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Abstract

This paper proposes the progressive attention memory

network (PAMN) for movie story question answering (QA).

Movie story QA is challenging compared to VQA in two as-

pects: (1) pinpointing the temporal parts relevant to answer

the question is difficult as the movies are typically longer

than an hour, (2) it has both video and subtitle where dif-

ferent questions require different modality to infer the an-

swer. To overcome these challenges, PAMN involves three

main features: (1) progressive attention mechanism that uti-

lizes cues from both question and answer to progressively

prune out irrelevant temporal parts in memory, (2) dynamic

modality fusion that adaptively determines the contribution

of each modality for answering the current question, and (3)

belief correction answering scheme that successively cor-

rects the prediction score on each candidate answer. Exper-

iments on publicly available benchmark datasets, MovieQA

and TVQA, demonstrate that each feature contributes to our

movie story QA architecture, PAMN, and improves perfor-

mance to achieve the state-of-the-art result. Qualitative

analysis by visualizing the inference mechanism of PAMN

is also provided.

1. Introduction

Humans have an innate cognitive ability to infer from

different sensory inputs to answer questions of 5W’s and

1H involving who, what, when, where, why and how, and it

has been a quest of mankind to duplicate this ability on ma-

chines. In recent years, studies on question answering (QA)

have successfully benefited from deep neural networks, and

showed remarkable performance improvement on textQA

[24, 30], imageQA [2, 3, 19, 31], videoQA [8, 11, 32, 34].

This paper considers movie story QA [15, 18, 21, 26, 29]

that aims at a joint understanding of vision and language by

answering questions about movie contents and storyline af-

ter observing temporally-aligned video and subtitle. Movie

∗This research was supported by Samsung Research

story QA is challenging compared to VQA in following two

aspects: (1) pinpointing the temporal parts relevant to an-

swer the question is difficult as the movies are typically

longer than an hour and (2) it has both video and subtitle

where different questions require different modality to infer

the answer.

The first challenge of movie story QA is that it involves

long videos that are possibly longer than an hour which

hinders pinpointing the required temporal parts. The in-

formation in the movie required to answer the question is

not distributed uniformly across the temporal axis. To ad-

dress this issue, memory networks [24] have widely been

accepted in QA tasks [21, 24, 26, 30]. The attention mech-

anism have widely been adopted to retrieve the information

relevant to the question. We observed that single-step atten-

tion on memory networks [21, 26] often generates blurred

temporal attention map.

The second challenge of movie story QA is that it in-

volves both video and subtitle where different questions re-

quire different modality to infer the answer. Each modality

may convey essential information for different questions,

and optimally fusing them is an important problem. For ex-

ample in the movie Indiana Jones and the Last Crusade, an-

swering the question “What does Indy do to the grave rob-

bers at the beginning of the movie?” would require video

modality rather than subtitle modality while the question

“How has the guard managed to stay alive for 700 years?”

would require subtitle modality. Existing multi-modal fu-

sion methods [7, 14, 15] only focus on modeling rich in-

teractions between the modalities. However, these methods

are question-agnostic in that the fusion process is not con-

ditioned on the question.

To address the aforementioned challenges, this paper

proposes Progressive Attention Memory Network (PAMN)

for movie story QA. PAMN contains three main features;

(1) progressive attention mechanism for pinpointing re-

quired temporal parts, (2) dynamic modality fusion for

adaptively fusing modalities conditioned on question and

(3) belief correction answering scheme. Progressive atten-

tion mechanism utilizes cues from both question and an-
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swers to prune out irrelevant temporal parts for each mem-

