to different types of vehicle (i.e., bus,

truck, bike, van, etc), road bumps, and weather conditions.

5. Experiments

Training and Evaluation Details. We use a single LSTM

layer for all the components of our framework. Our model is

trained end-to-end using random initialization (i.e., no pre-

trained weights). For training, we use Adam optimization

algorithm [10] and dropout [21] of 0.5 at hidden state con-

nections and Xavier initialization [6]. Our model takes 1-3

days (depending on types of CNN used) to train and can

process over 100 frames on average per second on a sin-

gle Titan Xp GPU. We use two mathematical criteria (the

statistics of absolute errors and the correlation distance)
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Table 2: In order to see the effectiveness of our advice-taking model, we compare the vehicle control prediction performance

with other two existing models, which do not take advice (the first two rows). For a fair comparison, we use the identical 5-

layer base CNN [3]. We also share the same input and output layers trained with the same loss function (i.e., the proportional

error Lp alone) used in [8]. We compare the control prediction performance in terms of three different sets of advice (i.e.,

the goal-oriented advice (ADVG) only, the stimulus-driven advice (ADVS) only, and both). For evaluation, we use the mean

of correlation distances (Corr) and the median of absolute errors as well as the 1st (Q1) and 3rd (Q3) quartiles.

Type Model
Advice input Speed (km/h) Steering Wheel Angle (deg)

Training Testing Median [Q1, Q3] Corr Median [Q1, Q3] Corr

Non-advisable ConvNet+FF (feed forward network) [3] - - 6.88 [3.13, 13.1] .597 4.63 [1.80, 12.4] .366

ConvNet+LSTM+Attention [8] (baseline) - - 3.98 [1.76, 8.10] .763 3.92 [1.54, 10.1] .469

Advisable CNN+LSTM+Attention+Advice (Ours) ADVG only ADVG 4.25 [1.86, 8.46] .743 3.53 [1.37, 8.83] .516

CNN+LSTM+Attention+Advice (Ours) ADVS only ADVS 3.28 [1.47, 6.46] .782 3.78 [1.45, 9.93] .484

CNN+LSTM+Attention+Advice (Ours) ADVG+ADVS ADVG 3.78 [1.67, 7.50] .763 3.54 [1.36, 9.21] .512

CNN+LSTM+Attention+Advice (Ours) ADVG+ADVS ADVS 3.78 [1.68, 7.46] .763 3.78 [1.41, 9.51] .511

to quantitatively evaluate their performance by comparing

with ground-truth human-demonstrated control commands.

Advisable vs. Non-advisable models. As shown in Ta-

ble 2, we first compare the vehicle control prediction per-

formance to see our advice-taking driving model can out-

perform other existing driving models that do not take ad-

vice. To this end, we implemented two other existing mod-

els, i.e., (1) CNN+FF (Feed forward network) [3] and (2)

CNN+LSTM+Attention [8]. For a fair comparison, all

models used the identical 5-layer CNN [3] as the convo-

lutional (visual) feature encoder trained by minimizing the

loss term Lp only (same as used in [8]. See Equation 2).

This visual encoder produces a 12×20×64-dimensional

feature cube from the last convolutional layer. In the later

section, we will also explore further potential performance

improvements with more expressive neural networks over

this base CNN configuration.

In Table 2, we report a summary of our experiments val-

idating the quantitative effectiveness of our advice-taking

approach. Comparing with the non-advisable models (rows

1-2), our advisable models all gave better scores for vehi-

cle control prediction. As we will see in the next section,

we observe that our advisable driving model focuses more

on driving-related objects (whether provided as advice or

not) than others that do not take advice during training and

testing phases. For example, in Figure 4 and 5, our advis-

able model pays more attention to pedestrians crossing, a

car pulling out, and construction cones. More importantly,

advice like “stop at a stop sign” or “there is a person with

a stroller crossing the crosswalk” may reflect typical links

between visual causes and actions of human driver behav-

ior. The data suggests that taking advice in controller helps

imitate more closely human driver behaviors. Biasing the

Table 3: Recall from Section 3.4, we propose an advice

internalization technique – which minimizes the difference

between two attention maps (generated with and without ad-

vice inputs) and thus makes the driving model refer to the

same salient objects. Note that we use a synthetic token

<none> to indicate when advice inputs are not available.

We used λa as 50 (by the grid-search method).

Model
Advice input Speed (km/h) Steering Wheel Angle (deg)

Training Testing Median [Q1, Q3] Corr Median [Q1, Q3] Corr

no advice internalization ADVS <None> 3.55 [1.58, 7.12] .777 4.01 [1.59, 10.1] .479

w/ advice internalization ADVS <None> 3.36 [1.51, 6.62] .784 3.96 [1.55, 10.0] .480

controller by taking advice improves the plausibility of its

output from a human perspective.

Types of Advice Matter. We further examine the perfor-

mance comparison with two different types of advice: the

goal-oriented advice (e.g., “stop at the intersection”) and the

stimulus-driven advice (e.g., “there is a pedestrian cross-

ing”). In Table 2 (rows 3-4), we report vehicle control

prediction accuracy when each of which types of advice is

given to the model. In our analysis, the goal-oriented ad-

vice provides better control accuracy for predicting steering

wheel angle commands. This is mainly due to the fact that

the goal-oriented advice conveys the more direct messages,

which may include navigational command on how the ve-

hicle behaves (e.g., go/stop and turn). The stimulus-driven

advice, which conveys rich messages about visual saliencies

(e.g., red light, stop sign, and intersection), provides better

predicting accuracy for vehicle’s speed prediction.

