
ABC: A Big CAD Model Dataset For Geometric Deep Learning

Sebastian Koch

TU Berlin

s.koch@tu-berlin.de

Albert Matveev

Skoltech, IITP

albert.matveev@skoltech.ru

Zhongshi Jiang

New York University

jiangzs@nyu.edu

Francis Williams

New York University

francis.williams@nyu.edu

Alexey Artemov

Skoltech

a.artemov@skoltech.ru

Evgeny Burnaev

Skoltech

e.burnaev@skoltech.ru

Marc Alexa

TU Berlin

marc.alexa@tu-berlin.de

Denis Zorin

New York University

dzorin@cs.nyu.edu

Daniele Panozzo

New York University

panozzo@nyu.edu

Abstract

We introduce ABC-Dataset, a collection of one million

Computer-Aided Design (CAD) models for research of ge-

ometric deep learning methods and applications. Each

model is a collection of explicitly parametrized curves and

surfaces, providing ground truth for differential quantities,

patch segmentation, geometric feature detection, and shape

reconstruction. Sampling the parametric descriptions of

surfaces and curves allows generating data in different for-

mats and resolutions, enabling fair comparisons for a wide

range of geometric learning algorithms. As a use case for

our dataset, we perform a large-scale benchmark for esti-

mation of surface normals, comparing existing data driven

methods and evaluating their performance against both the

ground truth and traditional normal estimation methods.

1. Introduction

The combination of large data collections and deep

learning algorithms is transforming many areas of computer

science. Large data collections are an essential part of this

transformation. Creating these collections for many types

of data (image, video, and audio) has been boosted by the

ubiquity of acquisition devices and mass sharing of these

types of data on social media. In all these cases, the data

representation is based on regular discretization in space

and time providing structured and uniform input for deep

learning algorithms.

The situation is different for three-dimensional geomet-

ric models. Acquiring or creating high-quality models of

this type is still difficult, despite growing availability of 3D

sensors, and improvements in 3D design tools. Inherent ir-

Figure 1: Random CAD models from the ABC-Dataset: https://deep-geometry.github.io/abc-dataset

9601



regularity of the surface data, and still-significant level of

skill needed for creating high-quality 3D shapes contributes

to the limited availability of geometric datasets. Irregularity

of geometric data is reflected in commonly used geometric

formats, which differ in fundamental ways from formats for

images, video, and audio. Existing datasets often lack reli-

able ground truth annotations. We further discuss currently

available geometric datasets in Section 2.

Common shape analysis and geometry processing tasks

that can benefit from geometric deep learning include esti-

mation of differential surface properties (Section 5.1), fea-

ture detection, and shape reconstruction. Ground truth for

some of these tasks is hard to generate, as marking features

by hand is a laborious task and differential properties can

only be approximated for sampled surfaces.

In this work, we make the following contributions:

Dataset. We introduce a dataset for geometric deep learn-

ing consisting of over 1 million individual (and high quality)

geometric models, each defined by parametric surfaces and

associated with accurate ground truth information on the de-

composition into patches, sharp feature annotations, and an-

alytic differential properties. We gather the models through

a publicly available interface hosted by Onshape [5]. Simi-

lar to vector graphics for images, this representation allows

resampling the surface data at arbitrary resolutions, with or

without connectivity information (i.e. into a point cloud or

a mesh).

Benchmark. We demonstrate the use of the dataset by

building a benchmark for the estimation of surface normals.

This benchmark is targeting methods that compute normals

(1) locally on small regions of a surface, and (2) globally

over the entire surface simultaneously. We have chosen

this problem for two reasons: most existing geometric deep

learning methods were tested on this task, and very precise

ground truth can be readily obtained for shapes in our data

set. We run the benchmark on 7 existing deep learning algo-

rithms, studying how they scale as the dataset size increases,

and comparing them with 5 traditional geometry processing

algorithms to establish an objective baseline for future al-

gorithms. Results are presented in Section 5.1.

Processing Pipeline. We develop an open-source geom-

etry processing pipeline that processes the CAD models to

directly feed deep learning algorithms. Details are provided

in Section 3. We will continually update the dataset and

benchmark as more models are added to the public collec-

tion of models by Onshape. Our contribution adds a new

resource for the development of geometric deep learning,

targeting applications focusing on human-created, mechan-

ical shapes. It will allow researchers to compare against

existing techniques on a large and realistic dataset of man-

made objects.

Dataset #Models

C
A

D
F

il
es

C
u

rv
es

P
at

ch
es

S
em

an
ti

cs

C
at

eg
o

ri
es

ABC 1,000,000+ X X X – –

ShapeNet* [22] 3,000,000+ – – – X X

ShapeNetCore 51,300 – – – X X

ShapeNetSem 12,000 – – – X X

ModelNet [58] 151,128 – – – X X

Thingi10K [62] 10,000 – – – – X

PrincetonSB[9] 6670 – – – – X

NIST [4] ≤ 30 X X X – –

Table 1: Overview of existing datasets and their capabili-

ties. *: The full ShapeNet dataset is not yet publicly avail-

able, only the subsets ShapeNetCore and ShapeNetSem.

2. Related Work

We review existing datasets for data-driven processing

of geometrical data, and then review both data-driven and

analytical approaches to estimate differential qualities on

smooth surfaces.

3D Deep Learning Datasets. The community has seen

a growth in the availability of 3D models and datasets.