ory. While iteratively taking question and answers for tem-

poral attention generation, memories are progressively up-

dated to accumulate cues to locate relevant temporal parts

for answering the question. Compared to stacked attention

[6, 31], progressive attention considers multiple sources

(e.g., Q and A) and multiple targets (e.g., video and subtitle

memory) in a single framework. Dynamic modality fusion

aggregates the outputs from each memory by adaptively de-

termining the contribution of each modality. Conditioned

on the current question, the contribution is obtained by soft-

attention mechanism. Fusing multi-modal data by bilinear

operations [4, 7, 14] often requires heavy computation or

large number of parameters. Dynamic modality fusion effi-

ciently integrate video and subtitle modality by discarding

worthless information from unnecessary modality. Belief

correction answering scheme successively corrects the pre-

diction score of each candidate answer. When humans solve

questions, they typically read content, question and answers

multiple times in an iterative manner [10]. This observation

is modeled by belief correction answering scheme. The pre-

diction score (logits), which this paper refers to a belief, is

equally likely initialized and successively corrected com-

pared to existing answering scheme [15, 21, 29] which uses

single-step answering scheme.

The main contribution of this paper is summarized as fol-

lows. (1) This paper proposes a movie story QA architec-

ture referred to as PAMN that tackles major challenges of

movie story QA with three features; progressive attention,

dynamic modality fusion and belief correction answering

scheme. (2) PAMN achieves the state-of-the-art results on

MovieQA dataset. Both the quantitative and qualitative re-

sults exhibit the benefits and potential of PAMN.

2. Related Work

2.1. Visual Question Answering

Despite the short history, imageQA enjoys large num-

ber of datasets including VQA [3], COCO-QA [23] and Vi-

sual7W [35]. Attention mechanism is widely used to locate

the visual clues relevant to the question. Stacked Atten-

tion Network (SAN) [31] utilizes stacked attention mod-

ule to query an image multiple times to infer the answer

progressively. The Dual Attention Network (DAN) [22]

jointly leverages visual and textual attention mechanisms

to localize key information from both image and question.

Recently, applying bilinear operation showed promising re-

sults on imageQA. Multimodal Compact Bilinear pooling

(MCB) [7] utilized bilinear operation to fuse image and

question features in imageQA. To reduce the computa-

tional complexity, MCB uses the sampling-based approx-

imation. To further reduce the feature dimension, Multi-

modal Low-rank Bilinear Attention Network (MLB) [14]

utilizes Hadamard product in the common space with two

low-rank projection matrices. Multimodal Tucker Fusion

[4] utilizes tucker decomposition [27] to efficiently param-

eterize bilinear interactions between visual and textual rep-

resentation.

VideoQA is a natural extension of imageQA as video

can be seen as temporal extension of image. Large-scale

videoQA benchmarks such as TGIF-QA [11] and ‘fill-in-

the-blank’ [34] have boosted the research on videoQA.

Spatio-temporal VQA (ST-VQA) [11] generates spatial and

temporal attention to localize which regions in a frame and

which frames in a video to attend, respectively. Yu et al.

[32] proposed Joint Sequence Fusion (JSFusion) that mea-

sures semantic similarity between video and language. JS-

Fusion utilizes hierarchical attention mechanism that learns

matching representation patterns between modalities.

2.2. Movie Story Question Answering

A recent direction in videoQA leverages text modality

such as subtitle in addition to video modality for story un-

derstanding. To this end, various video story QA bench-

marks such as PororoQA [16], MeMexQA [12], TVQA

[17] and MovieQA [26] have been suggested. Numerous

researches have tackled MovieQA benchmark which pro-

vides movie clip, subtitle and other various textual descrip-

tions. Tapaswi et al. [26] divided the movie into multiple

sub-shots and utilized memory network (MemN2N) [24] to

store video and subtitle features into memory slots. Deep

Embedded Memory Network (DEMN) [16] reconstructs

stories from a joint stream of scene-dialogue using a la-

tent embedding space and retrieves information which is

relevant to the question. Na et al. [21] proposed Read-

Write Memory Network (RWMN) which is a CNN-based

memory network where video and subtitle features are first

fused using bilinear operation, then write/read networks

store/retrieve information, respectively.

Liang et al. [18] proposed Focal Visual-Text Attention

(FVTA) that utilizes the hierarchical attention applied to a

three-dimensional tensor to localize evidential image and

text snippets. Layered Memory Network (LMN) [29] uti-

lizes Static Word Memory module and Dynamic Subtitle

Memory module to learn frame-level and clip-level repre-

sentations. The hierarchically formed movie representation

encodes the correspondence between words and frames,

and the temporal alignment between sentences and frames.

