
End-to-End Supervised Product Quantization for Image Search and Retrieval

Benjamin Klein1 and Lior Wolf1,2

1The Blavatnik School of Computer Science, Tel Aviv University, Israel
2Facebook AI Research

Abstract

Product Quantization, a dictionary based hashing

method, is one of the leading unsupervised hashing tech-

niques. While it ignores the labels, it harnesses the features

to construct look up tables that can approximate the feature

space. In recent years, several works have achieved state

of the art results on hashing benchmarks by learning binary

representations in a supervised manner. This work presents

Deep Product Quantization (DPQ), a technique that leads

to more accurate retrieval and classification than the latest

state of the art methods, while having similar computational

complexity and memory footprint as the Product Quantiza-

tion method. To our knowledge, this is the first work to in-

troduce a dictionary-based representation that is inspired

by Product Quantization and which is learned end-to-end,

and thus benefits from the supervised signal. DPQ explic-

itly learns soft and hard representations to enable an effi-

cient and accurate asymmetric search, by using a straight-

through estimator. Our method obtains state of the art re-

sults on an extensive array of retrieval and classification

experiments.

1. Introduction

Computer vision practitioners have adopted the Product

Quantization (PQ) method [15] as a leading approach for

conducting Approximated Nearest Neighbor (ANN) search

in large scale databases. However, the research commu-

nity has recently shifted its focus toward using methods

that compute Hamming distances on binary representations

learned by supervised dictionary-free methods, and showed

its superiority on the standard PQ techniques [14]. In this

work, we present a technique inspired by PQ and named

Deep Product Quantization (DPQ) that outperforms pre-

vious methods on many known benchmarks. While stan-

dard PQ is learned in an unsupervised manner, our DPQ

is learned in an end-to-end fashion, and benefits from the

task-related supervised signal.

PQ methods decompose the embedding manifold into

a Cartesian product of M disjoint partitions, and quantize

each partition into K clusters. An input vector x ∈ R
MD

is split into M sub-vectors in R
D, x = [x1, x2, . . . , xM]

and then encoded by PQ as zx ∈ {0, 1}M ·log
2
(K). Each

group of log2(K) bits decodes the index k ∈ {1 . . .K}
of the cluster to which the sub-vector belongs (note that

the clusters vary between the subspaces). A representative

vector cm,k ∈ R
D is associated with each cluster k of

each partition m. An approximation of the original vector,

x̃, can be readily reconstructed from zx, by concatenating

the representative vectors of the matching clusters. The

common practice for training a PQ is to run K-means in

an unsupervised manner on each partition, and to use the

centroid of each cluster as the representative vector.

The advantages of using the PQ technique are the re-

duction in memory footprint and the acceleration of search

time. The decomposition of the embedding into a Cartesian

product of M sub-vectors is the key ingredient in the effec-

tiveness of PQ in reducing the retrieval search time, since

it allows to compute the approximated distance of a pair of

vectors, x and y, directly from their compressed representa-

tions, zx and zy , using look-up tables. PQ methods can also

achieve better retrieval performance by using an asymmet-

ric search, in which the distance is computed between the

source vector, x, and the compressed vector, zy , with the

same amount of computation as the symmetric search.

Another common technique for ANN search is trans-

forming the embedding into a binary representation, with-

out using a dictionary, and performing the comparison us-

ing Hamming distance. Several works have achieved state

of the art results on retrieval benchmarks, by learning the bi-

nary representation as part as of the classification model op-

timization in an end-to-end fashion. The binary representa-

tion is thus trained using a supervised signal and, therefore,

the distance between two binary representations reflects the

end goal of the system.

In this work, we present a new technique, Deep Product

Quantization, which to our knowledge, is the first to learn a

compressed representation inspired by PQ, which is learned

5041

end-to-end and, therefore, benefits from the supervised sig-

nal. Our contributions include: (i) an end-to-end PQ ap-

proach for ANN search that exploits high-dimensional Eu-

clidean distances through the use of a dictionary, instead

of the Hamming distance, (ii) learning soft and hard repre-

sentations as part of the training to facilitate symmetric and

asymmetric search, (iii) using a straight-through estimator

to overcome the non-differential argmax function, which is

essential for our hard representation, (iv) a new loss func-

tion named joint central loss, which is inspired by the cen-

ter loss [33] but also decreases the discrepancy between the

soft and the hard representations, (v) a normalization tech-

nique which improves the results for cross-domain category

retrieval and (vi) a very extensive array of state of the art

retrieval and classification results, to establish our claims

using more literature protocols than any existing work.

2. Related work

Vector quantization techniques [12] have been used suc-

cessfully in the past in many applications, including data

compression, approximated nearest neighbor search, and

clustering. The most classic technique is Vector Quantiza-

tion (VQ) which, divides the space into K clusters, by using

an unsupervised clustering method, such as K-means. VQ

allows encoding of each sample by log2(K) bits, namely

by encoding the identity of the cluster to which the sample

belongs. By precomputing the euclidean distance between

every two clusters and storing the results in a hash table with

O(K2) entries, one can compute the approximated distance

between every two samples in O(1) time.

Since the number of clusters grows exponentially as

a function of the number of bits, one may expect the

performance of VQ to improve as more bits are added. In

practice, since VQ is learned using the K-means algorithm,

a meaningful quantization of the space requires a number

of samples, which is proportional to the number of clusters.

Since the hash table grows quadratically in the number of

clusters, it also becomes infeasible to use the hash table for

large values of K. These reasons have limited the efficient

usage of VQ to a small number of clusters. This limitation

has an impact on the quantization error, i.e., the distance

between the original vector and its matching centroid and,

therefore, is a bottleneck in decreasing the quantization

error and in improving the retrieval performance.

