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Abstract

Product Quantization, a dictionary based hashing
method, is one of the leading unsupervised hashing tech-
niques. While it ignores the labels, it harnesses the features
to construct look up tables that can approximate the feature
space. In recent years, several works have achieved state
of the art results on hashing benchmarks by learning binary
representations in a supervised manner. This work presents
Deep Product Quantization (DPQ), a technique that leads
to more accurate retrieval and classification than the latest
state of the art methods, while having similar computational
complexity and memory footprint as the Product Quantiza-
tion method. To our knowledge, this is the first work to in-
troduce a dictionary-based representation that is inspired
by Product Quantization and which is learned end-to-end,
and thus benefits from the supervised signal. DPQ explic-
itly learns soft and hard representations to enable an effi-
cient and accurate asymmetric search, by using a straight-
through estimator. Our method obtains state of the art re-
sults on an extensive array of retrieval and classification
experiments.

1. Introduction

Computer vision practitioners have adopted the Product
Quantization (PQ) method [15] as a leading approach for
conducting Approximated Nearest Neighbor (ANN) search
in large scale databases. However, the research commu-
nity has recently shifted its focus toward using methods
that compute Hamming distances on binary representations
learned by supervised dictionary-free methods, and showed
its superiority on the standard PQ techniques [14]. In this
work, we present a technique inspired by PQ and named
Deep Product Quantization (DPQ) that outperforms pre-
vious methods on many known benchmarks. While stan-
dard PQ is learned in an unsupervised manner, our DPQ
is learned in an end-to-end fashion, and benefits from the
task-related supervised signal.

PQ methods decompose the embedding manifold into

a Cartesian product of M disjoint partitions, and quantize
each partition into K clusters. An input vector x € RMP
is split into M sub-vectors in R?, x = [21,29,..., 2]
and then encoded by PQ as z, € {0,1}M198:(K)  Each
group of log,(K) bits decodes the index k£ € {1...K}
of the cluster to which the sub-vector belongs (note that
the clusters vary between the subspaces). A representative
VeCtor Cpm i € RP is associated with each cluster k of
each partition m. An approximation of the original vector,
Z, can be readily reconstructed from z,, by concatenating
the representative vectors of the matching clusters. The
common practice for training a PQ is to run K-means in
an unsupervised manner on each partition, and to use the
centroid of each cluster as the representative vector.

The advantages of using the PQ technique are the re-
duction in memory footprint and the acceleration of search
time. The decomposition of the embedding into a Cartesian
product of M sub-vectors is the key ingredient in the effec-
tiveness of PQ in reducing the retrieval search time, since
it allows to compute the approximated distance of a pair of
vectors, z and y, directly from their compressed representa-
tions, z, and z,, using look-up tables. PQ methods can also
achieve better retrieval performance by using an asymmet-
ric search, in which the distance is computed between the
source vector, x, and the compressed vector, z,, with the
same amount of computation as the symmetric search.

Another common technique for ANN search is trans-
forming the embedding into a binary representation, with-
out using a dictionary, and performing the comparison us-
ing Hamming distance. Several works have achieved state
of the art results on retrieval benchmarks, by learning the bi-
nary representation as part as of the classification model op-
timization in an end-to-end fashion. The binary representa-
tion is thus trained using a supervised signal and, therefore,
the distance between two binary representations reflects the
end goal of the system.

In this work, we present a new technique, Deep Product
Quantization, which to our knowledge, is the first to learn a
compressed representation inspired by PQ, which is learned
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end-to-end and, therefore, benefits from the supervised sig-
nal. Our contributions include: (i) an end-to-end PQ ap-
proach for ANN search that exploits high-dimensional Eu-
clidean distances through the use of a dictionary, instead
of the Hamming distance, (ii) learning soft and hard repre-
sentations as part of the training to facilitate symmetric and
asymmetric search, (iii) using a straight-through estimator
to overcome the non-differential argmax function, which is
essential for our hard representation, (iv) a new loss func-
tion named joint central loss, which is inspired by the cen-
ter loss [33] but also decreases the discrepancy between the
soft and the hard representations, (v) a normalization tech-
nique which improves the results for cross-domain category
retrieval and (vi) a very extensive array of state of the art
retrieval and classification results, to establish our claims
using more literature protocols than any existing work.

2. Related work

Vector quantization techniques [12] have been used suc-
cessfully in the past in many applications, including data
compression, approximated nearest neighbor search, and
clustering. The most classic technique is Vector Quantiza-
tion (VQ) which, divides the space into K clusters, by using
an unsupervised clustering method, such as K-means. VQ
allows encoding of each sample by log,(K) bits, namely
by encoding the identity of the cluster to which the sample
belongs. By precomputing the euclidean distance between
every two clusters and storing the results in a hash table with
O(K?) entries, one can compute the approximated distance
between every two samples in O(1) time.