Multimodal Dual Attention Memory (MDAM) [15] utilizes

multi-head attention mechanism [28] and question attention

to learn the latent concepts of multimodal contents. Mul-

timodal fusion is performed once after the attention pro-

cess. Compared to existing architectures on movie story QA

that adopt single-step reasoning, PAMN provides multi-step

reasoning approach to localize necessary information from

question, answers, and movie contents.
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Figure 1. Illustration of the proposed PAMN. The pipeline of PAMN is as follows. (a) Question and candidate answers are embedded into

a common space. Video and subtitle are embedded into dual memory that holds independent memories for each modality. (b) Progressive

attention mechanism pinpoints temporal parts that are relevant to answering the question. To infer the correct answer, (c) dynamic modality

fusion that adaptively integrates outputs of each memory by considering contribution of each modality. (d) Belief correction answering

scheme successively corrects the belief of each answer from equally likely initialized belief.

3. Progressive Attention Memory Network

This section describes the proposed Progressive Atten-

tion Memory Network (PAMN). Fig. 1 shows the overall

architecture of PAMN, which fully utilizes diverse sources

of information (video, subtitle, question and candidate an-

swers) to answer the question. The pipeline of PAMN is as

follows. First, video and subtitle are embedded into dual

memory as in Fig. 1(a) that holds independent memories

for each modality. Then, progressive attention mechanism

pinpoints temporal parts that are relevant to answering the

question as in Fig. 1(b). To infer the correct answer, dy-

namic modality fusion in Fig. 1(c) adaptively integrates

outputs of each memory by considering contribution of each

modality. Belief correction answering scheme successively

corrects the belief of each answer from equally likely ini-

tialized belief as in Fig. 1(d).

3.1. Problem Setup

The formal definition of the problem is as follows. The

inputs of PAMN are (1) a question representation q ∈
R

300, (2) five candidate answer representations {ai}
5
i=1 ∈

R
5×300, (3) temporally aligned video (v) and subtitle (s)

representation {(vi, si)}
T
i=1 on the whole movie. Each ele-

ment of subtitle representation si corresponds to the dialog

sentence of a character and each element of video repre-

sentation vi is extracted from temporally aligned video clip.

The number of overall sentences of the movie is denoted as

T . The detailed explanation on extracting visual and tex-

tual feature is provided in Section 4.2. The objective is to

maximize the following likelihood:

arg maxθ

∑

D

logP (y|v, s,q,a;θ), (1)

where θ denotes learnable model parameters, D represents

dataset and y represents the correct answer.

3.2. Dual Memory Embedding

As depicted in Fig. 1(a), the inputs are first mapped to

an embedding space. The question representation q and

candidate answer representations {ai}
5
i=1 are embedded to

a common space by weight-shared linear fully connected

(FC) layer with parameters Wug ∈ R
300×d and bug ∈ R

d,

to yield question embedding u ∈ R
d and answer embed-

ding g ∈ R
5×d where d denotes the memory dimension.
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Video representation v and subtitle representation s are

embedded independently to generate video memory Mv

and subtitle memory Ms. This dual memory structure en-

ables pinpointing different temporal parts for each modality.

To reflect the observation that the adjacent video clips often

have strong correlations, we utilized the average pooling

(Avg.Pool) layer to store the adjacent representations into

a single memory slot.

As the first step of dual memory embedding, feed-

forward neural network (FFN) composed of two linear FC

layers with ReLU non-linearity in between is applied to em-

bed video and subtitle representation. This operates on ev-

ery element of v and s independently. Then, average pool-

ing layer is applied to model neighboring representations

together, forming video memory Mv and subtitle memory

Ms, i.e. dual memory:

FFN(x) = ReLU(xW1 + b1)W2 + b2, (2)

Mv = Avg.Pool(FFN(v); θp, θs), (3)

Ms = Avg.Pool(FFN(s); θp, θs), (4)

where θp and θs denotes the size and stride of the pooling,

x indicates the each input and W, b denotes the weight

and bias of feed-forward neural network. Finally, generated

video and subtitle memory are Mv,Ms ∈ R
N×d where

N = ⌈T/θs⌉.