Product Quantization [15] (PQ) is a clever technique to

overcome the bottleneck of increasing the number of clus-

ters with respect to VQ, while allowing an efficient compu-

tation of the approximated euclidean distance between two

compressed representations, and reducing the quantization

error. The main idea is to divide a space in R
MD to a Carte-

sian product of M sub-vectors in R
D. The VQ technique

is then applied on each group of sub-vectors, resulting in

M solutions of K-means in R
D, where each solution has

a different set of K clusters. Each vector in R
MD can be

encoded using M · log2(K) bits, by assigning the index of

the matching cluster to each of its M sub-vectors. The ex-

pressive power of PQ empowers it to transform a vector in

R
MD to one of KM possible vectors.

As discussed in Sec. 3.1, PQ enables an efficient com-

putation of the approximated distance between two com-

pressed vectors using O(M) additions. This is achieved by

using M Look Up Tables (LUTs) that store the distance be-

tween every two clusters for each of the M partitions. The

K-means algorithm is also not bounded by the number of

samples, since each of the 1 . . .M k-means solutions par-

titions space to K clusters, where K is usually small (e.g.

K = 256). Decreasing the quantization error even further,

the PQ technique is also able to efficiently compare an un-

compressed query vector to a database of compressed vec-

tors. The latter is called asymmetric search, while the for-

mer is called symmetric search. Asymmetric search is the

common practice in information retrieval systems that em-

ploy PQ, since while the database vectors need to be com-

pressed in order to reduce their memory footprint, there is

usually no memory limitation for the query, which typically

arrives on-the-fly. In PQ, the asymmetric search has been

shown to have a lower quantization error, while having the

same computational complexity of the symmetric search by

constructing LUTs for each query.

The PQ technique has been widely adopted by the

information retrieval and computer vision community. It

has started a long list of improvements to the original

PQ technique. Optimized Product Quantization [8] (OPQ)

and Cartesian K-means [28] have focused on improving

the space decomposition and the learning of the optimal

codebooks for decreasing the quantization error. These

contributions rely on the observation that simply dividing

the features to a Cartesian product does not fully utilize

the knowledge about the structure of the feature space,

and ignores the intra-subspace correlations of the data. To

create a better partition of the space, they suggest to first

transform the data by an orthonormal matrix, R, and then

to do the Cartesian decomposition and learn the optimal

clusters. LOPQ [17] used the observation that while PQ and

OPQ create an exponential number of possible centroids

in R
MD, many of them remain without data support, and,

therefore, are not used efficiently. To mitigate this problem,

they suggest first using a coarse quantizer to cluster the

data, and capture its density, and then applying a locally

optimized product quantization to each coarse cell.

Despite their tremendous success, Product Quantization

techniques and Vector Quantization techniques in general,

are being optimized in an unsupervised manner, with the

goal of reducing the quantization error. In this work, we

further improve Product Quantization techniques by incor-

porating a supervised signal. Previous works have used su-

5042

pervision to learn a Hamming distance on binary represen-

tations, which is a popular alternative technique for ANN.

Given two vectors, which are both encoded by M ·
log2(K) bits, the possible number of different distance val-

ues between them under the Hamming distance is only

M · log2(K)+1. In contrast, the possible number of differ-

ent distance values between them using PQ is
(

K
2

)M
, which

is much larger than Hamming. The richness of the expres-

sive power of PQ has allowed it to outperform Hamming

distance techniques that were trained in an unsupervised

manner. With the advent of Deep Learning, many binary

encoding techniques [34, 21, 22, 14] that utilize end-to-end

training and, therefore, benefit from the supervised signal,

have been suggested and have proven to be better than the

standard PQ technique that is trained in an unsupervised

manner [14].

Our work combines the expressive power of the PQ tech-

nique with Deep Learning end-to-end optimization tech-

niques, and allows for PQ to benefit from the task-related

supervised signal. To our knowledge, we are the first to in-

corporate a technique inspired by PQ into a deep learning

framework. Another work [4] has proposed to combine PQ

with Deep Learning for hashing purposes, but in contrast to

our work, they do not optimize the clusters of PQ with re-

spect to the supervised signal of classification or retrieval.

They alternate instead between learning PQ centroids us-

ing K-means on the embeddings space in an unsupervised

fashion, and between learning the embedding using a CNN.

Our solution learns the centroids and the parameters of the

CNN end-to-end, while optimizing the centroids explicitly

to perform well on classification and retrieval tasks.

While our technique is inspired by Product Quantization,

there are a few important technical distinctions. While in

PQ the soft representation which is used for asymmetric

search is the embedding itself and is not constrained by the

vectors of the clusters, in our work as described in Sec. 3,

the soft representation is learned. It is the concatenation of

M soft sub-vectors, where each soft sub-vector is a convex

combination of the learned centroids. While the asymmetric

search capability of PQ improves its performance, it is not

explicitly optimized for it, and its success is an outcome of

the method’s design. In contrast, our method learns both

the soft and hard representations as part of the training,

and directly improves the asymmetric search. This is

done by using a loss function, joint central loss, which is

inspired by the center loss [33]. The center loss aims to

improve the retrieval performance of a CNN, by learning

a center for each class, and adding a term that encourages

the embeddings to concentrate around the center of their

corresponding class. Our joint central loss is adding another

role to center loss, which is to decrease the discrepancy

between the soft and the hard representations. This is

achieved by optimizing both representations to concentrate

Figure 1. The architecture of the DPQ model. The Softmax

Loss and the Joint Central Loss functions are denoted by the

blue diamonds, and the Gini Batch Diversity and the Gini Sample

Sharpness regularizations are denoted by the green circles. The

red arrow is the non-differential one-hot encoding transformation,

which requires using the Straight Through estimator, in order to

pass the gradients.

around the same class centers.