Since the number of clusters grows exponentially as
a function of the number of bits, one may expect the
performance of VQ to improve as more bits are added. In
practice, since VQ is learned using the K-means algorithm,
a meaningful quantization of the space requires a number
of samples, which is proportional to the number of clusters.
Since the hash table grows quadratically in the number of
clusters, it also becomes infeasible to use the hash table for
large values of K. These reasons have limited the efficient
usage of VQ to a small number of clusters. This limitation
has an impact on the quantization error, i.e., the distance
between the original vector and its matching centroid and,
therefore, is a bottleneck in decreasing the quantization
error and in improving the retrieval performance.

Product Quantization [15] (PQ) is a clever technique to
overcome the bottleneck of increasing the number of clus-
ters with respect to VQ, while allowing an efficient compu-
tation of the approximated euclidean distance between two
compressed representations, and reducing the quantization
error. The main idea is to divide a space in RM? to a Carte-
sian product of M sub-vectors in R”. The VQ technique
is then applied on each group of sub-vectors, resulting in
M solutions of K-means in RY, where each solution has

a different set of K clusters. Each vector in RM% can be
encoded using M - log,(K) bits, by assigning the index of
the matching cluster to each of its M sub-vectors. The ex-
pressive power of PQ empowers it to transform a vector in
RMD to one of K™ possible vectors.

As discussed in Sec. 3.1, PQ enables an efficient com-
putation of the approximated distance between two com-
pressed vectors using O(M) additions. This is achieved by
using M Look Up Tables (LUTs) that store the distance be-
tween every two clusters for each of the M partitions. The
K-means algorithm is also not bounded by the number of
samples, since each of the 1... M k-means solutions par-
titions space to K clusters, where K is usually small (e.g.
K = 256). Decreasing the quantization error even further,
the PQ technique is also able to efficiently compare an un-
compressed query vector to a database of compressed vec-
tors. The latter is called asymmetric search, while the for-
mer is called symmetric search. Asymmetric search is the
common practice in information retrieval systems that em-
ploy PQ, since while the database vectors need to be com-
pressed in order to reduce their memory footprint, there is
usually no memory limitation for the query, which typically
arrives on-the-fly. In PQ, the asymmetric search has been
shown to have a lower quantization error, while having the
same computational complexity of the symmetric search by
constructing LUTs for each query.

The PQ technique has been widely adopted by the
information retrieval and computer vision community. It
has started a long list of improvements to the original
PQ technique. Optimized Product Quantization [8] (OPQ)
and Cartesian K-means [28] have focused on improving
the space decomposition and the learning of the optimal
codebooks for decreasing the quantization error. These
contributions rely on the observation that simply dividing
the features to a Cartesian product does not fully utilize
the knowledge about the structure of the feature space,
and ignores the intra-subspace correlations of the data. To
create a better partition of the space, they suggest to first
transform the data by an orthonormal matrix, R, and then
to do the Cartesian decomposition and learn the optimal
clusters. LOPQ [17] used the observation that while PQ and
OPQ create an exponential number of possible centroids
in RMP  many of them remain without data support, and,
therefore, are not used efficiently. To mitigate this problem,
they suggest first using a coarse quantizer to cluster the
data, and capture its density, and then applying a locally
optimized product quantization to each coarse cell.

Despite their tremendous success, Product Quantization
techniques and Vector Quantization techniques in general,
are being optimized in an unsupervised manner, with the
goal of reducing the quantization error. In this work, we
further improve Product Quantization techniques by incor-
porating a supervised signal. Previous works have used su-

5042



pervision to learn a Hamming distance on binary represen-
tations, which is a popular alternative technique for ANN.
Given two vectors, which are both encoded by M -
log, (K) bits, the possible number of different distance val-
ues between them under the Hamming distance is only
M -log,(K') + 1. In contrast, the possible number of differ-

ent distance values between them using PQ is (I; ) M, which
is much larger than Hamming. The richness of the expres-
sive power of PQ has allowed it to outperform Hamming
distance techniques that were trained in an unsupervised
manner. With the advent of Deep Learning, many binary
encoding techniques [34, 21, 22, 14] that utilize end-to-end
training and, therefore, benefit from the supervised signal,
have been suggested and have proven to be better than the
standard PQ technique that is trained in an unsupervised
manner [14].