3.3. Progressive Attention Mechanism

The progressive attention mechanism in Fig. 1(b) takes

dual memory Mv,Ms, question embedding u and answer

embedding g as inputs, and progressively attends and up-

dates the dual memory. While iteratively taking question

and answers for temporal attention generation, memories

are progressively updated to accumulate cues to locate rel-

evant temporal parts for answering the question. We ob-

served that single-step temporal attention on memory net-

works [26, 21] often generates blurry attention map. The

multi-step nature of progressive attention mechanism en-

ables generating sharper attention distribution. Unneces-

sary information from memory is filtered out at each iter-

ation.

The first step of progressive attention mechanism is tem-

poral attention by question embedding u. The attention

weights are obtained by calculating the cosine similarity be-

tween each memory slot and question embedding u as in

Eqs.5, 6. The dual memory is multiplied by the attention

weights and is followed by linear FC layer to be updated

as in Eqs.7, 8. The attention operates independently for the

video memory Mv and the subtitle memory Ms:

αv
Mu = softmax(uMv⊺), (5)

αs
Mu = softmax(uMs⊺), (6)

Mv ← (αv
Mu ⊙Mv)Wv

Mu + bv
Mu, (7)

Ms ← (αs
Mu ⊙Ms)Ws

Mu + bs
Mu, (8)

where αv
Mu, α

s
Mu ∈ R

N denote the temporal attention

weight for Mv,Ms, respectively. The learnable parame-

ters for linear FC layer is denoted by WMu,bMu , ← in-

dicates the update operation and ⊙ represents the element-

wise multiplication with broadcasting on appropriate axis.

The second step of progressive attention mechanism is

temporal attention by answers. This step is similar to the

first step except it utilizes answer embedding g to attend

updated dual memory Mv,Ms:

αv
Mg = softmax(gMv⊺), (9)

αs
Mg = softmax(gMs⊺), (10)

Mv ← (αv
Mg ⊙Mv)Wv

Mg + bv
Mg, (11)

Ms ← (αs
Mg ⊙Ms)Ws

Mg + bs
Mg, (12)

where αv
Mg and αs

Mg ∈ R
5×N denote the temporal atten-

tion weights for dual memory and Mv,Ms ∈ R
5×N×d rep-

resent the updated video and subtitle memory, respectively.

Multiple Hops Extension. As described above, the pro-

gressive attention mechanism attends the dual memory only

once for each attention step. In this case, the dual memory

may contain much irrelevant information and lack capabil-

ity to query complicated semantics to answer the question.

Progressive attention can be naturally extended to utilize

multiple hops [24] for fine-grained extraction of abstract

concepts and reasoning of high-level semantics.

Different from the memory network [24] that utilizes the

sum of the output ok and query uk of k-th hop as the query

of next hop, we use the same question embedding u with

updated dual memory M(k) for k-th hop. Each attention

step in Eqs. 5-8, 9-12 is repeated hMu, hMg times, respec-

tively. Each attend and update operations can be expressed

as:

α(k) = softmax(xM(k−1)⊺), (13)

M(k) ← (α(k) ⊙M(k−1))W(k) + b(k), (14)

where the subscripts and superscripts corresponding to each

equation are omitted to avoid repetition, and x indicates u

or g for each step of progressive attention.

3.4. Dynamic Modality Fusion

Dynamic modality fusion in Fig. 1(c) aggregates dual

memory into fused output o at the end of each progressive

attention step. Different question requires different modal-

ity to infer the answer. Consider the question ”What drink

bottle is at the table when Robin, Lily, Marshall and Ted

are talking to each other?”. In this case, the video modality

would be more important than subtitle modality. Similar to

modality attention [9, 13], dynamic modality fusion is soft-

attention based algorithm that determines the contribution

of each modality for answering the question.