Qualitative Analysis of Attention Maps. As shown in Fig-

ure 4, we qualitatively compared with our baseline by visu-

alizing attention heat maps - the highlighted image region
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“There is a white car pulling out of a parking lot.”
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“Stop at a stop sign and wait for traffic and then continue 
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“After the turn, be cautious due to pedestrian crosswalks”
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Figure 4: Attention heat maps comparison. We provide input raw images and attention heat maps generated by the existing

attention-based driving model [8] (Baseline column), and our model trained with all types of advice together (Ours column).

We highlight key object-centric words (as appropriate row 1 & 2), e.g., cones and a white car pulling out, in green as well as

corresponding salient objects in a green circle overlaid on images.

has a potential influence on the network’s outputs. While

all models see driving-related common visual cues (i.e.,

lane markings), we observed that our advice-taking model

focuses more on both advice-related cues (i.e., pedestrian

crossing, construction cones, a car pulling out, etc) or vi-

sual objects relevant to the certain driving scenario (i.e., ve-

hicles, crosswalk, pedestrians, etc).

Internalizing Advice Taken. Users will not usually be

aware of the full state of the vehicle (they are not driv-

ing), the vehicle controller should mostly be in charge and

the human-to-vehicle advice might occasionally be unavail-

able. As summarized in Table 3, we further examine the

performance comparison with no advice available (we use a

synthetic token <none> to indicate unavailable advice in-

put) in a testing time. Interestingly, we observe that (i) the

performance of a model trained with the stimulus-driven ad-

vice is not degraded much whenever advice inputs are not

available in testing (its control performance is still better

than other non-advisable approaches), (ii) our advice inter-

nalization technique (see Equation 1) further improves the

control performance toward those having advice inputs.

In Figure 5, we further examine the effect of advice in-

ternalization by visualizing attention heat maps. We first

visualize attention maps generated with no advice provided

(i.e., using a <none> token, see middle row). Then, we

Table 4: We compared the vehicle control prediction per-

formance with four different visual encoders. Except for

the visual encoder part, we use the same training strategy.

CNN base
Speed (km/h) Steering Wheel Angle (deg)

Median [Q1, Q3] Corr Median [Q1, Q3] Corr

MobileNet [7] 3.93 [1.73, 7.80] .753 4.20 [1.65, 10.7] .463

Bojarski et al. [3] 3.78 [1.68, 7.49] .763 3.58 [1.39, 9.34] .512

Inception v3 [23] 2.89 [1.31, 5.59] .795 3.47 [1.34, 8.76] .525

Inception-ResNet-v2 [22] 2.93 [1.33, 5.63] .796 3.54 [1.36, 9.19] .491

visualize the attention map changes when the model takes

ground-truth advice as an input (see bottom row). Our re-

sult reveals that our model is still able to see driving-related

visual cues (i.e., traffic lights or lanes), whereas advice in-

puts can bias the model to refer to objects, which is related

to the advice given.

Visual Encoder Comparison. We further examine vari-

ants of our proposed model using four different widely-used

visual feature encoders. We used the output of intermedi-

ate layers from Bojarski et al. [3], Inception v3 [23], Mo-

bileNet [7], and Inception-ResNet-v2 [22]. We trained all

models in an end-to-end manner using random initializa-

tion, and we used both types of advice as an input in the

training and testing phases (averaged scores are reported).
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Figure 5: We compared attention heat maps generated with and without advice as an input in testing time. We visualize raw

input images with salient objects marked by a green circle, e.g., a bus pulling off, which is mentioned by an advice input (1st

row). The provided advice (1-6) is provided at the bottom of the figure. We visualize attention heat maps from our trained

model but with a synthetic token <none> (i.e., without advice, 2nd row). Attention map differences between those with and

without advice (3rd row), where red parts indicate where the model (with advice) pays more attention.

As reported in Table 4, the result reveals that control pre-

diction accuracy can be generally expected to improve when

using a deeper CNN architecture, which learns more expres-

sive visual features. Visual features from the Inception v3-

based architecture lead the best performance improvement

against other three architectures.

Effect of Regularization. Recall from Section 3.4, we ex-

plored the loss function L, which contains three terms – Lp

(proportional error), Ld (derivative error), and Li (integral

error). We use two hyperparameters λd and λi to control

the strength of the corresponding terms. Figure 6 shows

control command prediction errors with different combina-

tions of hyperparameters in terms of the median value of

absolute errors. We also visualize the error of the acceler-

ation (the derivative of speed) and the steering angle rate

(the derivative of steering angle command). The impact

of adding these loss terms is dominant in the prediction of

speed, whereas the performance in steering is slightly de-

graded. We obtained marginal improvement by adding in-

tegral loss term (λi) in speed predictions, while derivative

errors are reduced by adding derivative loss term (λd).

6. Conclusion

We described an advisable driving model for self-driving

cars by incorporating a textual encoder that understands

human-to-vehicle natural language advice and grounds it

into the vehicle controller. We showed that (i) taking advice

improves vehicle control prediction accuracy compared to

baselines, (ii) our advice-taking model really sees advice-
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Figure 6: Control performance comparison with different

sets of hyperparameters (λd, λi) (see Equation 2). Along

with proportional prediction errors (green bar), we also vi-

sualize derivative errors (blue line). We report the median

value of absolute error.

related visual cues and such advice can be internalized, and

(iii) our Honda Research Institute-Advice Dataset (HAD)

allows us to train and evaluate our advisable model and we

will make the dataset available upon publication.

This is a first paper on the use of advice, but this design

is most appropriate for turn-by-turn (short duration) advice.

Since our data comprised short clips, advice was effective

throughout the clip. It will be worth exploring other styles

of advice, such as per-ride advice (gentle, fast, etc) and rule-

based global advice.
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