Our work combines the expressive power of the PQ tech-
nique with Deep Learning end-to-end optimization tech-
niques, and allows for PQ to benefit from the task-related
supervised signal. To our knowledge, we are the first to in-
corporate a technique inspired by PQ into a deep learning
framework. Another work [4] has proposed to combine PQ
with Deep Learning for hashing purposes, but in contrast to
our work, they do not optimize the clusters of PQ with re-
spect to the supervised signal of classification or retrieval.
They alternate instead between learning PQ centroids us-
ing K-means on the embeddings space in an unsupervised
fashion, and between learning the embedding using a CNN.
Our solution learns the centroids and the parameters of the
CNN end-to-end, while optimizing the centroids explicitly
to perform well on classification and retrieval tasks.

While our technique is inspired by Product Quantization,
there are a few important technical distinctions. While in
PQ the soft representation which is used for asymmetric
search is the embedding itself and is not constrained by the
vectors of the clusters, in our work as described in Sec. 3,
the soft representation is learned. It is the concatenation of
M soft sub-vectors, where each soft sub-vector is a convex
combination of the learned centroids. While the asymmetric
search capability of PQ improves its performance, it is not
explicitly optimized for it, and its success is an outcome of
the method’s design. In contrast, our method learns both
the soft and hard representations as part of the training,
and directly improves the asymmetric search. This is
done by using a loss function, joint central loss, which is
inspired by the center loss [33]. The center loss aims to
improve the retrieval performance of a CNN, by learning
a center for each class, and adding a term that encourages
the embeddings to concentrate around the center of their
corresponding class. Our joint central loss is adding another
role to center loss, which is to decrease the discrepancy
between the soft and the hard representations. This is
achieved by optimizing both representations to concentrate
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The architecture of the DPQ model. The Softmax

Loss and the Joint Central Loss functions are denoted by the
blue diamonds, and the Gini Batch Diversity and the Gini Sample
Sharpness regularizations are denoted by the green circles. The
red arrow is the non-differential one-hot encoding transformation,
which requires using the Straight Through estimator, in order to
pass the gradients.

Figure 1.

around the same class centers.

A structured binary embedding method called SUBIC
was recently proposed [I4]. In their work, which is
the current state of the art for retrieval, each sample is
represented by a binary vector of M K bits, where in each
group of K bits, only one bit is active. Therefore, each
sample can be encoded by M -log, (K) bits. Similar to other
works, the binary representation of SUBIC is not learned
explicitly. Instead, each group of K entries is the result
of the softmax function, and, therefore, acts as a discrete
distribution function on {1, ..., K'}. In the inference phase,
the entry that corresponds to the highest probability is
taken to be the active bit, and all the others are turned
into 0. In order to decrease the discrepancy between the
inference and the training, they use regularization to make
the distribution function closer to the corners of the simplex
(i.e., one-hot vectors). They also enable asymmetric search,
by using the original distribution values for the query
vector. In contrast, our work learns both the soft and hard
representation explicitly, as part of an end-to-end training
by using the Straight Through estimator technique [3],
and exploits Euclidean distances. This results in a richer
expressive power, which improves the classification and
retrieval performance, as demonstrated in Sec. 4.

3. Deep Product Quantization

Architecture. The diagram of the DPQ architecture is
presented in Fig. 1. The DPQ is learned on top of the
embedding layer. The nature of this embedding changes
according to the protocol of each benchmark, see Sec. 4.
Let x be the input to the network, and let embedding be
the output of the embedding layer for input x (inputs are
omitted for brevity). In the first step, we learn a small
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multilayer perceptron (MLP) on top of the embedding layer,
let s € RMN be the output of the MLP. The vector s is
then sliced into to M sub-vectors, s = [s1,S2,...,SM]
where each s,, € RY. On top of each sub-vector, we
learn a small MLP which ends in a softmax function with K
outputs. We denote the probability of the k-th entry of the
softmax of the MLP that corresponds to the m-th sub-vector
by pm(k). For each sub-vector, we also learn a matrix,
Cpn € REXP (composed of K vectors in R that represent
the K centroids). We denote the k-th row of the matrix C,,,
by C, (k). The m-th sub-vector of the soft representation
is computed as the convex combination of the rows of C,,,,
where the coefficients are the probability values of p,,:

K
softy = > pm(k) - Cm(k) (1)
k=1

Let k* = argmaxy p,,, (k) be the index of the highest
probability in p,,, and let e,,, be a one hot encoding vector,
such that e,,, (k*) = 1 and e,,, (k) = 0 for k # k*. The m-th
sub-vector of the hard representation is then computed by:

K
hard,, = em (k) - Con (k) = Con(k7) @)

k=1
Therefore, the m-th sub-vector of the hard representation
is equal to the row in C),, that corresponds to the entry k*
with the highest probability in p,,. Since the conversion of
the probability distribution p,, to a one hot encoding, e,,, is
not a differential operation, we employ the idea of straight-
through (ST) estimator [3] to enable the back-propagation,
i.e., the computation of the one hot encoding in the forward
pass is performed using the argmax function. However, in
the backward pass, we treat the one hot encoding layer as
the identity function, and pass the gradients received by the
one hot encoding layer, directly to the softmax layer that

computed p,,, without transforming them.