Segmentation and classification algorithms have benefited

greatly from the most prominent ones [22, 58, 62, 9]. Fur-

ther datasets are available for large scenes [51, 23], mesh

registration [14] and 2D/3D alignment [12]. The dataset

proposed in this paper has the unique property of containing

the analytic representation of surfaces and curves, which is

ideal for a quantitative evaluation of data-driven methods.

Table 1 gives an overview of the most comparable datasets

and their characteristics and capabilities.

Point Cloud Networks. Neural networks for point clouds

are particularly popular, as they make minimal assumptions

on input data. One of the earliest examples is PointNet [46]

and its extension PointNet++ [47], which ensure that the

network output is invariant with respect to point permuta-

tions. PCPNet [29] is a variation of PointNet tailored for

estimating local shape properties: it extracts local patches

from the point cloud, and estimates local shape properties at

the central points of these patches. PointCNN [38] explores

the idea of learning a transformation from the initial point

cloud, which provides the weights for input points and as-

sociated features, and produces a permutation of the points

into a latent order.

Point Convolutional Neural Networks by Extension Op-

erators [11] is a fundamentally different way to process

point clouds through mapping point cloud functions to vol-

umetric functions and vice versa through extension and re-

9602



striction operators. A similar volumetric approach has been

proposed in Pointwise Convolutional Neural Networks [32]

for learning pointwise features from point clouds.

PointNet-based techniques, however, do not attempt to

use local neighborhood information explicitly. Dynamic

Graph CNNs [55] uses an operation called EdgeConv,

which exploits local geometric structures of the point set

by generating a local neighborhood graph based on proxim-

ity in the feature space and applying convolution-like op-

eration on the edges of this graph. In a similar fashion,

FeaStNet [54] proposes a convolution operator for general

graphs, which applies filter kernels in a data-driven manner

to the local irregular neighborhoods.

Networks on Graphs and Manifolds. Neural networks

for graphs have been introduced in [48], and extended in

[39, 52]. A wide class of convolutional neural networks

with spectral filters on graphs was introduced in [20] and

developed further in [30, 24, 36]. Graph convolutional neu-

ral networks were applied to non-rigid shape analysis in

[15, 60]. Surface Networks [37] further proposes the use

of the differential geometry operators to extend GNNs to

exploit properties of the surface. For a number of problems

where quantities of interest are localized, spatial filters are

more suitable than spectral filters. A special CNN model for

meshes which uses intrinsic patch representations was pre-

sented in [41], and further generalized in [16, 42]. In con-

trast to these intrinsic models, Euclidean models [59, 57]

need to learn the underlying invariance of the surface em-

bedding, hence they have higher sample complexity. More

recently, [40] presented a surface CNN based on the canon-

ical representation of planar flat-torus. We refer to [19] for

an extensive overview of geometric deep learning methods.

Analytic Normal Estimation Approaches. The simplest

methods are based on fitting tangent planes. For a point set,

these methods estimate normals in the points as directions

of smallest co-variance (i.e., the tangent plane is the total

least squares fit to the points in the neighborhood). For a

triangle mesh, normals of the triangles adjacent to a vertex

can be used to compute a vertex normal as a weighted aver-

age. We consider uniform, area, and angle weighting [34].

One can also fit higher order surfaces to the discrete sur-

face data. These methods first estimate a tangent plane, and

then fit a polynomial over the tangent plane that interpo-

lates the point for which we want to estimate the normal

(a so-called osculating jet [21]). A more accurate normal

can then be recomputed from the tangents of the polyno-

mial surface approximation at the point. The difference for

triangle meshes and point sets is only in collecting the sam-

ples in the neighborhood. In addition, one can use robust

statistics to weight the points in the neighborhood [35].

For the weighted triangle normals we use the implemen-

tation of libigl [33], for computation of co-variance normals

and osculating jets we use the functions in CGAL [45, 10].

For the robust estimation the authors have provided source

code. There are many other techniques for estimating sur-

face normals (e.g. [43]), however we only focus on a se-

lected subset in the current work.

One important generalization is the detection of sharp

edges and corners, where more than one normal can be as-

signed to a point [44, 17]. However, as we only train the ma-

chine learning methods to report a single normal per point,

we leave an analysis of these extensions for future work.

3. Dataset

We identify six crucial properties that are desirable for

an ”ideal” dataset for geometric deep learning: (1) large

size: since deep networks require large amounts of data,

we want to have enough models to find statistically signifi-

cant patterns; (2) ground truth signals: in this way, we can

quantitatively evaluate the performance of learning on dif-

ferent tasks; (3) parametric representation: so that we can

resample the signal at the desired resolution without intro-

ducing errors; (4) expandable: it should be easy to make the

collection grow over time, to keep the dataset challenging

as progress in learning algorithms is made; (5) variation:

containing a good sampling of diverse shapes in different

categories; (6) balanced: each type of objects should have a

sufficient number of samples.

Since existing datasets are composed of acquired or syn-

thesized point clouds or meshes, they do not satisfy prop-

erty 2 or 3. We thus propose a new dataset of CAD models,

which is complementary: it satisfies properties 1-4; it is re-

stricted to a specific type of models (property 6), but has

a considerable variation inside this class. While restriction

to CAD models can be viewed as a downside, it strikes a

good balance between having a sufficient number of similar

samples and diversity of represented shapes, in addition to

having high-quality ground truth for a number of quantities.

Acquisition. Onshape has a massive online collection of

CAD models, which are freely usable for research purposes.

