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Abstract

The goal of style transfer algorithms is to render the

content of one image using the style of another. We pro-

pose Style Transfer by Relaxed Optimal Transport and

Self-Similarity (STROTSS), a new optimization-based style

transfer algorithm. We extend our method to allow user-

specified point-to-point or region-to-region control over vi-

sual similarity between the style image and the output. Such

guidance can be used to either achieve a particular visual

effect or correct errors made by unconstrained style trans-

fer. In order to quantitatively compare our method to prior

work, we conduct a large-scale user study designed to as-

sess the style-content tradeoff across settings in style trans-

fer algorithms. Our results indicate that for any desired

level of content preservation, our method provides higher

quality stylization than prior work.

1 Introduction

One of the main challenges of style transfer is formal-

izing ’content’ and ’style’, terms which evoke strong intu-

itions but are hard to even define semantically. We propose

formulations of each term which are novel in the domain of

style transfer, but have a long history of successful applica-

tion in computer vision more broadly. We hope that related

efforts to refine definitions of both style and content will

eventually lead to more robust recognition systems, but in

this work we solely focus on their utility for style transfer.

We define style as a distribution over features extracted

by a deep neural network, and measure the distance be-

tween these distributions using an efficient approximation

of the Earth Movers Distance initially proposed in the Nat-

ural Language Processing community [14]. This definition

of style similarity is not only well motivated statistically,

but also intuitive. The goal of style transfer is to deploy the

visual attributes of the style image onto the content image

with minimum distortion to the content’s underlying layout

and semantics; in essence to ’optimally transport’ these vi-

sual attributes.

Our definition of content is inspired by the concept of

self-similarity, and the notion that human perceptual sys-

tem is robust because it identifies objects based on their ap-

pearance relative to their surroundings, rather than absolute

appearance. Defining content similarity in this way discon-

nects the term somewhat from pixels precise values making

it easier to satisfy than the definitions used in prior work.

This allows the output of our algorithm to maintain the per-

ceived semantics and spatial layout of the content image,

Figure 1: Examples of our output for unconstrained (left) and guided (right) style transfer.Images are arranged in order of

content, output, style. Below the content and style image on the right we visualize the user-defined region-to-region guidance

used to generate the output in the middle.

110051
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Figure 2: Examples of the effect of different content images on the same style, and vice-versa

while drastically differing in pixel space.

To increase utility of style transfer as an artistic tool,

it is important that users can easily and intuitively control

the algorithm’s output. We extend our formulation to allow

region-to-region constraints on style transfer (e.g., ensuring

that hair in the content image is stylized using clouds in the

style image) and point-to-point constraints (e.g., ensuring

that the eye in the content image is stylized in the same way

as the eye in a painting).

We quantitatively compare our method to prior work

using human evaluations gathered from 662 workers on

Amazon Mechanical Turk (AMT). Workers evaluated con-

tent preservation and stylization quality separately. Work-

ers were shown two algorithms’ output for the same in-

puts in addition to either the content or style input, then

asked which has more similar content or style respectively

to the displayed input. In this way are able to quantify

the performance of each algorithm along both axes. By

evaluate our method and prior work for multiple hyper-

parameter settings, we also measure the trade-off within

each method between stylization and content preservation

as hyper-parameters change. Our results indicate that for

any desired level of content preservation, our method pro-

vides higher quality stylization than prior work.

2 Methods

Like the original Neural Style Transfer algorithm pro-

posed by Gatys et al. [4] our method takes two inputs, a

style image IS and a content image IC , and uses the gradi-

ent descent variant RMSprop [11] to minimize our proposed

objective function (equation 1) with respect to the output

image X .

L(X, IC , IS) =
αℓC + ℓm + ℓr +

1
α
ℓp

2 + α+ 1
α

(1)

We describe the content term of our loss αℓC in Sec-

tion 2.2, and the style term ℓm + ℓr +
1
α
ℓp in Section 2.3.

The hyper-parameter α represents the relative importance

of content preservation to stylization. Our method is itera-

tive; let X(t) refer to the stylized output image at timestep

t. We describe our initialization X(0) in Section 2.5.