A structured binary embedding method called SUBIC

was recently proposed [14]. In their work, which is

the current state of the art for retrieval, each sample is

represented by a binary vector of MK bits, where in each

group of K bits, only one bit is active. Therefore, each

sample can be encoded by M ·log2(K) bits. Similar to other

works, the binary representation of SUBIC is not learned

explicitly. Instead, each group of K entries is the result

of the softmax function, and, therefore, acts as a discrete

distribution function on {1, . . . ,K}. In the inference phase,

the entry that corresponds to the highest probability is

taken to be the active bit, and all the others are turned

into 0. In order to decrease the discrepancy between the

inference and the training, they use regularization to make

the distribution function closer to the corners of the simplex

(i.e., one-hot vectors). They also enable asymmetric search,

by using the original distribution values for the query

vector. In contrast, our work learns both the soft and hard

representation explicitly, as part of an end-to-end training

by using the Straight Through estimator technique [3],

and exploits Euclidean distances. This results in a richer

expressive power, which improves the classification and

retrieval performance, as demonstrated in Sec. 4.

3. Deep Product Quantization

Architecture. The diagram of the DPQ architecture is

presented in Fig. 1. The DPQ is learned on top of the

embedding layer. The nature of this embedding changes

according to the protocol of each benchmark, see Sec. 4.

Let x be the input to the network, and let embedding be

the output of the embedding layer for input x (inputs are

omitted for brevity). In the first step, we learn a small

5043

multilayer perceptron (MLP) on top of the embedding layer,

let s ∈ R
MN be the output of the MLP. The vector s is

then sliced into to M sub-vectors, s = [s1, s2, . . . , sM],
where each sm ∈ R

N . On top of each sub-vector, we

learn a small MLP which ends in a softmax function with K

outputs. We denote the probability of the k-th entry of the

softmax of the MLP that corresponds to the m-th sub-vector

by pm(k). For each sub-vector, we also learn a matrix,

Cm ∈ R
K×D (composed of K vectors in R

D that represent

the K centroids). We denote the k-th row of the matrix Cm

by Cm(k). The m-th sub-vector of the soft representation

is computed as the convex combination of the rows of Cm,

where the coefficients are the probability values of pm:

softm =

K
∑

k=1

pm(k) · Cm(k) (1)

Let k∗ = argmaxk pm(k) be the index of the highest

probability in pm, and let em be a one hot encoding vector,

such that em(k∗) = 1 and em(k) = 0 for k 6= k∗. The m-th

sub-vector of the hard representation is then computed by:

hardm =

K
∑

k=1

em(k) · Cm(k) = Cm(k∗) (2)

Therefore, the m-th sub-vector of the hard representation

is equal to the row in Cm that corresponds to the entry k∗

with the highest probability in pm. Since the conversion of

the probability distribution pm to a one hot encoding, em, is

not a differential operation, we employ the idea of straight-

through (ST) estimator [3] to enable the back-propagation,

i.e., the computation of the one hot encoding in the forward

pass is performed using the argmax function. However, in

the backward pass, we treat the one hot encoding layer as

the identity function, and pass the gradients received by the

one hot encoding layer, directly to the softmax layer that

computed pm, without transforming them.

The M soft sub-vectors are concatenated to the final

soft representation vector, and the M hard sub-vectors

are concatenated to the final hard representation vector:

soft = [soft1, . . . , softM], hard = [hard1, . . . , hardM],
where soft and hard are in R

MD.

For classification into C classes, a fully connected layer,

defined by a matrix W ∈ R
MD×C and a bias vector

b ∈ R
C , is used to obtain prediction scores over these C

classes. We denote by predsoft and predhard, the predictions

given for the soft and hard representations respectively.

Loss functions. The softmax loss is applied to predsoft
and predhard and captures the requirement that the soft and

hard representations classify the samples correctly. We also

devise a new loss function inspired by the center loss [33],

named Joint Central Loss.

While the softmax loss encourages the representations

to be separable with respect to the classes, the center loss

encourages features from the same class to be clustered to-

gether, thus improving the discriminative power of the fea-

tures and contributing to the retrieval performance. The

center loss learns a center vector, oi ∈ R
V , for each class

i, where V = MD is the size of the representation, by

minimizing the distance 1
2 ||ri − oyi

||2 between the repre-

sentation, ri ∈ RV , and the vector of the corresponding

class, oyi
. The motivation for the Joint Central Loss, intro-

duced here, is to add another role to the center loss, which is

decreasing the discrepancy between the soft and hard rep-

resentations, thus improving the performance of the asym-

metric search. This is implemented by using the same cen-

ters for both the soft and hard representations, encouraging

both representations to be closer to the same centers of the

classes.

Regularization DPQ uses regularization in order to en-

sure near uniform distribution of the samples to their cor-

responding clusters, for each partition M . This empowers

the training to find a solution that better utilizes the clus-

ters in the encoding. Specifically, given a batch of B sam-

ples, (x1, x2, ..., xB), let pim ∈ R
K be the probability dis-

tribution over the clusters of the m-th sub-vector, of the i-th

sample. The following Gini Impurity related penalty is then

defined as:

GiniBatch(pm) :=

K
∑

k=1

(

1

B

B
∑

i=1

p
i

m(k)

)2

(3)

This penalty achieves a maximal value of 1 if and only

if there is a single cluster, k, for which ∀i pim(k) = 1, and

a minimal value of 1
K

if and only if ∀k : 1
B

∑B

i=1 p
i
m(k) =

1
K

. Therefore, by adding this penalty, the optimization

is encouraged to find a solution in which the samples are

distributed more evenly to the clusters.

