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Abstract

In this paper, we address the separation of reflective

and fluorescent components in RGB images taken under

narrow-band light sources such as LEDs. First, we show

that the fluorescent color per pixel can be estimated from

at least two images under different light source colors, be-

cause the observed color at a surface point is represented

by a convex combination of the light source color and the

illumination-invariant fluorescent color. Second, we pro-

pose a method for robustly estimating the fluorescent color

via MAP estimation by taking the prior knowledge with re-

spect to fluorescent colors into consideration. We conducted

a number of experiments by using both synthetic and real

images, and confirmed that our proposed method works bet-

ter than the closely related state-of-the-art method and en-

ables us to separate reflective and fluorescent components

even from a single image. Furthermore, we demonstrate

that our method is effective for applications such as image-

based material editing and relighting.

1. Introduction

Fluorescence is a very common phenomenon observed

both in natural objects such as minerals and plants and in

man-made objects such as papers and clothes [2]. Fluo-

rescent materials emit light with longer wavelengths than

those of the absorbed light, in contrast to reflective materials

which reflect light with the same wavelengths as those of the

incident light. Separating reflective and fluorescent compo-

nents in images is important for preprocessing of various

computer vision techniques that assume reflective compo-

nents such as diffuse and specular ones.

Recently, due to the progress of light-emitting diodes

(LEDs), narrow-band light sources are often used for illu-

minating an object of interest and capturing its images in

the fields of computer vision and computer graphics [21, 1,

8, 17, 15, 16]. The application domain of images taken un-

der narrow-band light sources includes image-based spec-

tral relighting [21, 16], raw material classification [8], bidi-

rectional texture function (BTF) classification [17], and sur-

face normal and reflectance recovery [15]. Therefore, sepa-

rating reflective and fluorescent components under narrow-

band illumination is useful for preprocessing of such appli-

cations.

In this paper, we address the separation of reflective

and fluorescent components in RGB images taken under

narrow-band light sources such as LEDs. First, we show

that the fluorescent color is on the plane spanned by the light

source color and the observed pixel color in the RGB color

space, and then the fluorescent color per pixel can be esti-

mated from at least two images under different light source

colors as the intersection of the two planes. This is because

the pixel color is represented by a convex combination of

the light source color and the illumination-invariant fluo-

rescent color. Second, we take the prior knowledge with

respect to fluorescent colors, i.e. the distribution of fluores-

cent colors in the r-g chromaticity space into consideration,

and propose a method for robustly estimating the fluores-

cent color via maximum a posteriori (MAP) estimation.

Through a number of experiments by using both syn-

thetic and real images, we confirm that our proposed ap-

proach works better than the closely related state-of-the-

art method [26] based on independent component analysis

(ICA) [12]. In addition, we show that our method taking

account of the prior knowledge with respect to fluorescent

colors enables us to separate reflective and fluorescent com-

ponents even from a single image. Furthermore, we demon-

strate that our method is effective for applications such as

image-based material editing and relighting.

The main contribution of this study is threefold. First,

we explore the novel problem of separating reflective and

florescent components under narrow-band illumination, and

show that the fluorescent color per pixel can be estimated

from at least two images. Second, we achieve the reflec-

tive and fluorescent separation from a single image by tak-

ing the known space of potential fluorescent colors into

consideration. Third, we show that our approach with

the improved model results in better fluorescent separa-

tion than closely related state-of-the-art methods, e.g. ICA-

based method [26], and is effective for applications such as

image-based material editing and relighting.
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The rest of this paper is organized as follows. In Sec-

tion 2, we briefly summarize related work. In Section 3, we

show that the fluorescent color per pixel can be estimated

from at least two images, and then propose a method for

reflective-fluorescent separation via MAP estimation. We

report the experimental results and the applications in Sec-

tion 4. We present concluding remarks in Section 5.