2.1 Feature Extraction

Both our style and content loss terms rely upon extract-

ing a rich feature representation from an arbitrary spatial lo-

cation. In this work we use hypercolumns [21, 8] extracted

from a subset of layers of VGG16 trained on ImageNet [26].

Let Φ(X)i be the tensor of feature activations extracted
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from input image X by layer i of network Φ. Given the

set of layer indices l1, .., lL we use bilinear upsampling to

match the spatial dimensions of Φ(X)l1 ...Φ(X)lL to those

of the original image (X), then concatenate all such ten-

sors along the feature dimension. This yields a hypercol-

umn at each pixel, that includes features which capture low-

level edge and color features, mid-level texture features,

and high-level semantic features [27]. For all experiments

we use all convolutional layers of VGG16 except layers

9,10,12, and 13, which we exclude because of memory con-

straints.

2.2 Style Loss

Let A = {A1, . . . , An} be a set of n feature vectors ex-

tracted from X(t), and B = {B1, . . . , Bm} be a set of m
features extracted from style image IS . The style loss is

derived from the Earth Movers Distance (EMD)1:

EMD(A,B) =min
T≥0

∑

ij

TijCij (2)

s.t.
∑

j

Tij = 1/m (3)

∑

i

Tij = 1/n (4)

where T is the ’transport matrix’, which defines partial pair-

wise assignments, and C is the ’cost matrix’ which de-

fines how far an element in A is from an element in B.

EMD(A,B) captures the distance between sets A and B,

but finding the optimal T costs O(max(m,n)3), and is

therefore untenable for gradient descent based style transfer

(where it would need to be computed at each update step).

Instead we will use the Relaxed EMD [14]. To define this

we will use two auxiliary distances, essentially each is the

EMD with only one of the constraints (3) or (4):

RA(A,B) =min
T≥0

∑

ij

TijCij s.t.
∑

j

Tij = 1/m (5)

RB(A,B) =min
T≥0

∑

ij

TijCij s.t.
∑

i

Tij = 1/n (6)

we can then define the relaxed earth movers distance as:

ℓr = REMD(A,B) =max(RA(A,B), RB(A,B)) (7)

This is equivalent to:

ℓr =max





1

n

∑

i

min
j

Cij ,
1

m

∑

j

min
i

Cij



 (8)

1Since we consider all features to have equal mass, this is a simplified

version of the more general EMD [23], which allows for transport between

general, non-uniform mass distributions.

Computing this is dominated by computing the cost matrix

C. We compute the cost of transport (ground metric) from

Ai to Bj as the cosince distance between the two feature

vectors,

Cij = Dcos(Ai, Bj) = 1−
Ai ·Bj

‖Ai‖‖Bj‖
(9)

We experimented with using the Euclidean distance be-

tween vectors instead, but the results were significantly

worse, see the supplement for examples.

While ℓr does a good job of transferring the structural

forms of the source image to the target, the cosine distance

ignores the magnitude of the feature vectors. In practice this

leads to visual artifacts in the output, most notably over-

/under-saturation. To combat this we add a moment match-

ing loss:

ℓm =
1

d
‖µA − µB‖1 +

1

d2
‖ΣA − ΣB‖1 (10)

where µA, ΣA are the mean and covariance of the feature

vectors in set A, and µB and ΣB are defined in the same

way.

We also add a color matching loss, ℓp to encourage our

output and the style image to have a similar palette. ℓp is de-

fined using the Relaxed EMD between pixel colors in X(t)

and IS , this time and using Euclidean distance as a ground

metric. We find it beneficial to convert the colors from RGB

into a decorrelated colorspace with mean color as one chan-

nel when computing this term. Because palette shifting is at

odds with content preservation, we weight this term by 1
α

.