We also add another regularization term to encourage the

probability distribution of a sample i, pim, to be closer to a

one hot encoding:

GiniSample(pim) := −

K
∑

k=1

(

p
i

m(k)
)

2

(4)

This term encourages the soft and hard representations of

the same sample to be closer. Note that the two loss-

functions may seem to be competing. However the first

is calculated over a batch and encourages diversity within

a batch, while the second is calculated per distribution

of a single sample and encourages the distributions to be

decisive (i.e., close to a one hot vector).

Similar forms of these regularizations have been success-

fully used in previous works [22, 14] to improve the perfor-

mance of hashing techniques.

3.1. Inference

The DPQ method benefits from all the advantages of

Product Quantization techniques. This section elaborates

5044

on how DPQ is used to create a compressed representation,

fast classification, and fast retrieval in both the symmetric

and asymmetric forms.

Compressed Representation For a given vector, x ∈ R
L,

DPQ can compress x to the hard representation. Specif-

ically, x can be encoded by DPQ with M partitions and

K clusters per partition, by setting z = (z1, z2, . . . , zM),
where zi ∈ 1 . . .K) is the cluster to which the i-th par-

tition of x belongs. Therefore, the hard representation can

then be perfectly reconstructed from z and Cm, and requires

only M log2(K) bits for storage. The following compres-

sion ratio is achieved when using float-32 to represent x:
32L

M log
2
(K) .

Classification By employing Lookup Tables (LUTs), it is

possible to decrease the classification time over the hard

representation. Let predhard[c] be the output of the predic-

tion layer for class c according to the hard representation

before applying the softmax operation.

predhard[c] = bc +

MD
∑

d=1

Wd,c · hard[d] =

= bc +
M
∑

m=1

D
∑

d=1

W(m−1)D+d,c · Cm(zm)[d]

Using M LUTs of C · K entries, LUTCm[c, k] =
∑D

d=1 W(m−1)D+d,c · Cm(k)[d], one can compute

predhard[c] efficiently by performing M additions:

predhard[c] = bc +

M
∑

m=1

LUTCm[c, zm]

Symmetric Comparison The fast symmetric comparison

is performed by using M LUTs, LUTSymm[k1, k2] each of
(

K
2

)

entries:

LUTSymm[k1, k2] =

D
∑

d=1

(Cm(k1)[d]− Cm(k2)[d])
2

The distance between the hard representations hardx and

hardy , with compressed hard representations zx and zy

respectively, can be then computed by:

MD
∑

d=1

(hardx[d]− hardy[d])
2
=

M
∑

m=1

LUTSymm[zxm, zym]

Asymmetric Comparison The asymmetric comparison is

evaluated on the soft representation of a vector, softx,

and on the compressed representation of a vector, zy , that

encodes the hard representation of y, hardy . The typi-

cal use case is when a search system receives a query,

computes its soft representation, but uses hard represen-

tation to encode the vectors in the database, in order to

reduce the memory footprint. In this scenario, it is com-

mon to compare the single soft representation of the query

with many compressed hard representations of the items

in the database. For this application, one can build M

LUTs, which are specific to the vector softx. Each ta-

ble, LUTASymsoft
x

m , has K entries: LUTASymsoft
x

m [k] =
∑D

d=1 (Cm(k)[d]− softx[(m− 1) ·D + d])
2
. Thus, al-

lowing the comparison of softx and zy by performing M

additions:

MD
∑

d=1

(softx[d]− hardy[d])
2
=

M
∑

m=1

LUTASymsoft
x

m [zym]

The preprocessing time of preparing the LUT per query, is

justified, whenever the database size is much larger than K.

4. Experiments

We evaluate the performance of DPQ on three important

tasks: single-domain image retrieval, cross-domain image

retrieval, and image classification. Our method is shown to

achieve state of the art results in all of them. We employ

the same hyper-parameters in each experimental domain,

across all the experiments conducted for this domain (size

and dataset). As demonstrated in Fig. 2, typically there is

a wide range of parameters that produce favorable results.

The exact parameters are specified in the supplementary.

4.1. Single­domain category retrieval.

We use the CIFAR-10 dataset to demonstrate the DPQ

performance on the single-domain category retrieval task.

Since different works have used different evaluation proto-

cols and different features on this dataset, we follow three

different protocols that together capture many of the previ-

ous works’ hashing techniques. We also evaluate DPQ on

Imagenet-100 by following the protocol of [5, 24].

CIFAR-10 - Protocol 1 in this protocol, the training set

of CIFAR-10 is used for training the model, and the test

set is used to evaluate the retrieval performance, employing

the mean average precision (mAP) metric. To disentangle

the contribution of DPQ from the base architecture of the

CNN that is applied on the image, we follow the same

architecture proposed by DSH [22], which was adopted by

other works that were evaluated on this benchmark [22, 14].