Given dual memory Mv,Ms, dynamic modality fusion

first sum each memory along temporal axis and compute

8340



cosine similarity with question embedding u to calculate

attention score.:

om =

N∑

n=1

Mm, (15)

αDMF = softmax(u[ov;os]⊺), (16)

where m indicates each modality v or s, om represents the

output of each memory, N denotes the temporal length of

dual memory, and αDMF denotes attention weights. Finally,

the fused output o is computed by weighted summing be-

tween attention weight and memory output:

o =
∑

m

αm
DMFo

m. (17)

The learned attention weight can be interpreted as contri-

bution or importance of each modality on answering the

question. By regulating the ratio of each modality on fused

output, dynamic modality fusion leads to stable learning by

discarding information from unnecessary modality.

3.5. Belief Correction Answering Scheme

Belief correction answering scheme in Fig. 1(d) se-

lects the correct answer among five candidate answers.

Rather than determining the prediction score once, belief

correction answering scheme successively corrects predic-

tion score by observing diverse source of information. This

mimics the multi-step reasoning process of human answer-

ing difficult questions [10]. Combined with progressive at-

tention and dynamic modality fusion, this multi-step rea-

soning approach of PAMN strengthens the model’s ability

to extract high-level meaning from the multimodal data.

Belief B ∈ R
5 denotes the prediction score on the can-

didate answers. The prediction probability z ∈ R
5 is com-

puted by normalizing the belief, and the answer y is pre-

dicted with the highest probability:

z = softmax(B), (18)

y = arg maxi∈[5](zi). (19)

One way of initializing belief would be null initialization

that endows all candidate answers with equal probabilities

before observing any information. To reflect this unbiased

initialization, the belief B is initialized as zero vector.

Belief correction answering scheme adopts three-step

belief correction; u-, Mu- and Mg-correction. For each cor-

rection step, the belief is corrected by accumulating the sim-

ilarity between answer embedding g and the observed in-

formation. Belief is first corrected by only considering the

question, i.e. u-correction. The intuition is that human often

builds prior biases after skimming through only the question

and candidate answers:

Bu = ug⊺, (20)

B← B+Bu. (21)

Then for Mu- and Mg-correction, the outputs of first and

second progressive attention steps, oMu and oMg , are con-

sidered. Again, the similarities between answer embedding

g are computed:

BMu = oMug
⊺, (22)

BMg,i = oMg,ig
⊺

i . (23)

Finally, the belief is corrected to infer correct answer:

B← B+ βMuBMu, (24)

B← B+ βMgBMg, (25)

where the correction weights βMu, βMg are hyper param-

eters that scales corresponding belief correction. Note that

the belief is normalized to have unit norm after each correc-

tion.

4. Experiments

4.1. Dataset

MovieQA [26] benchmark is constructed for movie

story QA which consists various sources of information

such as movie clip, subtitle, plot synopses, scripts and DVS

transcriptions. MovieQA dataset contains 408 movies with

corresponding 14,944 multiple-choice questions. MovieQA

benchmark consists of 6 tasks according to which sources to

be used. This paper focuses on video+subtitles task which

is the only task utilizing movie clip. Since only 140 movies

contain video clips, there are 6,462 question-answer pairs

which splits into 4,318 training, 886 validation and 1,258

test samples.

TVQA [17] benchmark is video story QA dataset on TV

show domain. It consists of total 152.5k question-answer

pairs on six TV shows: The Big Bang Theory, How I Met

Your Mother, Friends, Grey’s Anatomy, House, Castle. Each

split of TVQA contains 122k, 15.25k, 15.25k for train, val-

idation and test, respectively. Unlike MovieQA which con-

siders whole movie as input, TVQA contains 21,793 short

clips of 60/90 seconds segmented from the original TV

show for question-answering.

4.2. Feature extraction

For fair comparison, we extracted visual and textual fea-

tures similar to previous works [21, 26] and fixed them dur-

ing training.