2.3 Content Loss

Our content loss is motivated by the observation that

robust pattern recognition can be built using local self-

similarity descriptors [25]. An every day example of this is

the phenomenon called pareidolia, where the self-similarity

patterns of inanimate objects are perceived as faces because

they match a loose template. Formally, let DX be the pair-

wise cosine distance matrix of all (hypercolumn) feature

vectors extracted from X(t), and let DIC be defined analo-

gously for the content image. We visualize several potential

rows of DX in Figure 3. We define our content loss as:

Lcontent(X,C) =
1

n2

∑

i,j

∣

∣

∣

∣

∣

DX
ij

∑

i D
X
ij

−
DIC

ij
∑

i D
IC
ij

∣

∣

∣

∣

∣

(11)

In other words the normalized cosine distance between fea-

ture vectors extracted from any pair of coordinates should

remain constant between the content image and the output

image. This constrains the structure of the output, without

enforcing any loss directly connected to pixels of the con-

tent image. This causes the semantics and spatial layout to

be broadly preserved, while allowing pixel values in X(t)

to drastically differ from those in IC .
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2.4 User Control

We incorporate user control as constraints on the style of

the output. Namely the user defines paired sets of spatial

locations (regions) in X(t) and IS that must have low style

loss. In the case of point-to-point user guidance each set

contains only a single spatial location (defined by a click).

Let us denote paired sets of spatial locations in the output

and style image as (Xt1, Ss1)...(XtK , SsK). We redefine

the ground metric of the Relaxed EMD as follows:

Cij =











β ∗Dcos(Ai, Bj), if i ∈ Xtk, j ∈ Ssk

∞, if ∃k s.t. i ∈ Xtk, j 6∈ Ssk

Dcos(Ai, Bj) otherwise,

(12)

where β controls the weight of user-specified constraints

relative to the unconstrained portion of the style loss, we

use β = 5 in all experiments. In the case of point-to-point

constraints we find it useful to augment the constraints spec-

ified by the user with 8 additional point-to-point constraints,

these are automatically generated and centered around the

original to form a uniform 9x9 grid. The horizontal and

vertical distance between each point in the grid is set to be

20 pixels for 512x512 outputs, but this is is a tunable pa-

rameter that could be incorporated into a user interface.

2.5 Implementation Details

We apply our method iteratively at increasing resolu-

tions, halving α each time. We begin with the content and

style image scaled to have a long side of 64 pixels. The

output at each scale is bilinearly upsampled to twice the

resolution and used as initialization for the next scale. By

default we stylize at four resolutions, and because we halve

α at each resolution our default α = 16.0 is set such that

α = 1.0 at the final resolution.

At the lowest resolution we initialize using the bottom

level of a Laplacian pyramid constructed from the content

image (high frequency gradients) added to the mean color

of the style image. We then decompose the initialized out-

put image into a five level Laplacian pyramid, and use RM-

Sprop [11] to update entries in the pyramid to minimize our

Figure 3: The blue, red, and green heatmaps visualize the

cosine similarity in feature space relative to the correspond-

ing points marked in the photograph. Our content loss at-

tempts to maintain the relative pairwise similarities between

1024 randomly chosen locations in the content image

objective function. We find that optimizing the Laplacian

pyramid, rather than pixels directly, dramatically speeds up

convergence. At each scale we make 200 updates using

RMSprop, and use a learning rate of 0.002 for all scales

except the last, where we reduce it to 0.001.

The pairwise distance computation required to calculate

the style and content loss precludes extracting features from

all coordinates of the input images, instead we sample 1024

coordinates randomly from the style image, and 1024 co-

ordinates in a uniform grid with a random x,y offset from

the content image. We only differentiate the loss w.r.t the

features extracted from these locations, and resample these

locations after each step of RMSprop.

3 Related Work

Style transfer algorithms have existed for decades, and

traditionally relied on hand-crafted algorithms to render an

image in fixed style [7, 9], or hand-crafting features to be

matched between an arbitrary style to the content image

[10, 3]. The state-of-the-art was dramatically altered in

2016 when Gatys et al. [4] introduced Neural Style Trans-

fer. This method uses features extracted from a neural net-

work pre-trained for image classification. It defines style in

terms of the Gram matrix of features extracted from multi-

ple layers, and content as the feature tensors extracted from

another set of layers. The style loss is defined as the Frobe-

nius norm of the difference in Gram feature matrices be-

tween the output image and style image. The content loss

is defined as the Frobenius norm of the difference between

feature tensors from the output image and the style image.