The protocol of the benchmark is to measure the mAP,

when using 12, 24, 36 and 48 bits, to encode the database

vectors. We train DPQs with M = 4 partitions and

K = (8, 64, 512, 4096) centroids per partition, to match our

experiments with the protocol. DPQ is learned on top of the

embedding layer of the base network, that has U = 500
units. We start by adding a fully connected layer, F , on top

of U , with V = M ·K units. We then split F ∈ R
V into M

equal parts: F = (F1, F2, . . . , FM) where Fi ∈ R
K . We

5045

then apply a softmax function that outputs pm, as described

in Sec. 3, with K entries. Our cluster vectors, Cm, are

chosen to be in R
Z , where Z is a hyper-parameter. In

addition to the loss functions and regularizations described

in Sec. 3, we add a weight decay to prevent the over-

fitting of the base network. As shown in Tab. 1, our DPQ

method achieves state of the art results in either symmetric

or asymmetric retrieval. As mentioned in Sec. 3.1, both

the symmetric and asymmetric methods have the same

computation complexity as SUBIC [14]. Furthermore, we

compare our method to the strong and simple baseline

suggested in [31]. Since the labels of the database are

unknown to the retrieval system, the SSH Classifier+one-

hot baseline of [31] is the appropriate baseline to use when

evaluating our experiments. In this baseline, one trains a

classifier, and uses the binary representation of the class id,

as the sample encoding. Therefore, we use the classifier

that we trained to encode each sample. Thus, each of the

10 classes is encoded by 4 bits. This baseline is indeed very

strong as it achieves mAP of 0.627. However, when training

DPQ to use only 4 bits we are able to surpass the baseline of

[31] by obtaining a mAP of 0.649. Additionally, this result

shows that DPQ with 4 bits is able to surpass all the other

results which are using 12 bits as shown Tab. 1.

CIFAR-10 - Protocol 2 here 10K images are selected as

queries from the entire 60K images of CIFAR-10 (1K from

each class). The other 50K images are used for training

and serve as the database. We follow other methods that

were evaluated under this protocol [20, 37, 35, 32] and

use the same architecture and pre-trained weights of VGG-

CNN-F [6] for a fair comparison. We measure the mAP

of the algorithm when using 16, 24, 32, and 48 bits. We

train DPQs with M = (4, 6, 8, 12) partitions and K = 16
centroids per partition, to match our experiments with the

protocol. As shown in Tab. 2, DPQ achieves state of the art

results under this protocol.

CIFAR-10 - Protocol 3 The VDSH algorithm [36] also

uses the architecture and weights of VGG-CNN-F but

adopts a different protocol, in which 1000 images are se-

lected as queries from the 60K images of CIFAR10 (100
from each class). The other 59K images are used for train-

ing and serve as the database. We apply DPQ on this proto-

col and achieve mAP of 0.921 using 16-bits, surpassing the

results of VDSH for all the different bit settings.

ImageNet-100 In this protocol, which was suggested by

[5], the training and test sets are drawn from 100 classes

of ImageNet. We follow their experiment and use the same

training and test sets definitions. For the base network, we

use the same architecture and pre-trained weights of ResNet

V2 50 [13] which [24] has been using. As shown in Tab.3,

DPQ also achieves state of the art results for this dataset.

Method 12-bit 24-bit 36-bit 48-bit

PQ - 0.295 - 0.290

PQ-Norm - 0.324 - 0.319

LSQ++ (SR-C) [27] - 0.2662 - 0.2568

LSQ++ (SR-D) [27] - 0.2578 - 0.2873

LSQ++-norm (SR-C) [27] - 0.2868 - 0.2801

LSQ++-norm (SR-D) [27] - 0.2662 - 0.2800

CNNH+ [34] 0.5425 0.5604 0.5640 0.5574

DQN [4] 0.554 0.558 0.564 0.580

DLBHC [21] 0.5503 0.5803 0.5778 0.5885

DNNH [18] 0.5708 0.5875 0.5899 0.5904

DSH [22] 0.6157 0.6512 0.6607 0.675

KSH-CNN [23] - 0.4298 - 0.4577

DSRH [37] - 0.6108 - 0.6177

DRSCH [35] - 0.6219 - 0.6305

BDNN [7] - 0.6521 - 0.6653

SUBIC [14] 0.6349 0.6719 0.6823 0.6863

DPQ-Sym 0.7410 0.7528 0.7523 0.7525

DPQ-ASym 0.7410 0.7543 0.7539 0.7541

Table 1. Retrieval performance (mAP) on the CIFAR-10 dataset

for a varying number of bits. Results for previous methods were

copied as is from [14]. Missing results that were not reported and

are expected not to be competitive, based on the existing ones.

Method 16-bit 24-bit 32-bit 48-bit

DSRH [37] 0.608 0.611 0.617 0.618

DSCH [35] 0.609 0.613 0.617 0.62

DRSCH [35] 0.615 0.622 0.629 0.631

DPSH [20] 0.763 0.781 0.795 0.807

PQ 0.846 0.849 0.849 0.851

PQ-Norm 0.906 0.908 0.909 0.910

DTSH [32] 0.915 0.923 0.925 0.926

DSDH [19] 0.935 0.940 0.939 0.939

DPQ-ASym 0.9507 0.9508 0.9507 0.9507

Table 2. Retrieval performance (mAP) on CIFAR-10 for a varying

bits lengths according to the 2nd protocol. Results for previous

methods were copied as is from [32].

Method 16-bit 32-bit 64-bit

LSH [9] 0.101 0.235 0.360

ITQ [10] 0.323 0.462 0.552

DHN [38] 0.311 0.472 0.573

HashNet [5] 0.506 0.631 0.684

DBR-v3 [25] 0.733 0.761 0.769

HDT [24] 0.838 0.822 0.812

DPQ-ASym 0.886 0.877 0.866

Table 3. Retrieval performance (mAP@1000) on ImageNet-100

for a varying bits lengths according. Results for previous methods

were copied as is from [24].