The M soft sub-vectors are concatenated to the final
soft representation vector, and the M hard sub-vectors
are concatenated to the final hard representation vector:
soft = [softy,...,softy], hard = [hardy,..., hardy],
where soft and hard are in RM P,

For classification into C' classes, a fully connected layer,
defined by a matrix W € RMPXC and a bias vector
b € R, is used to obtain prediction scores over these C'
classes. We denote by predsos and predparq, the predictions
given for the soft and hard representations respectively.

Loss functions. The softmax loss is applied to predsof
and predpaq and captures the requirement that the soft and
hard representations classify the samples correctly. We also
devise a new loss function inspired by the center loss [33],
named Joint Central Loss.

While the softmax loss encourages the representations
to be separable with respect to the classes, the center loss

encourages features from the same class to be clustered to-
gether, thus improving the discriminative power of the fea-
tures and contributing to the retrieval performance. The
center loss learns a center vector, o; € RV, for each class
i, where V. = MD is the size of the representation, by
minimizing the distance %||r; — o,,||* between the repre-
sentation, ; € RY, and the vector of the corresponding
class, oy,. The motivation for the Joint Central Loss, intro-
duced here, is to add another role to the center loss, which is
decreasing the discrepancy between the soft and hard rep-
resentations, thus improving the performance of the asym-
metric search. This is implemented by using the same cen-
ters for both the soft and hard representations, encouraging
both representations to be closer to the same centers of the
classes.

Regularization DPQ uses regularization in order to en-
sure near uniform distribution of the samples to their cor-
responding clusters, for each partition M. This empowers
the training to find a solution that better utilizes the clus-
ters in the encoding. Specifically, given a batch of B sam-
ples, (z1, 22, ...,zp), let p, € RE be the probability dis-
tribution over the clusters of the m-th sub-vector, of the i-th
sample. The following Gini Impurity related penalty is then
defined as:
K (1B i 2

GiniBatch(p,,) : k; (B ;pm(k)> 3)

This penalty achieves a maximal value of 1 if and only
if there is a single cluster, k, for which Vi pi, (k) = 1, and
a minimal value of % if and only if V& : & Zil pi (k) =
%. Therefore, by adding this penalty, the optimization
is encouraged to find a solution in which the samples are
distributed more evenly to the clusters.

We also add another regularization term to encourage the
probability distribution of a sample 4, p’,, to be closer to a
one hot encoding:

. K . 2
GiniSample(p,,) := — Z (pfﬂ(k:)) 4)
k=1

This term encourages the soft and hard representations of
the same sample to be closer. Note that the two loss-
functions may seem to be competing. However the first
is calculated over a batch and encourages diversity within
a batch, while the second is calculated per distribution
of a single sample and encourages the distributions to be
decisive (i.e., close to a one hot vector).

Similar forms of these regularizations have been success-
fully used in previous works [22, 14] to improve the perfor-
mance of hashing techniques.

3.1. Inference

The DPQ method benefits from all the advantages of
Product Quantization techniques. This section elaborates
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on how DPQ is used to create a compressed representation,
fast classification, and fast retrieval in both the symmetric
and asymmetric forms.

Compressed Representation For a given vector, 2 € R”,
DPQ can compress x to the hard representation. Specif-
ically,  can be encoded by DPQ with M partitions and
K clusters per partition, by setting z = (21, 22,...,20M)s
where z; € 1...K) is the cluster to which the i-th par-
tition of = belongs. Therefore, the hard representation can
then be perfectly reconstructed from z and C,,,, and requires
only M log,(K) bits for storage. The following compres-

sion ratio is achieved when using float-32 to represent z:
Classification By employing Lookup Tables (LUTSs), it is
possible to decrease the classification time over the hard
representation. Let predpard[c] be the output of the predic-
tion layer for class ¢ according to the hard representation

before applying the softmax operation.

MD
preduaalc] =be + Y Wi, - hard[d] =
d=1
M D
=be.+ Z Z W(m—l)D+d7c « Crn(2m)[d]
m=1d=1

Using M LUTs of C - K entries, LUTCp,[c,k] =
Z(?Zl Wim—1)D+d,c Cp(k)[d], one can compute
preduad|c] efficiently by performing M additions:

M
predhard|c] = be + Z LUTC,,[c, 2m)

m=1
Symmetric Comparison The fast symmetric comparison

is performed by using M LUTs, LUTSym,, [k1, k2] each of
(%) entries:

D
LUTSym,,, k1, ko] =Y (Con(k1)[d] — Cin (k2)[d])”

d=1

The distance between the hard representations hard” and
hard’, with compressed hard representations z* and 2Y
respectively, can be then computed by:

MD M
> (hard®[d] — hard*[d])* = >~ LUTSym,,[25,, 2]
d=1 m=1

Asymmetric Comparison The asymmetric comparison is
evaluated on the soft representation of a vector, soft”,
and on the compressed representation of a vector, z¥, that
encodes the hard representation of y, hard”. The typi-
cal use case is when a search system receives a query,
computes its soft representation, but uses hard represen-
tation to encode the vectors in the database, in order to

reduce the memory footprint. In this scenario, it is com-
mon to compare the single soft representation of the query
with many compressed hard representations of the items
in the database. For this application, one can build M
LUTs, which are specific to the vector soft”. Each ta-
ble, LUTASym®"" has K entries: LUTASym® "' [k] =
S (Cr(k)[d] — soft®[(m — 1) - D 4 d])*.  Thus, al-
lowing the comparison of soft” and z¥ by performing M
additions:

MD M
> (soft”[d] — hard?[d])” = )~ LUTASymso" [24,]
d=1 m=1

The preprocessing time of preparing the LUT per query, is
justified, whenever the database size is much larger than K.

4. Experiments

We evaluate the performance of DPQ on three important
tasks: single-domain image retrieval, cross-domain image
retrieval, and image classification. Our method is shown to
achieve state of the art results in all of them. We employ
the same hyper-parameters in each experimental domain,
across all the experiments conducted for this domain (size
and dataset). As demonstrated in Fig. 2, typically there is
a wide range of parameters that produce favorable results.
The exact parameters are specified in the supplementary.

4.1. Single-domain category retrieval.

We use the CIFAR-10 dataset to demonstrate the DPQ
performance on the single-domain category retrieval task.
Since different works have used different evaluation proto-
cols and different features on this dataset, we follow three
different protocols that together capture many of the previ-
ous works’ hashing techniques. We also evaluate DPQ on
Imagenet-100 by following the protocol of [5, 24].

CIFAR-10 - Protocol 1 in this protocol, the training set
of CIFAR-10 is used for training the model, and the test
set is used to evaluate the retrieval performance, employing
the mean average precision (mAP) metric. To disentangle
the contribution of DPQ from the base architecture of the
CNN that is applied on the image, we follow the same
architecture proposed by DSH [22], which was adopted by
other works that were evaluated on this benchmark [22, 14].
The protocol of the benchmark is to measure the mAP,
when using 12,24, 36 and 48 bits, to encode the database
vectors. We train DPQs with M = 4 partitions and
K = (8,64,512,4096) centroids per partition, to match our
experiments with the protocol. DPQ is learned on top of the
embedding layer of the base network, that has U = 500
units. We start by adding a fully connected layer, F', on top
of U, with V. = M - K units. We then split F' € RY into M
equal parts: F' = (Fy, Fy, ..., Fyr) where F; € RE. We
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then apply a softmax function that outputs p,,, as described
in Sec. 3, with K entries. Our cluster vectors, C,,, are
chosen to be in R?, where Z is a hyper-parameter. In
addition to the loss functions and regularizations described
in Sec. 3, we add a weight decay to prevent the over-
fitting of the base network. As shown in Tab. 1, our DPQ
method achieves state of the art results in either symmetric
or asymmetric retrieval. As mentioned in Sec. 3.1, both
the symmetric and asymmetric methods have the same
computation complexity as SUBIC [14]. Furthermore, we
compare our method to the strong and simple baseline
suggested in [31]. Since the labels of the database are
unknown to the retrieval system, the SSH Classifier+one-
hot baseline of [31] is the appropriate baseline to use when
evaluating our experiments. In this baseline, one trains a
classifier, and uses the binary representation of the class id,
as the sample encoding. Therefore, we use the classifier
that we trained to encode each sample. Thus, each of the
10 classes is encoded by 4 bits. This baseline is indeed very
strong as it achieves mAP of 0.627. However, when training
DPQ to use only 4 bits we are able to surpass the baseline of
[31] by obtaining a mAP of 0.649. Additionally, this result
shows that DPQ with 4 bits is able to surpass all the other
results which are using 12 bits as shown Tab. 1.

CIFAR-10 - Protocol 2 here 10K images are selected as
queries from the entire 60/ images of CIFAR-10 (1K from
each class). The other 50K images are used for training
and serve as the database. We follow other methods that
were evaluated under this protocol [20, 37, 35, 32] and
use the same architecture and pre-trained weights of VGG-
CNN-F [06] for a fair comparison. We measure the mAP
of the algorithm when using 16, 24, 32, and 48 bits. We
train DPQs with M = (4, 6,8, 12) partitions and K = 16
centroids per partition, to match our experiments with the
protocol. As shown in Tab. 2, DPQ achieves state of the art
results under this protocol.