By collecting them over a period of 4 months we obtained

a collection of over 1 million models (see Figure 2).

Ground Truth Signals and Vector Representation. The

data is encoded in a vectorial format that enables to resam-

ple it at arbitrary resolution and to compute analytically a

large set of signals of interest (Section 4), which can be used

as a ground truth.

Challenge. However, the data representation is not suit-

able for most learning methods, and the conversion of CAD

models to discrete formats is a difficult task. This paper

presents a robust pipeline to process, and use CAD models

as an ideal data source for geometry processing algorithms.

9603



Figure 2: Random examples from the dataset. Most models are mechanical parts with sharp edges and well defined surfaces.

3.1. CAD Models and Boundary Representations

In the following, we will use the term CAD model to re-

fer to a geometric shape defined by a boundary representa-

tion (B-Rep). The boundary representation describes mod-

els by their topology (faces, edges, and vertices) as well as

their geometry (surfaces, curves, and points). The topol-

ogy description is organized in a hierarchical way: Solids

are bound by a set of oriented faces which are called shells;

Faces are bound by wires which are ordered lists of edges

(the order defines the face orientation); Edges are the ori-

ented connections between 2 vertices; Vertices are the basic

entities, corresponding to points in space.

Each of these entities has a geometric description, which

allows us to embed the model in 3D space. In our dataset,

each surface can represent a plane, cone, cylinder, sphere,

torus, surface of revolution or extrusion or NURBS patch

[26]. Similarly, curves can be lines, circles, ellipses,

parabolas, hyperbolas or NURBS curves [26]. Each vertex

has coordinates in 3D space. An additional complexity is

added by trimmed patches (see [26] for a full description).

3.2. Processing Pipeline

Assembling a dataset of such a large size is a time-

consuming task where many design decisions have to be

made beforehand: as an example, it requires around 2 CPU

years to extract triangle meshes for 1 million CAD models.

To encourage active community participation and easy

adoption, we use accessible, well-supported open-source

tools, instead of relying on commercial CAD software. It

allows the community to use and expand our dataset in the

future. Our pipeline is designed to run in parallel on large

computing clusters.

The Onshape public collection is not curated. It con-

tains all the public models created by their users, without

any additional filtering. Despite the fact that all models

have been manually created, there is a small percentage of

imperfect models with broken boundaries, self-intersecting

faces or edges, as well as duplicate vertices. In addition to

that, there are many duplicate models, and especially mod-

els that are just made of single primitives such as a plane,

box or cylinder, probably created by novice users that were

learning how to use Onshape.

Given the massive size of the dataset, we developed a set

of geometric and topological criteria to filter low quality of

defective models, which we describe in the supplementary

material, and we leave a semantic, crowd-sourced filtering

and annotation as a direction for future work.

Step 1: B-Rep Loading and Translation. The STEP files

[8] we obtain from Onshape contain the boundary repre-

sentation of the CAD model, which we load and query

using the open-source software Open Cascade [6]. The

translation process generates for each surface patch and

curve segment an explicit parameterization, which can be

sampled at arbitrary resolution.

Step 2: Meshing/Discretization. The parameterizations

of the patches are then sampled and triangulated using

the open-source software Gmsh [28]. We offer an option

here to select between uniform (respecting a maximal edge

length) and curvature adaptive sampling.

Step 3: Topology Tree Traversal/Data Extraction. The

sampling of B-Rep allows to track correspondences be-

tween the continuous and discrete representations. As they

can be differentiated at arbitrary locations, it is possible to

calculate ground truth differential quantities for all sam-

ples of the discrete model. Another advantage is the ex-

plicit topology representation in B-Rep models, which can

be transferred to the mesh in the form of labels. These la-

bels define for each triangle of the discrete mesh to which

surface patch it belongs. The same applies also for the

curves, we can label edges in the discrete mesh as sharp

feature edges. While CAD kernels provide this informa-

tion, it is difficult to extract it in a format suitable for learn-

ing tasks. Our pipeline exports this information in yaml

files with a simple structure (see supplementary material).

Step 4: Post-processing. We provide tools to filter our

meshes depending on quality or number of patches, to

compute mesh statistics, and to resample the generated

surfaces to match a desired number of vertices [27].

9604



Figure 3: Each model in our dataset is composed of mul-

tiple patches and feature curves. The two images show the

distribution of types of patches (left) and curves (right) over

the current dataset (≈ 1M models).

Figure 4: Histograms over the number of patches and curves

per CAD model. This shows that there are many simpler

models which consist of less than 30 patches/100 curves as

well as more complex ones. Both histograms are truncated

at the right side.

3.3. Analysis and Statistics

We show an overview of the models in the dataset in Fig-

ures 1 and 2. In Figure 3 and 4 we show the distribution of

surface and edge types and the histogram of patch and edge

numbers, to give an impression of the complexity and va-

riety of the dataset. Updated statistics about the growing

dataset are available on our dataset website [1].

4. Supported Applications

We briefly overview a set of applications that may benefit

from our dataset, that can be used as either training data or

as a benchmark.

Patch Decomposition. Each object in our collection is

naturally divided into surface regions, separated by feature

lines. The decomposition is defined by the author when a

shape is constructed, and is likely to be semantically mean-

ingful. It is also constrained by a strong geometric criteria:

each region should be representable by a (possibly trimmed)

NURBS patch.