4.2. Cross­domain category retrieval.

In the task of cross-domain category retrieval, one evalu-

ates a supervised hashing technique by training on a dataset

with specific classes, and evaluating the retrieval results by

using the mAP metric on a different dataset with a different

set of classes. The authors of [31] have demonstrated the

importance of using this task for the evaluation of a hashing

technique, in addition to the standard single-domain cate-

gory retrieval.

Protocol We follow the protocol of SUBIC [14], and train

a DPQ model on vectors in R
128, which were computed

5046

Method VOC2007 Caltech-101 ImageNet

PQ [15] 0.4965 0.3089 0.1650

CKM [28] 0.4995 0.3179 0.1737

LSQ [26] 0.4993 0.3372 0.1882

DSH-64 [22] 0.4914 0.2852 0.1665

PQ-Norm 0.5495 0.3940 0.2229

LSQ++ (SR-C) [27] 0.4823 0.3735 0.1764

LSQ++ (SR-D) [27] 0.4824 0.3646 0.1769

LSQ++-norm (SR-C) [27] 0.5481 0.4122 0.2525

LSQ++-norm (SR-D) [27] 0.5494 0.4128 0.2534

SUBIC 2-layer [14] 0.5600 0.3923 0.2543

DPQ-Sym 2-layer 0.5340 0.4035 0.3183

DPQ-ASym 2-layer 0.5371 0.4073 0.3231

DPQ-Sym 2-layer + IN 0.5530 0.4134 0.3175

DPQ-ASym 2-layer + IN 0.5647 0.4231 0.3227

SUBIC 3-layer [14] 0.5588 0.4033 0.2810

DPQ-Sym 3-layer 0.5234 0.4016 0.3485

DPQ-ASym 3-layer 0.5292 0.4057 0.3532

DPQ-Sym 3-layer + IN 0.5497 0.4142 0.3521

DPQ-ASym 3-layer + IN 0.5599 0.4253 0.3557

Table 4. Retrieval performance (mAP) on the three datasets:

ImageNet, Caltech, and VOC2007, where the DPQ model is

trained on the ImageNet dataset only, but then evaluated on all

three datasets to show cross-domain retrieval. We denote the intra-

normalization with IN.

by applying the VGG-128 [6] pre-trained model on the

ILSVRC-ImageNet dataset and extracting the embedding

representation. The DPQ model applies a fully connected

layer with 2048 units on the input, and then applies the

ReLU activation. We then split the resulting vector to

eight equal sub-vectors, each in R
256. For each sub-

vector, we apply the softmax function which outputs pm, as

described in Sec. 3, with K = 256 entries. Therefore, our

DPQ encodes each vector into 64 bits in the compressed

hard representation. Our cluster vectors, Cm, are chosen

to be in R
64. In [14] two feature types were used: 2-

layer and 3-layer. The 2-layer experiments are trained

on the embedding representation of VGG-128 [6], and

the 3-layer experiments are trained on the representation

from the layer, prior to the embedding layer. We then

evaluate the performance of hashing using DPQ for retrieval

on the ImageNet validation set, and on the Caltech-101

and VOC2007 datasets. Following [14], we use 1000,

1000 and 2000 random query images from the datasets of

Caltech-101, VOC2007, and ImageNet respectively, and

use the rest as the database. Our results are presented

in Tab. 4. Our method surpasses the state of the art

result, for both the 2-layer and the 3-layer cases, for

the ImageNet and Caltech-101 datasets, but as-is not on

VOC2007. To further support cross-domain hashing, we

developed an intra-normalization technique for our soft

and hard representations, which was inspired by the intra-

normalization technique of [1]. That method improves

the retrieval obtained with a VLAD based representation,

which was trained on top of SIFT features of one dataset,

but then applied to another. Specifically, we perform

Figure 2. The retrieval performance (mAP) for the cross-

domain category retrieval benchmark as a function of the Joint

Central Loss weight. The DPQ model is trained on the ImageNet

dataset, and is evaluated on three different datasets: VOC2007,

Caltech-101, and ImageNet. As shown, The Joint Central Loss is

improving the results on all the different datasets. Furthermore, the

intra-normalization is improving the results for the cross-domain

datasets of VOC2007 and Caltech-101, while not affecting the

performance of ImageNet. The reported results are for the 2-layer

asymmetric case.

L2 normalization for each hardm and for each softm,

resulting in hardnormm and softnormm respectively. We

then concatenate them and produce the new hard and soft

representations. Note that performing the L2 normalization

to each sub-vector m = 1 . . .M separately, instead of

performing L2 normalization to the entire hard and soft

representations, does not hurt our ability to use LUTs for

inference, as described in Sec. 3.1. One can simply replace

the clusters of Cm with their normalized version.

The intra-normalization almost does not affect the Im-

ageNet evaluation, which is a single-domain category re-

trieval task. As shown in Tab. 4, the asymmetric search

outperforms the symmetric search. Together with the intra-

normalization technique, we improve our results on both

VOC2007 and Caltech-101. Similar to SUBIC [14], the

3-layer experiments show substantial improvement on the

ImageNet dataset, with respect to the 2-layer experiments.

As a baseline, we conducted another experiment in

which the L2 normalization is performed as part of the

model training using an L2 normalization layer. This ex-

periment resulted in inferior results on the Caltech-101 and

VOC2007 datasets, with respect to training without L2 nor-

malization and applying the intra-normalization technique.