CIFAR-10 - Protocol 3 The VDSH algorithm [36] also
uses the architecture and weights of VGG-CNN-F but
adopts a different protocol, in which 1000 images are se-
lected as queries from the 60K images of CIFAR10 (100
from each class). The other 59K images are used for train-
ing and serve as the database. We apply DPQ on this proto-
col and achieve mAP of 0.921 using 16-bits, surpassing the
results of VDSH for all the different bit settings.

ImageNet-100 In this protocol, which was suggested by
[5], the training and test sets are drawn from 100 classes
of ImageNet. We follow their experiment and use the same
training and test sets definitions. For the base network, we
use the same architecture and pre-trained weights of ResNet
V2 50 [13] which [24] has been using. As shown in Tab.3,
DPQ also achieves state of the art results for this dataset.

[ Method [ 12-bit [ 24-bit | 36-bit [ 48-bit |

PQ - 0.295 - 0.290
PQ-Norm - 0.324 - 0.319
LSQ++ (SR-C) [77] 02662 - 02568
LSQ++ (SR-D) [17] 02578 - 02873
LSQ++-norm (SR-C) [27] - 0.2868 - 0.2801
LSQ++norm (SR-D) [27]| - | 02662 - |0.2800
CNNH+ [34] 0.5425 | 0.5604 | 0.5640 | 0.5574
DQN [4] 0.554 | 0.558 | 0.564 | 0.580
DLBHC [21] 0.5503 | 0.5803 | 0.5778 | 0.5885
DNNH [18] 0.5708 | 0.5875 | 0.5899 | 0.5904
DSH [22] 0.6157 | 0.6512 | 0.6607 | 0.675
KSH-CNN [23] - 0.4298 - 0.4577
DSRH [37] - 0.6108 - 0.6177
DRSCH [35] - 0.6219 - 0.6305
BDNN [7] - 0.6521 - 0.6653
SUBIC [14] 0.6349 | 0.6719 | 0.6823 | 0.6863
DPQ-Sym 0.7410 | 0.7528 | 0.7523 | 0.7525
DPQ-ASym 0.7410 | 0.7543 | 0.7539 | 0.7541

Table 1. Retrieval performance (mAP) on the CIFAR-10 dataset
for a varying number of bits. Results for previous methods were
copied as is from [14]. Missing results that were not reported and
are expected not to be competitive, based on the existing ones.

[ Method [ 16-bit [ 24-bit | 32-bit [ 48-bit |
DSRH [37] 0.608 0.611 0.617 | 0.618
DSCH [35] 0.609 0.613 0.617 0.62
DRSCH [35]| 0.615 0.622 0.629 | 0.631
DPSH [20] 0.763 0.781 0.795 | 0.807
PQ 0.846 0.849 0.849 | 0.851
PQ-Norm 0.906 0.908 0.909 | 0.910
DTSH [32] 0.915 0.923 0.925 | 0.926
DSDH [19] 0.935 0.940 0.939 | 0.939
DPQ-ASym | 0.9507 | 0.9508 | 0.9507 |0.9507
Table 2. Retrieval performance (mAP) on CIFAR-10 for a varying
bits lengths according to the 2nd protocol. Results for previous
methods were copied as is from [32].

[Method | 16-bit | 32-bit [ 64-bit |
LSH 0] 0.101 [ 0.235 [ 0.360
ITQ[10] | 0.323 | 0.462 | 0.552

DHN [38] 0.311 | 0.472 | 0.573
HashNet [5] | 0.506 | 0.631 | 0.684
DBR-v3 [25] | 0.733 | 0.761 | 0.769
HDT [24] 0.838 | 0.822 | 0.812
DPQ-ASym | 0.886 | 0.877 | 0.866
Table 3. Retrieval performance (mAP@1000) on ImageNet-100
for a varying bits lengths according. Results for previous methods
were copied as is from [24].

4.2. Cross-domain category retrieval.

In the task of cross-domain category retrieval, one evalu-
ates a supervised hashing technique by training on a dataset
with specific classes, and evaluating the retrieval results by
using the mAP metric on a different dataset with a different
set of classes. The authors of [31] have demonstrated the
importance of using this task for the evaluation of a hashing
technique, in addition to the standard single-domain cate-
gory retrieval.