Surface Vectorization. The B-rep of a CAD models is

the counterpart of a vector representation for images, that

can be resampled at any desired resolution. The conversion

of a surface triangle mesh into a B-rep is an interesting and

challenging research direction, for which data driven meth-

ods are still at their infancy [49, 50, 25].

Estimation of Differential Quantities. Our models have

ground truth normals and curvature values making them an

ideal, objective benchmark for evaluating algorithms to pre-

dict these quantities on point clouds or triangle meshes of

artificial origin.

Sharp Feature Detection. Sharp features are explicitly

encoded in the topological description of our models, and

it is thus possible to obtain ground truth data for predicting

sharp features on point clouds [56] and meshes.

Shape Reconstruction. Since the ground truth geometry

is known for B-rep models, they can be used to simulate a

scanning setup and quantitatively evaluate the reconstruc-

tion errors of both reconstruction [13, 53] and point cloud

upsampling [61] techniques.

Image Based Learning Tasks. Together with the dataset,

we provide a rendering module (based on Blender [2]) to

generate image datasets. It supports rendering of models

posed in physically static orientations on a flat plane, differ-

ent lighting situations, materials, camera placements (half-

dome, random) as well as different rendering modes (depth,

color, contour). Note that all these images can be consid-

ered ground truth, since there is no geometric approxima-

tion error.

Robustness of Geometry Processing Algorithms. Be-

sides data-driven tasks, the dataset can also be employed

for evaluating the robustness of geometry processing algo-

rithms. Even a simple task like normal estimation is prob-

lematic on such a large dataset. Most of the methods we

evaluated in Section 5.1 fail (i.e. produce invalid normals

with length zero or which contain NANs) on at least one

model: our dataset is ideal for studying and solving these

challenging robustness issues.

5. Normal Estimation Benchmarks

We now introduce a set of large scale benchmarks to

evaluate algorithms to compute surface normals, exploiting

the availability of ground truth normals on the B-rep mod-

els. To the best of our knowledge, this is the first large scale

study of this kind, and the insights that it will provide will

be useful for the development of both data-driven and ana-

lytic methods.

9605



Figure 5: Samples from the different categories in our normal estimation benchmark. From left to right: local patches of

growing size and complexity (512, 1024, 2048 vertices), and full models at different densities (512, 1024, 2048 vertices).

Construction. To fairly compare a large variety of both

data-driven and analytic methods, some targeting local esti-

mation and some one-shot prediction of all normals of a 3D

model, we build a series of datasets by randomly sampling

points on our meshed B-reps, and growing patches of dif-

ferent sizes, ranging from 512 vertices to the entire model

(Figure 5). For each patch size, we generate 4 benchmarks

with an increasing number of patches, from 10k to 250k, to

study how the data-driven algorithms behave when they are

trained on a larger input set.

Split. All benchmark datasets are randomly split into

training and test set with a distribution of 80% training data

and 20% test data. The split will be provided to make the

results reproducible.

5.1. Evaluation

Algorithms. We select 12 representative algorithms from

the literature, and 5 of them are traditional ones, Robust Sta-

tistical Estimation on Discrete Surfaces (RoSt) [35] operat-

ing on point clouds (PC), and meshes (M), Osculating Jets

(Jets) [21], also on point clouds and meshes, and Uniform

weighting of adjacent face normals (Uniform) [34]. No-

tice that we replace K-ring neighborhoods with K-nearest

neighbors for RoSt and Jets to support point cloud input.

Also, 7 machine learning methods are selected, including

PointNet++ (PN++) [47], Dynamic Graph CNN (DGCNN)

[55], Pointwise CNN (PwCNN) [32], PointCNN (PCNN)

[38], Laplacian Surface Network (Laplace) [37], PCP-Net

(PCPN) [29] and Point Convolutional Neural Networks

by Extension Operators (ExtOp) [11]. Of these methods,

Laplace operates on triangle mesh input and the rest on

point cloud input. Most of their output is one normal per

vertex, except for PCPN and ExtOp the output is one nor-

mal for the center of the patch. We provide a detailed ex-

planation of the (hyper-)parameters and modifications we

did for each method in the supplementary material. For the

statistics, we used only the valid normals reported by each

method, and we filtered out all the degenerate ones.

Protocol. We compare the methods above on the bench-

marks, using the following protocol: (1) for each method,

we obtained the original implementation from the authors

(or a reimplementation in popular libraries); (2) we used the

recommended or default values for all (hyper-)parameters

of the learning approaches (if these were not provided, we

fine-tuned them on a case by case basis); (3) if the imple-

mentation does not directly support normal estimation, we

modified their code following the corresponding descrip-

tion in the original paper (4) we used the same loss func-

tion 1 −
(

n
T
n̂

)2

, with n as the estimated normal and n̂ as

the ground truth normal, for all methods. Note that this loss

function does not penalize normals that are inverted (flipped

by 180◦), which is an orthogonal problem usually fixed as

in a postprocessing step [31].

Results. A listing of the statistical results for all meth-

ods is given in Table 2. Our experiments show that neu-

ral networks for normal estimation are stable across several

runs; standard deviation of the losses is of the order of 10−3.

For the 10k dataset, most of the networks converge within

24 hours on a NVIDIA GeForce GTX 1080 Ti GPU. We

capped the training time of all methods to 72 hours.

Comparison of Data-Driven Methods. We observe, as

expected, that the error is reduced as we increase the num-

ber of samples in the training set, this is consistent for all

methods on both patches and full models. However, the im-

provement is modest (Figures 6 and 7).