In order to study the importance of the joint central loss,

we depict in Fig. 2 the mAP for the cross domain category

retrieval benchmark as a function of the weight assigned

to this loss. As can be seen, when training DPQ with a

joint central loss of weight 0.1, a significant increase in

mAP is observed across datasets. The mAP very gradually

decreases, as this weight further increases.

5047

ImageNet

Method Top-1 Accuracy Top-5 Accuracy

PQ [15] 39.88 67.22

CKM [28] 41.15 69.66

SUBIC [14] 47.77 72.16

DPQ 56.80 77.59

Table 5. Classification performance on ImageNet using learned

64-bit representations

Method Oxford5K Paris6K

PQ [15] 0.2374 0.3597

LSQ [26] 0.2512 0.3764

DSH-64 [22] 0.2108 0.3287

SUBIC [14] 0.2626 0.4116

DPQ (ours) 0.2643 0.4249

PQ-Norm 0.2646 ± 0.0012 0.4262 ± 0.0036

Table 6. Retrieval performance (mAP) on the Oxford5K and

Paris6K datasets, according to the protocol defined in [14]. The

first four lines were copied as is from [14]. The results in the last

line were calculated by running PQ 5 times using 5 random seeds

for both datasets. The mean and standard deviation are reported.

A simple unsupervised strong baseline A simple but

strong unsupervised baseline that we discovered is per-

forming product quantization of the normalized features of

VGG, instead of the original features. To be more precise,

we normalize the features be on the unit sphere before per-

forming product quantization. This is, in some sense, equiv-

alent to having the product quantization estimate the cosine

distance between the features, instead of the euclidean dis-

tance. As shown in Tab. 4 this simple unsupervised baseline

that we denote as PQ-Norm, achieves substantial improve-

ment over the product quantization that was trained on the

original features, and performs slightly worse than super-

vised methods, such as SUBIC [14] and ours.

4.3. Image classification

As discussed in Sec. 3.1, DPQ can efficiently classify

samples given their compressed representation. We follow

the protocol of SUBIC [14], and report the Top-1 and Top-

5 accuracy on the test set of ImageNet, using the 64-bit

compressed hard representation. As depicted in Tab. 5, our

DPQ method surpasses the state of the art.

4.4. Instance retrieval based on landmarks

SUBIC [14] has reported an improvement in retrieval

over PQ on the Oxford [29] and the Paris [30] benchmarks,

when training on the clean train [11] subset of the land-

marks dataset [2], using the features extracted from the em-

bedding layer of VGG-128. Our system obtains slightly bet-

ter results than SUBIC on these benchmarks. However, re-

running the baselines, with FAISS [16] implementation of

the PQ method on the normalized features that were used

by SUBIC [14], results with performance which is on par

with our method as shown in Tab. 6. This further supports

the simple baseline that was introduced in Sec. 4.2.

4.5. All pairwise distances

The performance of DPQ for both the symmetric and

asymmetric retrieval is very similar. An application for

which the quality of the symmetric retrieval is highly im-

portant, is the all pairwise distances. In this application we

want to compute the distance between every two samples in

the database. Since all of the items in the database are com-

pressed, the asymmetric version is not available and, there-

fore, one must rely on the quality of the symmetric search.

The expressive power of DPQ defines
(

K
2

)M
possible dis-

tances between two hard representations of vectors. In con-

trast, the Hamming distance on M · log2(K) bits, defines

M · log2(K)+1 possible distances between two binary vec-

tors. In SUBIC [14], the hard representation is structured

such that each group, m ∈ {1, . . . ,M}, has only one bit

that is active, therefore allowing only M+1 possible values

of distances between two hard representations. To validate

our hypothesis, we evaluate SUBIC [14] on the VOC2007

dataset using the code provided by SUBIC and measured

the mAP when using the symmetric search. This resulted

in a mAP of 0.4443, which is lower than their asymmet-

ric search result of 0.56 and lower than the unsupervised

techniques, as shown in Tab. 4. However, our symmetric re-

trieval achieves a mAP of 0.5530 and does not fall far from

our asymmetric retrieval performance.

5. Conclusion

Our approach is supervised and extends the unsupervised

Product Quantization technique by building LUTs, which

are learned from the features and the labels. Our method

is directly optimized for the retrieval of the asymmetric

search, since it learns both the soft and hard representations

as part of the training. Furthermore, as shown in Sec. 4,

the symmetric search performance of DPQ does not fall

too far behind the asymmetric search performance. This

has an advantage, for example, in cases where one is

interested in performing all versus all comparisons on a

compressed database. This is contrast to some methods,

such as [14] which has a large gap between its asymmetric

and symmetric performance, as shown in Sec. 4.5.

While having the same memory footprint and inference

time as Product Quantization, our experiments show that

DPQ achieves state of the art results in multiple benchmarks

that are commonly used in the literature.

Acknowledgements

This project has received funding from the European Re-

search Council (ERC) under the European Unions Horizon

2020 research and innovation programme (grant ERC CoG

725974). The contribution of the first author is part of a

Ph.D. thesis research conducted at Tel Aviv University.

5048

References

[1] R. Arandjelovic and A. Zisserman. All about vlad. In

Proceedings of the IEEE conference on Computer Vision and

Pattern Recognition, pages 1578–1585, 2013.

[2] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky.

Neural codes for image retrieval. In ECCV, pages 584–599.

Springer, 2014.

[3] Y. Bengio, N. Léonard, and A. Courville. Estimating or prop-

agating gradients through stochastic neurons for conditional

computation. arXiv preprint arXiv:1308.3432, 2013.