Textual feature Each sentence from question, candidate

answers and subtitle are divided into sequence of words,

then each word is embedded by skip-gram model [20] pro-

vided by Tapaswi et al. [26] which is trained on MovieQA

plot synopses. In order to encode the order of words within

a sentence, position encoding (PE) [24] is utilized to ob-

tain textual feature. For example in the case of question,
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Methods valid Acc. test Acc.

SSCB w/o Sub 21.60 -

SSCB w/o Vid 22.30 -

SSCB [26] 21.90 -

MemN2N w/o Sub 23.10 -

MemN2N w/o Vid 38.00 -

MemN2N [26] 34.20 -

DEMN [16] 44.70 29.97

RWMN [21] 38.67 36.25

FVTA [18] 41.00 37.30

LMN [29] 42.50 39.03

MDAM [15] - 41.41

PAMN w/o Sub 42.33 -

PAMN w/o Vid 42.56 -

PAMN 43.34 42.53

Table 1. Accuracy comparison on the validation and test set of

MovieQA benchmark of Video+Subtitles task. PAMN achieves

the state-of-the-art performance. The test set accuracy is obtained

from online evaluation server. And ‘-’ indicates that the perfor-

mance is not provided.

Methods Video Feat. test Acc.

Longest Answer - 30.41

TVQA [17] img 63.57

TVQA [17] reg 63.19

TVQA [17] cpt 65.46

PAMN img 64.61

PAMN cpt 66.77

Table 2. Accuracy comparison on the test set of TVQA benchmark

without timestamp annotation. We utilized the video and text fea-

tures extracted by Lei et al. [17].

q =
∑

n PE(qn) ∈ R
300 where each qn indicates word

vector.

Visual feature Movies are divided into video clips that

are temporally aligned with each sentence of the subtitle.

The frames are sampled from each video clip with the rate

of 1 fps. Then, frame feature of size 1536 is extracted

from “Average Pooling” layer on Inception-v4 [25]. Finally,

mean-pooling over all frame features from the correspond-

ing video clip produces the visual feature, vi ∈ R
1536.

4.3. Implementation details

The entire architecture was implemented using Tensor-

flow [1] framework. All the results reported in this paper

were obtained using the Adagrad optimizer [5] with a mini-

batch size of 32 and the learning rate of 0.001. All the ex-

periments were performed under CUDA acceleration with

single NVIDIA TITAN Xp (12GB of memory) GPU. In all

the experiments, the recommended train / validation / test

split was strictly observed.

4.4. Quantitative Results

Table 1 compares the validation and test accuracy on the

MovieQA benchmark of Video+Subtitles task. We compare

the performance of PAMN with other state-of-the-art archi-

tecture. The ground-truth answers for MovieQA test set are

not observable and the evaluation on the test set can only be

performed once every 72 hours through an online evalua-

tion. On MovieQA benchmark, PAMN exhibits the state-of-

the-art results by attaining test accuracy of 42.53%. It out-

performs the runner-up, MDAM [15] (41.41%) by 1.12%

and the third place, LMN [29] (39.03%) by 3.50%. Note

the MDAM is an ensemble of 20 different models, while

PAMN is a single model.

In order to evaluate the effectiveness of each modality,

experiments based on using only video and subtitle were

also conducted: PAMN w/o Sub and PAMN w/o Vid. From

near random-guess performances of SSCB w/o Sub [26]

and MemN2N w/o Sub [26] as shown in Table. 1, it is no-

ticed that movie story understanding is difficult using only

video. The PAMN w/o Sub attains large performance gain

of 19.23% compared to MemN2N w/o Sub. It even achieves

performance comparable to LMN [29] which exploits both

video and subtitle. PAMN understands movie story even

without observing subtitle. From Table.1, it is noticed that

PAMN performs better than PAMN w/o Vid and PAMN w/o

Sub which indicates both video and subtitle provides con-

ducive information in improving prediction.