Sampling Resolution on Full Models. We also explore

how data-driven methods behave when sampling resolution

is growing. DGCNN, PCNN, and PwCNN clearly benefit

from sampling resolution, while PN++ does not show clear

improvements. This phenomenon is likely linked to the spa-

tial subsampling mechanism that is used to ensure sublinear

time in training, but prevents this method from leveraging

the extra resolution. In case of Laplace surface network, it

is difficult to understand the effect since it did not converge

after 3 days of training on the highest resolution.

Comparison of Analytic Methods. Analytic methods are

remarkably consistent across dataset sizes and improve as

the mesh sampling resolution is increased. The methods

based on surface connectivity heavily outperform those re-

lying on K-nearest neighbour estimation, demonstrating

that connectivity is a valuable information for this task.

9606



0 20 40 60 80

PN++
DGCNN

PwCNN
PCNN

Laplace
RoSt PC

Jets PC
RoSt M

Jets M
Uniform

Figure 6: Plot of angle deviation error for the lower resolu-

tion patches (512 points) benchmark, using different sample

size (top to bottom: 10k, 50k, and 100k).

0 20 40 60 80

PN++
DGCNN

PwCNN
PCNN

Laplace
RoSt PC

Jets PC
RoSt M

Jets M
Uniform

Figure 7: Plot of angle deviation error for the high-

resolution (2048 points) full model benchmark, using dif-

ferent sample size (top to bottom: 10k, 50k, and 100k).

Data-Driven vs. Analytic Methods. Almost all data-

driven methods perform well against analytic methods for

point clouds, especially if the model resolution is low. How-

ever, if the analytic methods are allowed to use connectiv-

ity information, they outperform all learning methods by a

large margin, even those also using connectivity informa-

tion. To further support this conclusion, we run a similar

experiment on a simpler, synthetic dataset composed of 10k

and 50k random NURBS patches and observe similar re-

sults, which are available in the supplementary material.

6. Conclusion

We introduced a new large dataset of CAD models, and

a set of tools to convert them into the representations used

by deep learning algorithms. The dataset will continue to

grow as more models are added to the Onshape public col-

lection. Large scale learning benchmarks can be created us-

ing the ground truth signals that we extract from the CAD

data, as we demonstrate for the estimation of differential

surface quantities.

The result of our comparison will be of guidance to the

development of new geometric deep learning methods. Our

surprising conclusion is that, while deep learning meth-

ods which use only 3D points are superior to analytical

methods, this is not the case when connectivity informa-

tion is available. This suggests that existing graph architec-

tures struggle at exploiting the connectivity efficiently and

are considerably worse than the simplest analytical method

(uniform), which simply averages the normals of neigh-

bouring faces. It would be interesting to run a similar study

by extending these algorithms to correctly identify and pre-

dict multiple normals on sharp features and compare them

with specialized methods for this task [18].

Another surprising discovery is that even the uniform al-

gorithm fails to produce valid normals on roughly 100 mod-

els in our dataset due to floating point errors. These kinds

of problems are extremely challenging to identify, and we

believe that the size and complexity of our dataset are an

ideal stress test for robust geometry processing algorithms.

7. Distribution

The dataset and all information is available at:

https://deep-geometry.github.io/abc-dataset

It is distributed under the MIT license and split into chunks

of 10k models for each data type. The copyright owners

of the models are the respective creators (listed in the meta

information). The geometry processing pipeline is made

available under the GPL license in form of a containerized

software solution (Docker [3] and Singularity [7]) that can

be run on every suitable machine.

Acknowledgements

We are grateful to Onshape for providing the CAD models

and support. This work was supported in part through the NYU

IT High Performance Computing resources, services, and staff

expertise. Funding provided by NSF award MRI-1229185. We

thank the Skoltech CDISE HPC Zhores cluster staff for comput-

ing cluster provision. This work was supported in part by NSF

CAREER award 1652515, the NSF grants IIS-1320635, DMS-

1436591, and 1835712, the Russian Science Foundation under

Grant 19-41-04109, and gifts from Adobe Research, nTopology

Inc, and NVIDIA.

9607



Method/ Full Models Patches

Vertices Loss Angle Deviation [◦] Loss Angle Deviation [◦]