Distinct from the framework of Neural Style Transfer, there

are several recent methods [17, 1] that use similarities be-

tween deep neural features to build a correspondence map

between the content image and style image, and warp the

style image onto the content image. These methods are ex-

tremely successful in paired settings, when the contents of

the style image and content image are similar, but are not

designed for style transfer between arbitrary images (un-

paired or texture transfer).

Subsequent work building upon [4] has explored im-

provements and modifications along many axes. Per-

haps the most common form of innovation is in propos-

als for quantifying the ’stylistic similarity’ between two im-

ages [15, 2, 22, 20]. For example in order to capture long-

range spatial dependencies Berger et al. [2] propose com-

puting multiple Gram matrices using translated feature ten-

sors (so that the outer product is taken between feature vec-

tors at fixed spatial offsets). Both [4] and [2] discard valu-

able information about the complete distribution of style

features that isn’t captured by Gram matrices.

In [15] Li et al. formulate the style loss as minimiz-

ing the energy function of a Markov Random Field over

the features extracted from one of the latter layers of a pre-
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Content Style Ours Reshuffle [6] Gatys [4] CNNMRF [15] Contextual [20]

Figure 4: Qualitative comparison between our method and prior work. Default hyper-parameters used for all methods

trained CNN, encouraging patches (which yielded the deep

features) in the target image to match their nearest neigh-

bor from style image in feature space. Other functionally

similar losses appear in [22], which treats style transfer

as matching two histograms of features, and [20], which

matches features between the style and target which are

significantly closer than any other pairing. In all of these

methods, broadly speaking, features of the output are en-

couraged to lie on the support of the distribution of features

extracted from the style image, but need not cover it. These

losses are all similar to one component of the Relaxed EMD

(RA). However, our method differs from these approaches

because our style term also encourages covering the entire

distribution of features in the style image (RB). Our style

loss is most similar in spirit to that proposed by Gu et al [6],

which also includes terms that encourage fidelity and diver-

sity. Their loss minimizes the distance between explicitly

paired individual patches, whereas ours minimizes the dis-

tance between distributions of features.

Another major category of innovation is replacing the

optimization-based algorithm of [4] with a neural network

trained to perform style transfer, enabling real-time infer-

ence. Initial efforts in this area were constrained to a lim-

ited set of pre-selected styles [13], but subsequent work

relaxed this constraint and allowed arbitrary styles at test

time [12]. Relative to slower optimization-based methods

these works made some sacrifices in the quality of the out-

put for speed. However, Sanakoyeu et al. [24] introduce a

method for incorporating style images from the same artist

into the real-time framework which produces high quality

outputs in real-time, but in contrast to our work relies on

having access to multiple images with the same style and

requires training the style transfer mechanism separately for

each new style.

Various methods have been proposed for controlling the

output of style transfer. In [5] Gatys et al. propose two

’global’ control methods, that affect the entire output rather

than a particular spatial region. One method is decompos-

ing the image into hue, saturation, and luminance, and only

stylizes the luminance in order to preserve the color palette
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Figure 5: Examples of using guidance for aesthetic effect (left, point-to-point)) and error correction (right, region-to-region).

In the top row the images are arranged in order of content, output, style. Below each content and style image we show the

guidance mask, and between them the guided output.

Content α = 32.0 α = 16.0 α = 8.0 α = 4.0 Style

Figure 6: Effect of varying α, the content loss weight, on our unconstrained style transfer output, because we stylize at four

resolutions, and halve α each time, our default α = 16.0 is set such that α = 1.0 at the final resolution.

of the content image. A second method from [5] is to gen-

erate an auxiliary style image either to preserve color, or

to transfer style from only a particular scale (for example

the transferring only the brush-strokes, rather than the larger

and more structurally complex elements of the style). These

types of user control are orthogonal to our method, and can

be incorporated into it.

Another type of control is spatial, allowing users to en-

sure that certain regions of the output should be stylized

using only features from a manually selected region of the

style image (or that different regions of the output im-

age should be stylized based on different style images).