2. Related Work

2.1. Properties of fluorescence

The spectral property of a fluorescent surface is de-

scribed in a bispectral manner by using the Donaldson ma-

trix [3]. Each element of the Donaldson matrix is the

amount of reflected/emitted light when the wavelengths of

the outgoing light (row) and the incoming light (column) are

given. The diagonal elements, where the outgoing wave-

length is the same as the incoming wavelength, are reflec-

tive components, and the lower-left elements, where the

outgoing wavelength is longer than the incoming wave-

length, are fluorescent components. The spectral property

of fluorescent components, i.e. a pure fluorescent material

without reflective components, is often described more sim-

ply by using the absorption spectrum and the emission spec-

trum [13]. The former is the fraction of incoming light ab-

sorbed by the material, and the latter is the amount of out-

going light emitted from the material at each wavelength.

The amount of reflected/emitted light from a fluorescent

surface depends not only on the wavelengths but also on the

directions of the incoming light and the outgoing light. In

the graphics community, Glassner [7] and Wilkie et al. [25]

model the angular property of fluorescent components in

the same manner as the Lambert model, i.e. the fluorescent

radiance is proportional to the irradiance. In general, the

angular property of a fluorescent surface including reflec-

tive components is described by a bispectral bidirectional

reflectance and reradiation distribution function (bispectral

BRRDF). Hullin et al. [11] propose an image-based method

for acquiring the bispectral BRRDFs of fluorescent surfaces

by extending the image-based method for BRDF acquisi-

tion [18] to bispectal measurement. They report that the

fluorescent components have weak angular dependency.

One of the interesting behaviors of fluorescence is wave-

length shift called the Stokes shift; a fluorescent material ab-

sorbs incident light at a certain wavelength, and then emits

light at longer wavelengths than the incident one. Hullin

et al. [10] exploit the fact that multiple scattering is sup-

pressed in a fluorescent liquid due to the Stokes shift, and

then propose immersion range scanning for shape recov-

ery of transparent objects. Sato et al. [23] and Treibitz et

al. [24] show that fluorescent components approximately

obeys the Lambert model with respect to light source di-

rections, and then propose bispectral photometric stereo

based on fluorescence; an object of interest is illuminated

by shorter-wavelength light sources and is observed by a

longer-wavelength camera band. They show that the bispec-

tral photometric stereo is robust against specular reflection

components and interreflections due to the Stokes shift.

Another interesting behavior of fluorescence is illumina-

tion invariance of fluorescent colors, i.e the chromaticity of

fluorescent components observed on a fluorescent surface

is constant independent of the spectral intensity of incident

light. This is because the fluorescent color depends only on

the emission spectra and is independent of the absorption

spectra. Han et al. [9] makes use of the illumination in-

variance for calibrating the spectral sensitivity of a camera

under unknown illumination. The illumination invariance

is used also for reflective and fluorescent separation as de-

scribed in the next subsection.

2.2. Reflective and fluorescent separation

Zhang and Sato [26] propose a method for separating re-

flective and fluorescent components under the assumption

that the spectral sensitivity of a camera is narrow-band as is

often assumed in color constancy algorithms. Specifically,

their method is based on the channel-wise linear model;

grayscale images in each channel under varying spectral in-

tensities are represented by convex combinations of a re-

flective grayscale image and a fluorescent grayscale image.

Then, those basis images are computed by using ICA in the

high-dimensional image space in a similar manner to re-

flection removal [4]. Unfortunately, however, such channel-

wise linearity does not hold for images taken under narrow-

band illumination1, and then we cannot use their method

when not the cameras but the light sources are narrow-band.

In this study, we show that our pixel-wise linear model can

be used for narrow-band illumination instead.

Fu et al. [6] propose a method for separating reflective

and fluorescent components by using high-frequency illu-

mination in the spectral domain on the basis that the ab-

sorption spectra are usually low-frequency. Their method

is analogous to the direct-global separation by using high-

frequency illumination in the spatial domain [20]. Unfor-

tunately, however, their method requires special and expen-

sive devices: a hyperspectral camera and a programmable

illumination in the spectral domain. On the other hand,

our proposed method uses a usual color camera and LEDs.