10k 50k 100k 10k 50k 100k 10k 50k 100k 10k 50k 100k

P
N

+
+ 512 0.168 0.155 0.142 7.83 7.32 6.43 0.034 0.032 0.025 1.70 1.42 1.10

1024 0.180 0.163 0.160 7.49 6.06 6.17 0.056 0.052 0.048 2.11 1.57 1.51

2048 0.171 0.156 0.149 6.75 5.47 5.08 0.081 0.071 0.063 2.48 1.77 1.44

D
G

C
N

N 512 0.177 0.167 0.144 9.61 8.32 7.13 0.054 0.049 0.025 3.20 3.00 1.12

1024 0.126 0.104 0.099 5.91 4.59 4.34 0.048 0.036 0.024 2.98 2.15 1.13

2048 0.090 0.070 0.068 4.54 2.80 2.77 0.045 0.035 0.023 2.66 1.95 0.98

P
w

C
N

N 512 0.273 0.260 0.252 18.73 17.27 16.36 0.092 0.069 0.067 4.71 3.45 3.43

1024 0.217 0.218 0.198 12.78 13.10 11.38 0.107 0.110 0.089 5.50 6.11 4.58

2048 0.188 0.176* 0.168* 11.34 10.54* 10.05* 0.107 0.120* 0.094 5.98 6.36* 4.83

P
C

N
N 512 0.146 0.153 0.139 6.47 6.96 6.15 0.037 0.043 0.028 1.84 1.84 1.42

1024 0.104 0.099 0.103 3.56 3.46 3.69 0.025 0.030 0.025 0.94 1.37 0.92

2048 0.065 0.070 0.067 2.05 2.44 2.22 0.023 0.025 0.023* 0.88 1.01 0.83*

L
ap

la
ce 512 0.282 0.203 0.133 20.01 11.94 8.47 0.041 0.047 0.022 1.93 3.13 1.12

1024 0.211 0.138 0.146* 34.24 9.43 9.85* 0.030 0.027 0.029* 1.65 1.36 1.46*

2048 0.197 0.148* 0.158* 9.99 9.95* 10.57* 0.031 0.040 0.040* 1.60 1.67 1.81*

P
C

P
N

et 512 – – – – – – 0.098† 0.081† – 9.95† 9.28† –

1024 – – – – – – 0.123† 0.097† – 13.89† 9.55† –

2048 – – – – – – 0.142† 0.200† – 16.24† 16.45† –

E
x

tO
p 512 – – – – – – 0.074† 0.073† – 2.42† 2.05† –

1024 – – – – – – 0.095† 0.096† – 3.32† 2.50† –

2048 – – – – – – 0.091† – – 3.00† – –

R
o

S
t

P
C 512 0.298 0.300 – 21.32 21.36 – 0.083 0.082 – 0.82 0.79 –

1024 0.220 0.223 – 14.47 14.63 – 0.078 0.077 – 0.74 0.72 –

2048 0.164 0.166 – 9.96 10.18 – 0.073 0.072 – 0.59 0.62 –

Je
ts

P
C 512 0.260 0.261 – 17.84 17.97 – 0.050 0.050 – 0.05 0.05 –

1024 0.183 0.186 – 12.19 12.39 – 0.048 0.048 – 0.05 0.05 –

2048 0.129 0.132 – 8.41 8.63 – 0.045 0.044 – 0.04 0.04 –

R
o

S
t

M 512 0.082 0.084 0.084 2.15 2.17 2.18 0.108 0.103 0.102 0.06 0.06 0.06

1024 0.053 0.055 0.056 0.25 0.29 0.29 0.107 0.105 0.105 0.06 0.06 0.06

2048 0.047 0.048 0.050 0.08 0.08 0.08 0.112 0.108 0.107 0.06 0.06 0.06

Je
ts

M

512 0.175 0.176 0.175 7.26 7.29 7.29 0.036 0.036 0.036 0.00 0.00 0.00

1024 0.118 0.118 0.117 0.10 0.10 0.11 0.033 0.033 0.033 0.00 0.00 0.00

2048 0.078 0.079 0.079 0.01 0.02 0.02 0.029 0.031 0.031 0.00 0.00 0.00

U
n

if
o

rm 512 0.024 0.025 0.024 0.26 0.29 0.28 0.007 0.007 0.007 0.00 0.00 0.00

1024 0.013 0.013 0.013 0.00 0.00 0.00 0.005 0.005 0.005 0.00 0.00 0.00

2048 0.009 0.010 0.009 0.00 0.00 0.00 0.004 0.005 0.004 0.00 0.00 0.00

Table 2: Statistical results for all evaluated methods for the full model and patch benchmarks. The loss is calculated as

1−
(

n
T
n̂

)2

and the angle deviation is calculated as the angle in degrees ∠(n, n̂) between ground truth normal and estimated

normal. For the loss we report the mean over all models, for the angle deviation we report the median of all models in the

according datasets. Osculating Jets and Robust Statistical Estimation are evaluated both on point cloud inputs (PC suffix;

comparable to the learning methods) as well as mesh inputs (M suffix). †: PCPNet and ExtOp were not run on full models

since they compute only 1 normal per patch (and their loss, differently from all other rows, is computed only on the vertex in

the center of the patch). *: the training was not completed before the time limit is reached, and the partial result is used for

inference.

9608



References

[1] ABC-Dataset. https://deep-geometry.

github.io/abc-dataset. Accessed: 2019-03-

20.

[2] Blender. https://www.blender.org/. Ac-

cessed: 2018-11-14.

[3] Docker. https://www.docker.com/. Ac-

cessed: 2018-11-11.

[4] NIST CAD Models and STEP Files with PMI.

https://catalog.data.gov/dataset/

nist-cad-models-and-step-files-

with-pmi. Accessed: 2018-11-11.

[5] Onshape. https://www.onshape.com/. Ac-

cessed: 2018-11-14.

[6] Open CASCADE Technology OCCT. https://

www.opencascade.com/. Accessed: 2018-11-

11.

[7] Singularity. https://singularity.lbl.

gov/. Accessed: 2018-11-11.

[8] STEP File Format. https://en.wikipedia.

org/wiki/ISO_10303-21. Accessed: 2018-11-

11.

[9] The princeton shape benchmark. In Proceedings of the

Shape Modeling International 2004, SMI ’04, pages

167–178, Washington, DC, USA, 2004. IEEE Com-

puter Society.