Protocol We follow the protocol of SUBIC [14], and train
a DPQ model on vectors in R'?®, which were computed
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[ Method [ VOC2007 | Caltech-101 | ImageNet |

PQ[15] 0.4965 0.3089 0.1650
CKM [28] 0.4995 0.3179 0.1737
LSQ [26] 0.4993 0.3372 0.1882
DSH-64 [22] 0.4914 0.2852 0.1665
PQ-Norm 0.5495 0.3940 0.2229
LSQ++ (SR-C) [27] 0.4823 0.3735 0.1764
LSQ++ (SR-D) [27] 0.4824 0.3646 0.1769
LSQ++-norm (SR-C) [27] | 0.5481 0.4122 0.2525
LSQ++-norm (SR-D) [27] | 0.5494 0.4128 0.2534

SUBIC 2-layer [14] 0.5600 0.3923 0.2543
DPQ-Sym 2-layer 0.5340 0.4035 0.3183
DPQ-ASym 2-layer 0.5371 0.4073 0.3231

DPQ-Sym 2-layer + IN 0.5530 0.4134 0.3175
DPQ-ASym 2-layer + IN 0.5647 0.4231 0.3227
SUBIC 3-layer [14] 0.5588 0.4033 0.2810
DPQ-Sym 3-layer 0.5234 0.4016 0.3485
DPQ-ASym 3-layer 0.5292 0.4057 0.3532
DPQ-Sym 3-layer + IN 0.5497 0.4142 0.3521
DPQ-ASym 3-layer + IN 0.5599 0.4253 0.3557

Table 4. Retrieval performance (mAP) on the three datasets:
ImageNet, Caltech, and VOC2007, where the DPQ model is
trained on the ImageNet dataset only, but then evaluated on all
three datasets to show cross-domain retrieval. We denote the intra-
normalization with IN.

by applying the VGG-128 [6] pre-trained model on the
ILSVRC-ImageNet dataset and extracting the embedding
representation. The DPQ model applies a fully connected
layer with 2048 units on the input, and then applies the
ReLU activation. We then split the resulting vector to
eight equal sub-vectors, each in R2%6. For each sub-
vector, we apply the softmax function which outputs p,,,, as
described in Sec. 3, with K = 256 entries. Therefore, our
DPQ encodes each vector into 64 bits in the compressed
hard representation. Our cluster vectors, C,,, are chosen
to be in R%. In [14] two feature types were used: 2-
layer and 3-layer. The 2-layer experiments are trained
on the embedding representation of VGG-128 [6], and
the 3-layer experiments are trained on the representation
from the layer, prior to the embedding layer. We then
evaluate the performance of hashing using DPQ for retrieval
on the ImageNet validation set, and on the Caltech-101
and VOC2007 datasets. Following [14], we use 1000,
1000 and 2000 random query images from the datasets of
Caltech-101, VOC2007, and ImageNet respectively, and
use the rest as the database. Our results are presented
in Tab. 4. Our method surpasses the state of the art
result, for both the 2-layer and the 3-layer cases, for
the ImageNet and Caltech-101 datasets, but as-is not on
VOC2007. To further support cross-domain hashing, we
developed an intra-normalization technique for our soft
and hard representations, which was inspired by the intra-
normalization technique of [I]. That method improves
the retrieval obtained with a VLAD based representation,
which was trained on top of SIFT features of one dataset,
but then applied to another. Specifically, we perform
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Figure 2. The retrieval performance (mAP) for the cross-
domain category retrieval benchmark as a function of the Joint
Central Loss weight. The DPQ model is trained on the ImageNet
dataset, and is evaluated on three different datasets: VOC2007,
Caltech-101, and ImageNet. As shown, The Joint Central Loss is
improving the results on all the different datasets. Furthermore, the
intra-normalization is improving the results for the cross-domain
datasets of VOC2007 and Caltech-101, while not affecting the
performance of ImageNet. The reported results are for the 2-layer
asymmetric case.

L2 normalization for each hard,, and for each soft,,,
resulting in hardnorm,,, and softnorm,, respectively. We
then concatenate them and produce the new hard and soft
representations. Note that performing the L2 normalization
to each sub-vector m = 1...M separately, instead of
performing L2 normalization to the entire hard and soft
representations, does not hurt our ability to use LUTs for
inference, as described in Sec. 3.1. One can simply replace
the clusters of C,,, with their normalized version.

The intra-normalization almost does not affect the Im-
ageNet evaluation, which is a single-domain category re-
trieval task. As shown in Tab. 4, the asymmetric search
outperforms the symmetric search. Together with the intra-
normalization technique, we improve our results on both
VOC2007 and Caltech-101. Similar to SUBIC [14], the
3-layer experiments show substantial improvement on the
ImageNet dataset, with respect to the 2-layer experiments.

As a baseline, we conducted another experiment in
which the L2 normalization is performed as part of the
model training using an L2 normalization layer. This ex-
periment resulted in inferior results on the Caltech-101 and
VOC2007 datasets, with respect to training without L2 nor-
malization and applying the intra-normalization technique.