[4] Y. Cao, M. Long, J. Wang, H. Zhu, and Q. Wen. Deep

quantization network for efficient image retrieval. In AAAI,

pages 3457–3463, 2016.

[5] Z. Cao, M. Long, J. Wang, and S. Y. Philip. Hashnet: Deep

learning to hash by continuation. In ICCV, pages 5609–5618,

2017.

[6] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convo-

lutional nets. arXiv preprint arXiv:1405.3531, 2014.

[7] T.-T. Do, A.-D. Doan, and N.-M. Cheung. Learning to hash

with binary deep neural network. In ECCV, pages 219–234.

Springer, 2016.

[8] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product

quantization for approximate nearest neighbor search. In

CVPR, pages 2946–2953, 2013.

[9] A. Gionis, P. Indyk, R. Motwani, et al. Similarity search

in high dimensions via hashing. In Vldb, volume 99, pages

518–529, 1999.

[10] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative

quantization: A procrustean approach to learning binary

codes for large-scale image retrieval. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 35(12):2916–

2929, 2013.

[11] A. Gordo, J. Almazán, J. Revaud, and D. Larlus. Deep image

retrieval: Learning global representations for image search.

In ECCV, pages 241–257. Springer, 2016.

[12] R. M. Gray and D. L. Neuhoff. Quantization. IEEE

transactions on information theory, 44(6):2325–2383, 1998.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings

in deep residual networks. In European conference on

computer vision, pages 630–645. Springer, 2016.

[14] H. Jain, J. Zepeda, P. Perez, and R. Gribonval. Subic: A

supervised, structured binary code for image search. In

ICCV.

[15] H. Jegou, M. Douze, and C. Schmid. Product quantization

for nearest neighbor search. IEEE transactions on pattern

analysis and machine intelligence, 33(1):117–128, 2011.

[16] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity

search with gpus. arXiv preprint arXiv:1702.08734, 2017.

[17] Y. Kalantidis and Y. Avrithis. Locally optimized product

quantization for approximate nearest neighbor search. In

CVPR, pages 2321–2328, 2014.

[18] H. Lai, Y. Pan, Y. Liu, and S. Yan. Simultaneous feature

learning and hash coding with deep neural networks. In

CVPR, pages 3270–3278, 2015.

[19] Q. Li, Z. Sun, R. He, and T. Tan. Deep supervised discrete

hashing. In Advances in Neural Information Processing

Systems, pages 2482–2491, 2017.

[20] W.-J. Li, S. Wang, and W.-C. Kang. Feature learning based

deep supervised hashing with pairwise labels. arXiv preprint

arXiv:1511.03855, 2015.

[21] K. Lin, H.-F. Yang, J.-H. Hsiao, and C.-S. Chen. Deep

learning of binary hash codes for fast image retrieval. In

CVPR workshops, pages 27–35, 2015.

[22] H. Liu, R. Wang, S. Shan, and X. Chen. Deep supervised

hashing for fast image retrieval. In CVPR, pages 2064–2072,

2016.

[23] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang.

Supervised hashing with kernels. In CVPR, pages 2074–

2081. IEEE, 2012.

[24] M. Loncaric, B. Liu, and R. Weber. Learning hash codes via

hamming distance targets. arXiv preprint arXiv:1810.01008,

2018.

[25] X. Lu, L. Song, R. Xie, X. Yang, and W. Zhang. Deep

binary representation for efficient image retrieval. Advances

in Multimedia, 2017, 2017.

[26] J. Martinez, J. Clement, H. H. Hoos, and J. J. Little.

Revisiting additive quantization. In ECCV, pages 137–153.

Springer, 2016.

[27] J. Martinez et al. LSQ++: Lower running time and higher

recall in multi-codebook quantization. In ECCV, 2018.

[28] M. Norouzi and D. J. Fleet. Cartesian k-means. In CVPR,

pages 3017–3024, 2013.

[29] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.

Object retrieval with large vocabularies and fast spatial

matching. In CVPR, pages 1–8. IEEE, 2007.

[30] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.

Lost in quantization: Improving particular object retrieval in

large scale image databases. In CVPR, pages 1–8. IEEE,

2008.

[31] A. Sablayrolles, M. Douze, N. Usunier, and H. Jégou. How

should we evaluate supervised hashing? In IEEE Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages

1732–1736, 2017.

[32] X. Wang, Y. Shi, and K. M. Kitani. Deep supervised hashing

with triplet labels. In Asian Conference on Computer Vision,

pages 70–84. Springer, 2016.

[33] Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discriminative

feature learning approach for deep face recognition. In

European Conference on Computer Vision, pages 499–515.

Springer, 2016.

[34] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan. Supervised hash-

ing for image retrieval via image representation learning. In

AAAI, volume 1, pages 2156–2162, 2014.

[35] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang. Bit-

scalable deep hashing with regularized similarity learning for

image retrieval and person re-identification. IEEE Transac-

tions on Image Processing, 24(12):4766–4779, 2015.

[36] Z. Zhang, Y. Chen, and V. Saligrama. Efficient training

of very deep neural networks for supervised hashing. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1487–1495, 2016.

5049

[37] F. Zhao, Y. Huang, L. Wang, and T. Tan. Deep semantic

ranking based hashing for multi-label image retrieval. In

CVPR, pages 1556–1564, 2015.

[38] H. Zhu, M. Long, J. Wang, and Y. Cao. Deep hashing

network for efficient similarity retrieval. In AAAI, pages

2415–2421, 2016.

5050