[10] P. Alliez, S. Giraudot, C. Jamin, F. Lafarge,

Q. Mérigot, J. Meyron, L. Saboret, N. Salman, and

S. Wu. Point set processing. In CGAL User and Ref-

erence Manual. CGAL Editorial Board, 4.13 edition,

2018.

[11] M. Atzmon, H. Maron, and Y. Lipman. Point convo-

lutional neural networks by extension operators. ACM

Trans. Graph., 37(4):71:1–71:12, July 2018.

[12] M. Aubry, D. Maturana, A. Efros, B. Russell, and

J. Sivic. Seeing 3d chairs: exemplar part-based 2d-

3d alignment using a large dataset of cad models. In

CVPR, 2014.

[13] M. Berger, J. A. Levine, L. G. Nonato, G. Taubin,

and C. T. Silva. A benchmark for surface reconstruc-

tion. ACM Transactions on Graphics (TOG), 32(2):20,

2013.

[14] F. Bogo, J. Romero, G. Pons-Moll, and M. J. Black.

Dynamic FAUST: Registering human bodies in mo-

tion. In IEEE Conf. on Computer Vision and Pattern

Recognition (CVPR), July 2017.

[15] D. Boscaini, J. Masci, S. Melzi, M. M. Bronstein,

U. Castellani, and P. Vandergheynst. Learning class-

specific descriptors for deformable shapes using lo-

calized spectral convolutional networks. In Computer

Graphics Forum, volume 34, pages 13–23. Wiley On-

line Library, 2015.

[16] D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein.

Learning shape correspondence with anisotropic con-

volutional neural networks. In Advances in Neural

Information Processing Systems, pages 3189–3197,

2016.

[17] A. Boulch and R. Marlet. Fast and robust normal esti-

mation for point clouds with sharp features. Comput.

Graph. Forum, 31(5):1765–1774, Aug. 2012.

[18] A. Boulch and R. Marlet. Deep learning for robust

normal estimation in unstructured point clouds. In

Proceedings of the Symposium on Geometry Process-

ing, SGP ’16, pages 281–290, Goslar Germany, Ger-

many, 2016. Eurographics Association.

[19] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and

P. Vandergheynst. Geometric deep learning: going be-

yond euclidean data. IEEE Signal Processing Maga-

zine, 34(4):18–42, 2017.

[20] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun.

Spectral networks and locally connected networks on

graphs. arXiv preprint arXiv:1312.6203, 2013.

[21] F. Cazals and M. Pouget. Estimating differential quan-

tities using polynomial fitting of osculating jets. Com-

puter Aided Geometric Design, 22(2):121 – 146, 2005.

[22] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,

Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song,

H. Su, J. Xiao, L. Yi, and F. Yu. ShapeNet: An

Information-Rich 3D Model Repository. Technical

Report arXiv:1512.03012 [cs.GR], Stanford Univer-

sity — Princeton University — Toyota Technological

Institute at Chicago, 2015.

[23] A. Dai, A. X. Chang, M. Savva, M. Halber,

T. Funkhouser, and M. Nießner. Scannet: Richly-

annotated 3d reconstructions of indoor scenes. In

Proc. Computer Vision and Pattern Recognition

(CVPR), IEEE, 2017.

[24] M. Defferrard, X. Bresson, and P. Vandergheynst.

Convolutional neural networks on graphs with fast lo-

calized spectral filtering. In Advances in Neural Infor-

mation Processing Systems, pages 3844–3852, 2016.

[25] T. Du, J. P. Inala, Y. Pu, A. Spielberg, A. Schulz,

D. Rus, A. Solar-Lezama, and W. Matusik. Inver-

secsg: Automatic conversion of 3d models to csg

trees. ACM Trans. Graph, 37(6):213, 2018.

[26] G. Farin. Curves and Surfaces for CAGD: A Practical

Guide. Morgan Kaufmann Publishers Inc., San Fran-

cisco, CA, USA, 5th edition, 2002.

[27] M. Garland and P. S. Heckbert. Surface simplification

using quadric error metrics. In Proceedings of the 24th

9609



Annual Conference on Computer Graphics and Inter-

active Techniques, SIGGRAPH ’97, pages 209–216,

New York, NY, USA, 1997. ACM Press/Addison-

Wesley Publishing Co.

[28] C. Geuzaine and J. F. Remacle. Gmsh: a three-

dimensional finite element mesh generator with built-

in pre- and post-processing facilities. International

Journal for Numerical Methods in Engineering, 2009.

[29] P. Guerrero, Y. Kleiman, M. Ovsjanikov, and N. J. Mi-

tra. PCPNet: Learning local shape properties from raw

point clouds. Computer Graphics Forum, 37(2):75–

85, 2018.

[30] M. Henaff, J. Bruna, and Y. LeCun. Deep convo-

lutional networks on graph-structured data. arXiv

preprint arXiv:1506.05163, 2015.

[31] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and

W. Stuetzle. Surface reconstruction from unorganized

points, volume 26. ACM, 1992.

[32] B.-S. Hua, M.-K. Tran, and S.-K. Yeung. Point-

wise convolutional neural networks, 2017. cite

arxiv:1712.05245Comment: 10 pages, 6 figures, 10

tables. Paper accepted to CVPR 2018.

[33] A. Jacobson, D. Panozzo, et al. libigl: A

simple C++ geometry processing library, 2018.

http://libigl.github.io/libigl/.

[34] S. Jin, R. R. Lewis, and D. West. A comparison of

algorithms for vertex normal computation. Vis. Com-

put., 21(1-2):71–82, Feb. 2005.