In addition, Fu et al. [5] propose a method for estimating

the spectral properties of reflectance and fluorescence from

several RGB images taken under varying spectral intensi-

ties. They make use of low-dimensional linear model of

spectral reflectance [22] and absorption spectrum, and es-

1Specifically, N grayscale images in each channel under N narrow-

band light sources are represented by the convex combinations of (N +1)
basis images, i.e. N for reflectance and one for fluorescence in general.

Therefore, ICA-based method is ill-posed under narrow-band illumination.
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timate their coefficients of the linear combinations. Their

method is also related to ours in the sense that the reflective

and fluorescent components can be recovered from the ba-

sis functions and the estimated coefficients. Unfortunately,

however, their method requires 9 images taken under differ-

ent spectral intensities, and thus the separation from a single

image is impossible.

3. Proposed Method

In this section, we explore the reflective and fluorescent

model under narrow-band illumination, and derive the in-

tersection method for reflective-fluorescent separation. Fur-

thermore, we exploit the typical color distribution for fluo-

rescent materials [19], and then extend it via MAP estima-

tion.

3.1. Reflective and fluorescent model

We assume that an object of interest is observed by using

a color camera. For reflective and fluorescent surfaces, the

pixel value i = (iR, iG, iB)
⊤ at a point on the object sur-

face consists of a reflective component r = (rR, rG, rB)
⊤

and a fluorescent component f = (fR, fG, fB)
⊤ in general:

i = r + f . (1)

According to the dichromatic reflection model, the re-

flective component is described by the sum of a diffuse re-

flection component and a specular reflection component as

rc = gd

∫

l(λ′)ρ(λ′)sc(λ
′)dλ′ + gs

∫

l(λ′)sc(λ
′)dλ′.

(2)

Here, λ′, l(λ′), ρ(λ′), and sc(λ
′) are the wavelength of an

incident light, the spectral intensity of a light source, the

spectral reflectance of the surface, and the spectral sensitiv-

ity of the c channel (c = R,G,B) of the camera respec-

tively. The geometric term of the diffuse reflection compo-

nent gd depends only on the lighting direction, while that of

the specular reflection component gs depends on both the

lighting and viewing directions.

We assume that the object is illuminated by a narrow-

band light source whose spectral intensity is approximately

represented by using the Dirac delta function δ( ) as

l(λ′) = lδ(λ′ − λ). (3)

Substituting Eq.(3) into Eq.(2), we obtain

rc = gdlρ(λ)sc(λ) + gslsc(λ), (4)

r = l(gdρ(λ) + gs)

⎛

⎝

sR(λ)
sG(λ)
sB(λ)

⎞

⎠ . (5)

Therefore, the color of the reflective component, i.e. the re-

flective component normalized by its L1 norm r̂ = r/||r||1

under the narrow-band light source with the wavelength λ is

described by the spectral sensitivity at the wavelength. This

means that the color of the reflective component is the same

as the light source color.

It is known that a pure fluorescent material absorbs light

at a certain wavelength λ′ and then emits light at a longer

wavelength λ′′. The fluorescent component is described as

fc = gf

∫

l(λ′)a(λ′)dλ′

∫

e(λ′′)sc(λ
′′)dλ′′, (6)

where gf , a(λ′), and e(λ′′) are the geometric term of the

fluorescent component, the absorption and emission spectra

of the fluorescent material.

Substituting Eq.(3) into Eq.(6), we obtain

fc = gf la(λ)

∫

e(λ′′)sc(λ
′′)dλ′′, (7)

f = gf la(λ)

⎛

⎝

∫

e(λ′′)sR(λ
′′)dλ′′

∫

e(λ′′)sG(λ
′′)dλ′′

∫

e(λ′′)sB(λ
′′)dλ′′

⎞

⎠ . (8)

Therefore, the color of the fluorescent component f̂ =
f/||f ||1 under the narrow-band light source is independent

of the wavelength λ of the light source. The light source

wavelength affects only the scale of the fluorescent compo-

nent through a(λ).