In [5, 18] the authors propose forms of spatial control based

on the user defining matched regions of the image by cre-

ating a dense mask for both the style and content image.

We demonstrate that it is straightforward to incorporate this

type of user-control into our formulation of style transfer. In

the supplement we show an example comparing the spatial

control of our method and [5], and demonstrate that both

yield visually pleasing results that match the spatial guid-

ance provided.

Evaluating and comparing style transfer algorithms is

a challenging task because, in contrast to object recogni-

tion or segmentation, there is no established “ground truth”

for the output. The most common method is a qualitative,

purely subjective comparison between the output of differ-

ent algorithms. Some methods also provide more refined

qualitative comparisons such as texture synthesis [22, 6]

and inpainting [2]. While these comparisons provide in-

sight into the behavior of each algorithm, without quanti-

tative comparisons it is difficult to draw conclusions about

the algorithm’s performance on average. The most common

quantitative evaluation is asking users to rank the output of

each algorithm according to aesthetic appeal [6, 16, 19].

Recently Sanakoyeu et al. [24] propose two new forms of

quantitative evaluation. The first is testing if an neural net-

work pretrained for artist classification on real paintings can

correctly classify the artist of the style image based on an al-

gorithm’s output. The second is asking experts in art history

which algorithm’s output most closely matches the style im-
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age. We designed our human evaluation study, described

in section 4.1, to give a more complete sense of the trade-

off each algorithm makes between content and style as its

hyper-parameters vary. To the best of our knowledge it is

the first such effort.

Figure 7: Human evaluation interface

4 Experiments

We include representative qualitative results in Fig-

ures 2, 4, and an illustration of the effect of the content

weight α in Figure 6. Figure 5 demonstrates uses of user

guidance with our method.

4.1 LargeScale Human Evaluation

Because style transfer between arbitrary content and

style pairs is such a broad task, we propose three regimes

that we believe cover the major use cases of style transfer.

’Paired’ refers to when the content image and style image

are both representations of the same things, this is mostly

images of the same category (e.g. both images of dogs),

but also includes images of the same entity (e.g. both im-

ages of the London skyline). ’Unpaired’ refers to when the

content and style image are not representations of the same

thing (e.g. a photograph of a Central American temple, and

a painting of a circus). ’Texture’ refers to when the content

is a photograph of a face, and the style is a homogeneous

texture (e.g. a brick wall, flames). For each regime we con-

sider 30 style/content pairings (total of 90).

In order to quantitatively compare our method to prior

work we performed several studies using AMT. An exam-

ple of the workers’ interface is shown in Figure 7. Images

A and B were the result of the same inputs passed into ei-

ther the algorithms proposed in [4],[6], [15], [20], or our

method. In Figure 7 image C is the corresponding style im-

age, and workers were asked to choose whether the style

of image is best matched by: ’A’, ’B’, ’Both Equally’, or

’Neither’. If image C is a content image, workers are posed

the same question with respect to content match, instead of

style. For each competing algorithm except [6] we test three

sets of hyper-parameters, the defaults recommended by the

authors, the same with 1
4 of the content weight (high styl-

ization), and the same with double the content weight (low

stylization). Because these modifications to content weight

did not alter the behavior of [4] significantly we also tested

[4] with 1
100 and 100× the default content weight. We also

test our method with 4× the content weight. We only were

able to test the default hyper-parameters for [6] because

the code provided by the authors does not expose content

weight as a parameter to users. We test all possible pairings

of A and B between different algorithms and their hyper-

parameters (i.e. we do not compare an algorithm against

itself with different hyperparameters, but do compare it to

all hyperparameter settings of other algorithms). In each

presentation, the order of output (assignment of methods

to A or B in the interface) was randomized. Each pairing

was voted on by an average of 4.98 different workers (mini-

mum 4, maximum 5), 662 workers in total. On average, 3.7

workers agreed with the majority vote for each pairing. All

of the images used in this evaluation will be made available

to enable further benchmarking.