[35] E. Kalogerakis, P. Simari, D. Nowrouzezahrai, and

K. Singh. Robust statistical estimation of curvature on

discretized surfaces. In Proceedings of the Fifth Eu-

rographics Symposium on Geometry Processing, SGP

’07, pages 13–22, Aire-la-Ville, Switzerland, Switzer-

land, 2007. Eurographics Association.

[36] T. N. Kipf and M. Welling. Semi-supervised clas-

sification with graph convolutional networks. arXiv

preprint arXiv:1609.02907, 2016.

[37] I. Kostrikov, Z. Jiang, D. Panozzo, D. Zorin, and

B. Joan. Surface networks. In IEEE Conference

on Computer Vision and Pattern Recognition, CVPR,

2018.

[38] Y. Li, R. Bu, M. Sun, and B. Chen. Pointcnn. CoRR,

abs/1801.07791, 2018.

[39] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel.

Gated graph sequence neural networks. arXiv preprint

arXiv:1511.05493, 2015.

[40] H. Maron, M. Galun, N. Aigerman, M. Trope,

N. Dym, E. Yumer, V. G. Kim, and Y. Lipman. Convo-

lutional neural networks on surfaces via seamless toric

covers. ACM Trans. Graph, 36(4):71, 2017.

[41] J. Masci, D. Boscaini, M. Bronstein, and P. Van-

dergheynst. Geodesic convolutional neural networks

on riemannian manifolds. In Proceedings of the IEEE

international conference on computer vision work-

shops, pages 37–45, 2015.

[42] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svo-

boda, and M. M. Bronstein. Geometric deep learning

on graphs and manifolds using mixture model cnns. In

Proc. CVPR, volume 1, page 3, 2017.

[43] C. Mura, G. Wyss, and R. Pajarola. Robust normal

estimation in unstructured 3d point clouds by selective

normal space exploration. Vis. Comput., 34(6-8):961–

971, June 2018.

[44] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P.

Seidel. Multi-level partition of unity implicits. ACM

Trans. Graph., 22(3):463–470, July 2003.

[45] M. Pouget and F. Cazals. Estimation of local differ-

ential properties of point-sampled surfaces. In CGAL

User and Reference Manual. CGAL Editorial Board,

4.13 edition, 2018.

[46] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Point-

net: Deep learning on point sets for 3d classification

and segmentation. Proc. Computer Vision and Pattern

Recognition (CVPR), IEEE, 1(2):4, 2017.

[47] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++:

Deep hierarchical feature learning on point sets in a

metric space. In I. Guyon, U. V. Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-

nett, editors, Advances in Neural Information Process-

ing Systems 30, pages 5099–5108. Curran Associates,

Inc., 2017.

[48] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner,

and G. Monfardini. The graph neural network model.

IEEE Transactions on Neural Networks, 20(1):61–80,

2009.

[49] V. Shapiro and D. L. Vossler. Construction and opti-

mization of csg representations. Comput. Aided Des.,

23(1):4–20, Feb. 1991.

[50] G. Sharma, R. Goyal, D. Liu, E. Kalogerakis, and

S. Maji. Csgnet: Neural shape parser for constructive

solid geometry. In The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2018.

[51] S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d:

A rgb-d scene understanding benchmark suite. 2015

IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 567–576, 2015.

[52] S. Sukhbaatar, R. Fergus, et al. Learning multiagent

communication with backpropagation. In Advances in

Neural Information Processing Systems, pages 2244–

2252, 2016.

9610



[53] X. Sun, P. L. Rosin, R. R. Martin, and F. C. Langbein.

Noise analysis and synthesis for 3d laser depth scan-

ners. Graphical Models, 71(2):34 – 48, 2009. IEEE

International Conference on Shape Modeling and Ap-

plications 2008.

[54] N. Verma, E. Boyer, and J. J. Verbeek. Feastnet:

Feature-steered graph convolutions for 3d shape anal-

ysis. 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 2598–2606, 2018.

[55] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bron-

stein, and J. M. Solomon. Dynamic graph cnn for

learning on point clouds. CoRR, abs/1801.07829,

2018.

[56] C. Weber, S. Hahmann, and H. Hagen. Sharp feature

detection in point clouds. In Proceedings of the 2010

Shape Modeling International Conference, SMI ’10,

pages 175–186, Washington, DC, USA, 2010. IEEE

Computer Society.

[57] L. Wei, Q. Huang, D. Ceylan, E. Vouga, and H. Li.

Dense human body correspondences using convolu-

tional networks. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition,

pages 1544–1553, 2016.

[58] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang,

and J. Xiao. 3d shapenets: A deep representation for

volumetric shapes. In 2015 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages

1912–1920, June 2015.

[59] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang,

and J. Xiao. 3d shapenets: A deep representation for

volumetric shapes. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition,

pages 1912–1920, 2015.

[60] L. Yi, H. Su, X. Guo, and L. J. Guibas. Syncspeccnn:

Synchronized spectral cnn for 3d shape segmentation.

In CVPR, pages 6584–6592, 2017.

[61] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng.

Pu-net: Point cloud upsampling network. In Proceed-

ings of IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2018.

[62] Q. Zhou and A. Jacobson. Thingi10k: A dataset

of 10,000 3d-printing models. arXiv preprint

arXiv:1605.04797, 2016.

9611