3.2. Intersection method

We denote the pixel value observed under the n-th

narrow-band light source (n = 1, 2, 3, ..., N ) by in, and

denote the corresponding reflective and fluorescent compo-

nents by rn and fn respectively. Then, the pixel value in is

represented by the convex combination of two unit vectors,

i.e. the light source color r̂n and the fluorescent color f̂n as

in = rn + fn = αnr̂n + βnf̂ , (9)

where αn and βn are the non-negative coefficients of the

convex combination. As shown in the previous subsection,

αn, βn, and r̂n depend on the light source, but the fluores-

cent color f̂ is independent of it.

Hereafter, we consider the RGB color space and the r-g
chromaticity space defined by the spectral sensitivity of a

camera, where r = R/(R+G+B) and g = G/(R+G+
B) respectively. This is because the linearity in Eq.(9) is

lost in nonlinear color spaces such as the CIE-L*a*b*. Our

proposed method exploits the planar structure in the RGB
color space and the linear structure in the r-g chromaticity

space as described below.

Let us consider the case when N = 2. As shown in Fig-

ure 1 (a), for a certain pixel in the first image, Eq.(9) means

that the fluorescent color f̂ is on the plane spanned by the

light source color r̂1 and the pixel color î1 = i1/||i1||1.
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Figure 1. The illustration of the intersection method. The flores-

cent color f̂ is on (a) the plane spanned by the light source color

r̂1 and the pixel color î1 and (b) the plane spanned by r̂2 and î2 at

the same time. Therefore, the fluorescent color is given by (c) the

intersection of those two planes.

Similarly, as shown in Figure 1(b), the fluorescent color f̂

is on the plane spanned by the light source color r̂2 and the

pixel color î2 in the second image at the same time. There-

fore, the fluorescent color f̂ is given by the intersection of

those two planes as shown in Figure 1(c). Thus, we can

separate the reflective components rn and fluorescent com-

ponents fn per pixel from at least two images under the

assumption that the light source colors r̂n are known. Note

that we can compute the coefficients of the convex combi-

nation αn and βn by using the least squares method with

non-negativity constraints when the light source colors are

known and the fluorescent color is given as the above.

In the general case when N ≥ 2, the fluorescent color

f̂ is given by the intersection of the N planes. Specifically,

the intersection method results in
⎛

⎜

⎜

⎝

...

(în × r̂n)
⊤

...

⎞

⎟

⎟

⎠

f̂ =

⎛

⎜

⎜

⎝

...

0
...

⎞

⎟

⎟

⎠

, (10)

where × stands for the cross product. In practice, the flu-

orescent color f̂ is computed by using the least squares

method with non-negativity constraints.

Light source colors: Note that we can relax the assump-

tion that the light source colors r̂n are known. The pixel

color în at a pure reflective pixel, where fn = 0, is equal to

the light source color r̂n from Eq.(9). In addition, the pixel

color at a reflective-fluorescent pixel is shifted towards red

Figure 2. The prior and likelihood of MAP estimation. (a) The flu-

orescent colors computed from the actual emission spectra in the

McNamara dataset [19]. The prior probability density of the flu-

orescent color is superimposed; darker has higher probability. (b)

The sketch of the likelihood function. We assume that the distance

dn between the observed pixel color în and the line connecting

from the light source color r̂n to the fluorescent color f̂ obeys the

zero-mean Gaussian distribution.

due to the Stokes shift. Therefore, we can consider the most

bluish pixel as a pure reflective pixel and consider its color

as the light source color, if there is at least one pure reflec-

tive pixel in each image.

3.3. MAP estimation

The intersection method in Eq.(10) does not work well

under the following two conditions. First, there is at most a

single pair of în and r̂n such that în �= r̂n, i.e. în× r̂n �= 0.

Second, there is no pair of (în × r̂n) and (îm × r̂m) such

that (în × r̂n) �= (îm × r̂m). From the geometric point of

view, the former means that there is at most a single plane

and the latter means that the planes are parallel to each other

in the RGB color space in Figure 1.