Table 2 shows performance comparison on TVQA

benchmark without timestamp annotation. In this experi-

ment, we utilized the video and text features extracted by

Lei et al. [17] (i.e. ImageNet and visual concept feature for

video and GloVe feature for text) for fair comparison. Fur-

ther, we encoded the sentence feature using LSTM instead

of position encoding. On TVQA benchmark, PAMN out-

performs state-of-the-art result by attaining test accuracy of

66.77% with visual concept feature.

4.5. Ablation Study

Table. 3 summarizes the ablation analysis of PAMN

on the validation set of MovieQA benchmark in order to

measure the validity of the key components of PAMN. To

measure to effectiveness of progressive attention mecha-

nism, each temporal attention step of PAMN w/o PA uti-

lizes dual memory obtained in Eqs. 3,4, i.e. PAMN w/o

PA do not accumulate cues and each attention step oper-

ates in a parallel manner. PAMN w/o Multiple Hop attends

dual memory only once for each temporal attention step.

As shown in the first block of Table. 3, PAMN w/o PA

underperforms PAMN, which shows that the attention ac-

cumulation by progressive attention mechanism is impor-

tant in understanding movie story. Multiple hops extension

is also crucial in attaining the best possible performance.

For ablating dynamic modality fusion, we experiment with
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Methods valid Acc. ∆

PAMN w/o PA 42.03 -1.31%

PAMN w/o Multiple Hop 42.67 -0.67%

PAMN w/o DMF 42.09 -1.25%

PAMN w/ MCB [7] 42.89 -0.45%

PAMN w/ MFB [33] 42.55 -0.79%

PAMN w/ Tucker [4] 42.89 -0.45%

PAMN w/o Mu,Mg-correction 39.50 -3.84%

PAMN w/o Mg-correction 41.76 -1.58%

PAMN w/o Mu-correction 40.86 -2.48%

PAMN 43.34 -

Table 3. Ablation studies of the proposed PAMN on the validation

set of MovieQA benchmark. The last column shows the perfor-

mance drop.

four variants: PAMN w/o DMF take the mean of the out-

puts of dual memory ov , os, PAMN w/ MCB, MFB, Tucker

use MCB [7], MFB [33], Tucker decomposition [4, 27] in-

stead of dynamic modality fusion, respectively. As shown

in the second block of Table. 3, fusing modalities by aver-

aging or bilinear operations show lower performance than

dynamic modality fusion. This implies that question de-

pendent modality weighting (i.e. dynamic modality fusion)

helps strengthens conducive modality. To measure the ef-

fectiveness of belief correction answering scheme, the third

block of Table. 3 shows the experimental results of three

variants: PAMN w/o Mu,Mg-correction, PAMN w/o Mg-

correction, and PAMN w/o Mu-correction. It is noteworthy

that only using QA pairs shows much higher performance

that the random baseline of 20%. Considering Mu- and

Mg-correction, PAMN w/o Mg-correction shows 2.26%

and PAMN w/o Mu-correction shows 1.36% performance

boosts, respectively.

Table. 4 summarizes the performance variation depend-

ing on three sets of hyperparameters; the number of hops for

attention by question u and answer g, θp, θs: size and stride

of Avg. Pool layer, and βMu, βMg: correction weights for

belief correction module. The multiple hops extension with

2-repetitions exhibits the best validation performance for

PAMN. The multiple hops extension with more than three

repetitions may suffer from overfitting due to the small size

of dataset. The performance is positively affected by in-

creasing θp and θs, but it degrades for large θp and θs due

to information blurring of Avg. Pool. We observed that

there is no best-performing optimal correction weights. If

the question representation u has enough information about

where in the movie to focus on, βMu should be higher, and

vice versa. Furthermore, it is preferable to have smaller

βMg than βMu since large value of βMg dilates the effect

of ug and Mu correction since the normalization is applied

in between every belief correction.