In order to study the importance of the joint central loss,
we depict in Fig. 2 the mAP for the cross domain category
retrieval benchmark as a function of the weight assigned
to this loss. As can be seen, when training DPQ with a
joint central loss of weight 0.1, a significant increase in
mAP is observed across datasets. The mAP very gradually
decreases, as this weight further increases.
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ImageNet
Method Top-1 Accuracy | Top-5 Accuracy
PQ[15] 39.88 67.22
CKM [28] 41.15 69.66
SUBIC [14] 47.717 72.16
DPQ 56.80 77.59

Table 5. Classification performance on ImageNet using learned
64-bit representations

Method Oxford5K Paris6K
PQ[I5] 0.2374 0.3597
LSQ [26] 0.2512 0.3764
DSH-64 [22] 0.2108 0.3287
SUBIC [14] 0.2626 0.4116
DPQ (ours) 0.2643 0.4249
PQ-Norm |0.2646 + 0.0012|0.4262 + 0.0036

Table 6. Retrieval performance (mAP) on the Oxford5K and
Paris6K datasets, according to the protocol defined in [14]. The
first four lines were copied as is from [14]. The results in the last
line were calculated by running PQ 5 times using 5 random seeds
for both datasets. The mean and standard deviation are reported.

A simple unsupervised strong baseline A simple but
strong unsupervised baseline that we discovered is per-
forming product quantization of the normalized features of
VGG, instead of the original features. To be more precise,
we normalize the features be on the unit sphere before per-
forming product quantization. This is, in some sense, equiv-
alent to having the product quantization estimate the cosine
distance between the features, instead of the euclidean dis-
tance. As shown in Tab. 4 this simple unsupervised baseline
that we denote as PQ-Norm, achieves substantial improve-
ment over the product quantization that was trained on the
original features, and performs slightly worse than super-
vised methods, such as SUBIC [14] and ours.

4.3. Image classification

As discussed in Sec. 3.1, DPQ can efficiently classify
samples given their compressed representation. We follow
the protocol of SUBIC [14], and report the Top-1 and Top-
5 accuracy on the test set of ImageNet, using the 64-bit
compressed hard representation. As depicted in Tab. 5, our
DPQ method surpasses the state of the art.

4.4. Instance retrieval based on landmarks

SUBIC [14] has reported an improvement in retrieval
over PQ on the Oxford [29] and the Paris [30] benchmarks,
when training on the clean train [ 1] subset of the land-
marks dataset [2], using the features extracted from the em-
bedding layer of VGG-128. Our system obtains slightly bet-
ter results than SUBIC on these benchmarks. However, re-
running the baselines, with FAISS [16] implementation of
the PQ method on the normalized features that were used
by SUBIC [14], results with performance which is on par
with our method as shown in Tab. 6. This further supports
the simple baseline that was introduced in Sec. 4.2.

4.5. All pairwise distances

The performance of DPQ for both the symmetric and
asymmetric retrieval is very similar. An application for
which the quality of the symmetric retrieval is highly im-
portant, is the all pairwise distances. In this application we
want to compute the distance between every two samples in
the database. Since all of the items in the database are com-
pressed, the asymmetric version is not available and, there-
fore, one must rely on the quality of the symmetric search.

The expressive power of DPQ defines (% )M possible dis-
tances between two hard representations of vectors. In con-
trast, the Hamming distance on M - log,(K) bits, defines
M -log,(K')+1 possible distances between two binary vec-
tors. In SUBIC [14], the hard representation is structured
such that each group, m € {1,..., M}, has only one bit
that is active, therefore allowing only M + 1 possible values
of distances between two hard representations. To validate
our hypothesis, we evaluate SUBIC [14] on the VOC2007
dataset using the code provided by SUBIC and measured
the mAP when using the symmetric search. This resulted
in a mAP of 0.4443, which is lower than their asymmet-
ric search result of 0.56 and lower than the unsupervised
techniques, as shown in Tab. 4. However, our symmetric re-
trieval achieves a mAP of 0.5530 and does not fall far from
our asymmetric retrieval performance.

5. Conclusion

Our approach is supervised and extends the unsupervised
Product Quantization technique by building LUTs, which
are learned from the features and the labels. Our method
is directly optimized for the retrieval of the asymmetric
search, since it learns both the soft and hard representations
as part of the training. Furthermore, as shown in Sec. 4,
the symmetric search performance of DPQ does not fall
too far behind the asymmetric search performance. This
has an advantage, for example, in cases where one is
interested in performing all versus all comparisons on a
compressed database. This is contrast to some methods,
such as [14] which has a large gap between its asymmetric
and symmetric performance, as shown in Sec. 4.5.

While having the same memory footprint and inference
time as Product Quantization, our experiments show that
DPQ achieves state of the art results in multiple benchmarks
that are commonly used in the literature.
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