To cope with such limitations of the intersection method,

our proposed method makes use of the prior knowledge

with respect to fluorescent colors. In Figure 2 (a), we plot

the fluorescent colors computed from the actual emission

spectra in the McNamara dataset [19] in the chromatic-

ity space2. We can see that the distribution of fluores-

cent colors has arch-like structure, in particular reddish col-

ors distribute near the spectrum locus, i.e. the locus of the

monochromatic (single-wavelength) color. This is because

the emission spectra are relatively narrow-band.

Accordingly, we formulate the estimation of the fluores-

cent color via MAP estimation as

max
f̂

N
∏

n=1

P (în|f̂ ; r̂n)P (f̂). (11)

2Here, we assume the x-y chromaticity space defined by the CIE-XYZ

for display purpose, where x = X/(X+Y +Z) and y = Y/(X+Y +Z)
respectively. Our proposed method assumes that the spectral sensitivity

of a camera is known and considers the prior probability distribution of

fluorescent colors in the r-g chromaticity space defined by the camera.
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Here, P (în|f̂ ; r̂n) is the likelihood function, i.e. the prob-

ability density that the pixel color în is observed when the

fluorescent color f̂ is given and the light source color r̂n
is known, and P (f̂) is the prior probability density of the

fluorescent color f̂ . Taking the natural log of the above ob-

jective function, we obtain

max
f̂

[

N
∑

n=1

logP (în|f̂ ; r̂n) + logP (f̂)

]

. (12)

It is clear from Eq.(9) that the light source color r̂n, the

fluorescent color f̂ , and the pixel color în are on a single

line in the r-g chromaticity space3. In practice, however,

the observed pixel color is not on the line connecting from

the light source color r̂n to the fluorescent color f̂ due to

the noise in the observed pixel value. We assume that the

distance dn between the observed pixel color în and the line

in the chromaticity space (see Figure 2 (b)) obeys the zero-

mean Gaussian distribution4 as

P (în|f̂ ; r̂n) =
1

2πσ2
exp

(

−
d2n
2σ2

)

. (13)

Then, the first term in Eq.(12) results in

−
1

2σ2

N
∑

n=1

d2n, (14)

where we omit constant terms independent of f̂ .

Figure 2 (a) shows that the McNamara dataset has a bias;

the number of fluorescent materials with bluish emission

spectra is larger than the number of those with greenish and

reddish spectra. To prevent the bias from propagating to

the result of the MAP estimation, we fit a smoothing spline

curve to the distribution of fluorescent colors in Figure 2

(a)5, and approximate the prior probability density of the

fluorescent color P (f̂) by using the Gaussian distributions

whose centers are at the points on the spline curve. The vari-

ances of the Gaussian distributions are computed around the

points on the spline curve. The computed prior probability

density P (f̂) is superimposed in Figure 2 (a); darker has

higher probability

Thus, our proposed method based on the MAP estima-

tion results in

min
f̂

[

1

2

N
∑

n=1

d2n − σ2 logP (f̂)

]

. (15)

3For the sake of simplicity, we denote an unit vector in the RGB color

space and its projection to the r-g chromaticity space by the same symbol.
4Although σ could depend on the pixel value i, we fixed it to 0.01 in

all of our experiments.
5We considered a fluorescent color of (0.34, 0.26) as an outlier and

removed it from the computation.

Since the above optimization is non-linear, we find the op-

timal fluorescent color via coarse-to-fine search in the chro-

maticity space. Note that the fluorescent color is more red-

dish than the pixel color due to the Stokes shift and because

the pixel color is represented by a convex combination of

the light source color and the fluorescent color. Thus, we

constrain the search area to f̂r + f̂g ≥ îr + îg within the

spectrum locus.

Single-image method: Note that our proposed method

based on the MAP estimation enables us to separate reflec-

tive and fluorescent components even from a single image.