For an algorithm/hyper-parameter combination we de-

fine its content score to be the number of times it was se-

lected by workers as having closer or equal content to IC
relative to the other output it was shown with, divided by the

total number of experiments it appeared in. This is always

a fraction between 0 and 1. The style score is defined anal-

ogously. We present these results in Figure 8, separated by

regime. The score of each point is computed over 1580 pair-

ings on average (including the same pairings being shown to

distinct workers, minimum 1410, maximum 1890). Overall

for a given level of content score, our method provides a

higher style score than prior work.

4.2 Ablation Study

In Figure 9 we explore the effect of different terms of

our style loss, which is composed of a moment-matching

loss ℓm, the Relaxed Earth Movers Distance ℓr, and a color

palette matching loss ℓp. As seen in Figure 9, ℓm alone

does a decent job of transferring style, but fails to capture

the larger structures of the style image. ℓRA
alone does not

make use of the entire distribution of style features, and

reconstructs content more poorly than ℓr. ℓRB
alone en-

courages every style feature to have a nearby output fea-

ture, which is too easy to satisfy. Combining ℓRA
and ℓRB

in the relaxed earth movers distance ℓr results in a higher

quality output than either term alone, however because the

ground metric used is the cosine distance the magnitude of

the features is not constrained, resulting in saturation issues.

Combining ℓr with ℓm alleviates this, but some issues with

the output’s palette remain, which are fixed by adding ℓp.

4.3 Relaxed EMD Approximation Quality

To measure how well the Relaxed EMD approximates

the exact Earth Movers Distance we take each of the 900

possible content/style pairings formed by the 30 content and

style images used in our AMT experiments for the unpaired

regime. For each pairing we compute the REMD between
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Figure 8: Quantitative evaluation of our method and prior work, we estimate the Pareto frontier of the methods evaluated by

linearly interpolation (dashed line)

ℓm ℓRA
ℓRB

ℓr ℓr + ℓm ℓr + ℓm +
ℓp
α

Style

Figure 9: Ablation study of effects of our proposed style terms with low content loss (α = 4.0). See text for analysis of each

terms’ effect. Best viewed zoomed-in on screen.

1024 features extracted from random coordinates, and the

exact EMD based on the same set of features. We then ana-

lyze the distribution of
REMD(A,B)
EMD(A,B

Because the REMD is

a lower bound, this quantity is always ≤1. Over the 900 im-

age pairs, its mean was 0.60, with standard deviation 0.04.

A better EMD approximation, or one that is an upper bound

rather than a lower bound, may yield better style transfer

results. On the other hand the REMD is simple to compute,

empirically easy to optimize, and yields good results.

4.4 Timing Results

We compute our timing results using a Intel i5-7600

CPU @ 3.50GHz CPU, and a NVIDIA GTX 1080 GPU.

We use square style and content images scaled to have the

edge length indicated in the top row of Table 1. For inputs

of size 1024x1024 the methods from [15] and [20] ran out

of memory (’X’ in the table). Because the code provided

by the authors [6] only runs on Windows, we had to run it

on a different computer. To approximate the speed of their

method on our hardware we project the timing result for

512x512 images reported in their paper based on the relative

speedup for [15] between their hardware and ours. For low

resolution outputs our method is relatively slow, however it

scales better for outputs with resolution 512 and above rel-

ative to [15] and [20], but remains slower than [4] and our

projected results for [6].

Image size 64 128 256 512 1024

Ours 20 38 60 95 154

Gatys 8 10 14 33 116

CNNMRF 3 8 27 117 X

Contextual 13 40 189 277 X

Reshuffle - - - 69* -

Table 1: Timing comparison (in seconds) between our

methods and others. The style and content images had the

same dimensions and were square. *: a projected result, see

text for details. -: we were not able to project these results.

X: the method ran out of memory.

5 Conclusion and Future Work

We propose novel formalizations of style and content for

style transfer and show that the resulting algorithm com-

pares favorably to prior work, both in terms of stylization

quality and content preservation. Via our ablation study

we show that style-similarity losses which more accurately

measure the distance between distributions of features leads

to better style transfer. The approximation of the earth

movers distance that we use is simple, but effective, and

we leave it to future work to explore more accurate approx-

imations. Another direction for future work is improving

our method’s speed by training feed-forward style transfer

methods using our proposed objective function.
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