# hops Avg. Pool Correction Acc.

hMu hMg θp θs βMu βMg

1 1 1 1 1 0.5 38.94

1 1 12 8 1 0.5 40.18

1 1 24 16 0.5 0.5 40.07

1 1 24 16 1 0.1 42.10

1 1 24 16 1 0.5 42.67

1 1 40 30 0.5 0.5 40.97

1 1 40 30 1 0.1 42.66

1 1 40 30 1 0.5 42.55

1 1 80 60 1 0.5 41.20

2 2 24 16 1 0.5 43.34

2 2 40 30 1 0.1 42.89

3 3 24 16 1 0.5 42.55

3 3 40 30 1 0.1 42.77

Table 4. Performance variation of PAMN on the validation set of

MovieQA benchmark depending on three sets of hyper parame-

ters. hMu, hMg: the number of hops for attention by question

u and answer g, θp, θs: size and stride of Avg. Pool layer, and

βMu, βMg: correction weights for belief correction module.

4.6. Qualitative analysis

The Fig. 2 illustrates the selected qualitative examples

of PAMN. Each example provides the temporal attention

map αv
Mg, α

s
Mg from progressive attention mechanism, the

ground-truth (GT) temporal part where the question was

generated from, the attention weights αv
DMF , α

s
DMF from

dynamic modality fusion, and the inference path of be-

lief correction answering scheme. The generated tempo-

ral attention well matches with the GT which indicates that

PAMN successively learns where to attend. The weights

αv
DMF, α

s
DMF adaptively scales depending on the question

type which implies that PAMN learns what modality to use

without additional supervision. For some cases, PAMN pre-

dicts the correct answer at the u-correction step while for

other cases the correct answer is determined at the last (Mg)

step. PAMN is an interpretable architecture in that the infer-

ence path and the attention map provide the trace of where

PAMN attends and what information source it used to an-

swer the question.

The Fig. 3 exhibits the accuracy comparison with respect

to the first word of the question between MemN2N [26],

RWMN [21] and PAMN on the validation set of MovieQA

benchmark. The results on 5W1H question types: Who,

Where, When, What, Why and How are analyzed. Typ-

ically, answering who, where, when, what questions re-

quire pinpointing the temporal parts relevant to the ques-

tion (e.g., When do the loyalists take over Air Force One?,

What does Korshunov demand from Vice President Ben-

nett?). On the other hand, answering why, how questions

require understanding the contextual information over the
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Figure 2. Qualitative examples of MovieQA benchmark solved by PAMN (the last example is failure case). Green sentences and check

symbols indicate correct answers and red dotted boxes highlight PAMN’s prediction at each belief correction step. For failure cases, red

‘x’ symbols indicate the the incorrect selection. αv
Mg, α

s
Mg represents temporal attention obtained by progressive attention mechanism,

αv
DMf, α

s
DMF denotes attention obtained by dynamic modality fusion. The temporal attention by PAMN matches well with groundtruth (GT)

where the question is generated. Observing diverse source of information, PAMN successfully corrects the belief toward correct answer.

Figure 3. Accuracy comparison with respect to the first word of the

question between MemN2N [26], RWMN [21] and PAMN on the

validation set of MovieQA. PAMN outperforms on the majority of

the question types.

whole movie (e.g., How do Schmidt and Jenko’s fake iden-

tities end up getting switched?, Why does Mozart’s finan-

cial situation get worse and worse?). We observed that

PAMN outperforms MemN2N and RWMN on the major-

ity of question types. Especially, PAMN attains 20% and

13% performance boosts on when, where questions, respec-

tively which implies the superiority of PAMN to pinpoint

the movie story.

5. Conclusion

In this paper, a movie story question answering (QA)

architecture referred to as Progressive Attention Memory

Network (PAMN) was proposed. The main challenges of

movie story QA were summarized as: (1) pinpointing the

temporal parts relevant to answer the question is difficult

(2) different questions require different modality to infer the

answer. Proposed PAMN make use of three main features to

tackle aforementioned challenges: (1) progressive attention

mechanism, (2) dynamic modality fusion and (3) belief cor-

rection answering scheme. We empirically demonstrated

that proposed PAMN is valid by showing the state-of-the-art

performance on MovieQA and TVQA benchmark dataset.
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