Intuitively, a single image constrains the fluorescent color

up to the neighborhood of the line connecting from the light

source color towards the pixel color from Eq.(9). Then, the

prior knowledge further constrains the fluorescent color up

to the neighborhood of the fitted smoothing spline curve.

Therefore, the fluorescent color estimated from a single im-

age is located near their intersection.

4. Experiments

4.1. Synthetic images

We compared the performances of our proposed methods

with that of the closely related state-of-the-art method [26]

by using synthetic images. Specifically, we compared the

following four methods.

• Zhang and Sato [26] (ICA) assumes a narrow-band

camera and is based on the channel-wise linear model.

The ordering ambiguity in ICA is resolved by using

known light source colors in our experiments6.

• Intersection method (IS) assumes narrow-band illu-

mination and is based on the pixel-wise linear model.

As described in Subsection 3.2, the fluorescent color is

given by the intersection of the two planes.

• MAP estimation (MAP) extends the intersection

method by taking the prior knowledge with respect to

fluorescent colors into consideration as described in

Subsection 3.3. Multiple images are used as input.

• MAP estimation from a single image (MAP single)

is the same as the above MAP estimation in its formu-

lation, but a single image is used as input.

We synthesized the images of spheres with different

spectral properties taken by cameras with different spectral

sensitivities under light sources with different peak wave-

lengths and widths. We used the spectral reflectances of

matte Munsell color chips [22], the absorption and emis-

sion spectra in the McNamara dataset [19], and the dataset

of camera spectral sensitivity [14] for synthesizing realis-

tic images. We assumed that the spectral intensities of light

6The reflective and fluorescent components estimated by using ICA can

be negative. We clipped them to zeros in our experiments.
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Table 1. The quantitative comparison using the first object under varying σw and σn. The numerical value in each cell stands for the RMS

error of four result images.

ICA IS MAP MAP single

σn\σw 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

0 39.3 38.5 38.3 38.9 0.8 0.8 1.0 1.2 0.9 0.9 1.0 1.4 6.4 4.9 4.1 5.2

1 38.9 38.2 38.5 38.8 2.6 2.6 2.6 2.8 2.5 2.4 2.3 2.4 7.9 6.3 5.3 8.1

2 39.1 38.4 38.3 38.6 5.1 5.1 5.1 5.2 4.7 4.7 4.5 4.4 10.3 8.7 7.6 8.9

4 38.8 38.4 38.4 38.7 10.4 10.2 10.2 10.1 10.0 9.7 9.5 8.9 15.3 13.5 12.3 12.0

Table 2. The quantitative comparison using the second object under varying σw and σn.
ICA IS MAP MAP single

σn\σw 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

0 17.7 18.0 18.6 19.4 2.3 2.4 2.5 2.7 4.3 4.3 4.4 4.5 4.4 4.5 4.6 4.8

1 18.3 17.9 18.6 19.4 7.4 7.3 7.1 7.0 4.6 4.7 4.8 4.9 4.6 4.7 4.9 5.1

2 17.7 18.5 18.6 19.5 13.0 12.7 12.4 12.3 6.9 6.8 7.0 7.1 5.6 5.6 5.9 6.2

4 17.9 18.2 19.1 20.0 19.6 19.2 19.0 19.1 10.7 10.8 11.0 11.2 9.1 9.3 9.4 9.9

Figure 3. The qualitative comparison using the first object. (a)

(d) are the input images. (b) (e) and (c) (f) are the corresponding

reflective and fluorescent images: the ground truth and the results

using ICA, IS, MAP, and MAP single from left to right.

sources obey the Gaussian distributions with the standard

deviation σw. In order to evaluate the robustness of those

methods against noises, we artificially added the zero-mean

Gaussian noise with the standard deviation σn to each pixel.

Figure 3 shows the qualitative comparison using the first

object. (a) (d) are the input images; the peak wavelengths

of light sources are 475 nm and 525 nm respectively and

the camera is Nikon D300s. (b) (e) and (c) (f) are the corre-

sponding reflective and fluorescent images: the ground truth

and the results using ICA, IS, MAP, and MAP single from

left to right. Here, σw is 10 nm and σn is 2 for 8-bit im-

ages. Table 1 shows the quantitative comparison using the

first object under varying σw and σn. The numerical value

in each cell stands for the root mean square (RMS) error

of four result images: the reflective component and the flu-

orescent component for the first input image and those for

the second input image. Figure 4 and Table 2 show the re-

sults using the second object. The peak wavelengths of light

sources are 425 nm and 475 nm respectively and the camera

Figure 4. The qualitative comparison using the second object.

is Canon 5D Mark II.

ICA vs. IS, MAP, and MAP single: Figure 3, Figure 4,

Table 1, and Table 2 show both qualitatively and quantita-

tively that our proposed methods, i.e. IS, MAP, and MAP

single work better than the state-of-the art method [26]

(ICA) for images under narrow-band illumination. In addi-

tion, they are robust when the widths of spectral intensities

σw increase from 5 nm to 20 nm. Note that the full width at

half maximum (FWHM) is about 2.35× σw.

IS vs. MAP: Figure 3 and Table 1 show that both of IS

and MAP work well, but Figure 4 and Table 2 show that

MAP works better than IS in particular when σn increases.

In the former case, the light source colors of the input im-

ages7 are different. Therefore, as shown in Figure 1 (c), we

can obtain two planes such that (î1 × r̂1) �= (î2 × r̂2), and

then IS itself works well. On the other hand, in the latter

case, the light source colors of the input images are similar

to each other. Therefore, the two planes in the RGB color

space are also similar, and then IS is not stable and the prior

knowledge with respect to fluorescent colors is effective.

MAP vs. MAP single: Figure 4 and Table 2 show that

7See the ground truth of the reflective images in (b) and (e).
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Figure 5. The qualitative comparison using the real images of a

water pistol under the first and the second light source colors. (a)

(d) are the input images. (b) (e) and (c) (f) are the corresponding

reflective and fluorescent images: the results using ICA, IS, MAP,

and MAP single from left to right.

Figure 6. The qualitative comparison using the real images of a

water pistol under the first and the fourth light source colors.

the performance of MAP single is almost the same as that of

MAP using two input images, when the light source color is

different from the fluorescent color. In the case where they

are similar (Figure 3 and Table 1), the single image method

has its limits. The separation is not satisfying, because the

linear constraint in Eq.(9) could be sensitive to noises.

As described in Section 3, we have two different clues

for estimating fluorescent colors; one is a single linear con-

straint in Eq.(9) per input image, and the other is the con-

straint due to the prior knowledge with respect to fluores-

cent colors. Specifically, for two input images, IS has two

linear constraints, and MAP has two linear constraints and

the constraint due to the prior. MAP single has one linear

constraint and the constraint due to the prior for a single

input image. The experimental results show that our pro-

posed methods work well when at least two independent

Figure 7. The qualitative comparison using the real images of a

tennis ball under the second and the third light source colors.

Figure 8. The qualitative comparison using the real images of

erasers under the second and the third light source colors.

constraints are effective.

4.2. Real images

We compared the performances of our proposed meth-

ods (IS, MAP, and MAP single) with that of the closely re-

lated state-of-the-art method (ICA) [26] by using real im-

ages. The target objects are a water pistol, a tennis ball,

and erasers. The images of those objects were captured by

using a Point Grey Chameleon camera under four different

LEDs whose peak wavelengths are 405, 460, 520, and 635

nm respectively and FWHMs are from 12 to 36 nm.

Figure 5 shows the qualitative comparison using the real

images of the water pistol under the first (405 nm) and the

second (460 nm) LEDs. (a) (d) are the input images. (b) (e)

and (c) (f) are the corresponding reflective and fluorescent

images: the results using ICA, IS, MAP, and MAP single

from left to right. Figure 6, Figure 7, and Figure 8 show the

qualitative comparisons using the real images of the water

pistol, the tennis ball, and the erasers respectively. We used

the first and the fourth (635 nm) LEDs in Figure 6, and the
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Figure 9. The spectral radiances observed at the points A, B, and

C on the water pistol and the point D on the tennis ball under the

first light source.

Table 3. The quantitative comparison using real images: the dot

products between the ground truth and estimated fluorescent col-

ors.

A B C D

ICA 0.919 0.931 0.992 0.960

IS 0.982 0.989 0.996 0.996

MAP 0.983 0.991 0.999 0.998

MAP single 0.983 0.992 0.999 0.998

second and the third (520 nm) LEDs in Figure 7 and Fig-

ure 8.

ICA vs. IS, MAP, and MAP single: We can see that our

proposed methods (IS, MAP, and MAP single) work better

than ICA. In particular, the colors of the reflective compo-

nents estimated by ICA are different from the light source

colors in Figure 6 (b) and Figure 8 (b) (e). In addition, the

fluorescence of the orange eraser disappears from the fluo-

rescent components estimated by ICA in Figure 8 (c) (f).

IS vs. MAP: We can see that MAP is more robust than IS.

In particular, the effectiveness of MAP, i.e. taking account

of the prior knowledge with respect to fluorescent colors

is clear when one of the input images has no clue about

fluorescent colors as shown in Figure 6 (b) (c) and (e) (f).

Figure 7 also shows that MAP works better than IS.

MAP vs. MAP single: We can see that MAP single

works as well as MAP as shown in Figure 5 (b) (c) and (e)

(f), Figure 6 (b) (c), Figure 7 (b) (c), and Figure 8 (b) (c).

On the other hand, when the light source colors are similar

to the fluorescent colors, MAP single is not robust as shown

in Figure 7 (e) (f) and Figure 8 (e) (f), and does not work

well as shown in Figure 6 (e) (f).

To confirm the effectiveness of our proposed methods

quantitatively, we conducted numerical comparison using a

hyperspectral camera. Specifically, as shown in Figure 9,

we measured the spectral radiances under the first light

source (405 nm) at the points A, B, and C on the water

pistol and at the point D on the tennis ball. Since the emis-

sion spectra are separated from the reflection spectra, we

can compute the fluorescent colors there by using the spec-

tral sensitivity of the color camera, and consider them as

their ground truths. Table 3 shows the dot products between

the ground truth and estimated colors in Figure 5 (c) and

Figure 7 (c). Here, both colors are represented by unit 3D

vectors, and then the dot product is 1 if the colors are the

Figure 10. The application of our reflective-fluorescent separation

to image-based material editing and relighting.

same. These results show quantitatively that our proposed

methods (IS, MAP, and MAP single) work better than ICA.

4.3. Applications

As a direct application of reflective-fluorescent separa-

tion, we conducted image-based material editing and re-

lighting. Specifically, we captured three images of the

erasers under B (the first), G (the third), and R (the fourth)

light sources, and separated the reflective and fluorescent

components of those images by using our proposed method

(MAP). Then, we synthesized various images by linearly

combining those 6 images with different weights. In Fig-

ure 10, their average is shown at the center (the second row

and the third column), and the fluorescent components are

increased/decreased at the upper/lower images. Similarly,

we change the light source colors from bluish (left) to red-

dish (right). We can see that our method is effective for

photorealistic image-based material editing and relighting.

5. Conclusion and Future Work

In this paper, we showed that the fluorescent color per

pixel can be estimated from at least two images under differ-

ent light source colors. Furthermore, exploiting the known

space of potential fluorescent colors, we obtain more ro-

bust MAP estimates even from a single input image un-

der narrow-band illumination. Through a number of ex-

periments using both synthetic and real images, we con-

firmed qualitatively and quantitatively that our proposed

method works better than the closely related state-of-the-

art method. In addition, we demonstrated that our method

is effective for image-based material editing and relighting.

Incorporating the spectral-spatial correlation into our pixel-

wise approach is one of the future directions of this study.
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