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Abstract

We propose a new bottom-up method for multi-
person 2D human pose estimation that is particularly
well suited for urban mobility such as self-driving cars
and delivery robots. The new method, PifPaf, uses a
Part Intensity Field (PIF) to localize body parts and a
Part Association Field (PAF) to associate body parts
with each other to form full human poses. Our method
outperforms previous methods at low resolution and in
crowded, cluttered and occluded scenes thanks to (i) our
new composite field PAF encoding fine-grained infor-
mation and (ii) the choice of Laplace loss for regres-
sions which incorporates a notion of uncertainty. Our
architecture is based on a fully convolutional, single-
shot, box-free design. We perform on par with the ex-
isting state-of-the-art bottom-up method on the stan-
dard COCO keypoint task and produce state-of-the-art
results on a modified COCO keypoint task for the trans-
portation domain.

1. Introduction

Tremendous progress has been made in estimating
human poses “in the wild” driven by popular data col-
lection campaigns [1, 27]. Yet, when it comes to the
“transportation domain” such as for self-driving cars
or social robots, we are still far from matching an ac-
ceptable level of accuracy. While a pose estimate is not
the final goal, it is an effective low dimensional and in-
terpretable representation of humans to detect critical
actions early enough for autonomous navigation sys-
tems (e.g ., detecting pedestrians who intend to cross
the street). Consequently, the further away a human
pose can be detected, the safer an autonomous sys-
tem will be. This directly relates to pushing the limits
on the minimum resolution needed to perceive human
poses.

In this work, we tackle the well established multi-
person 2D human pose estimation problem given a sin-

Figure 1: We want to estimate human 2D poses in the
transportation domain where autonomous navigation
systems operate in crowded scenes. Humans occupy
small portion of the images and could partially occlude
each other. We show the output of our PifPaf method
with colored segments.

gle input image. We specifically address challenges that
arise in autonomous navigation settings as illustrated
in Figure 1: (i) wide viewing angle with limited res-
olution on humans, i.e., a height of 30-90 pixels, and
(ii) high density crowds where pedestrians occlude each
other. Naturally, we aim for high recall and precision.

Although pose estimation has been studied before
the deep learning era, a significant cornerstone is the
work of OpenPose [3], followed by Mask R-CNN [18].
The former is a bottom-up approach (detecting joints
without a person detector), and the latter is a top-down
one (using a person detector first and outputting joints
within the detected bounding boxes). While the per-
formance of these methods is stunning on high enough
resolution images, they perform poorly in the limited
resolution regime, as well as in dense crowds where hu-
mans partially occlude each other.

In this paper, we propose to extend the notion of
fields in pose estimation [3] to go beyond scalar and
vector fields to composite fields. We introduce a new
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neural network architecture with two head networks.
For each body part or joint, one head network pre-
dicts the confidence score, the precise location and the
size of this joint, which we call a Part Intensity Field
(PIF) and which is similar to the fused part confidence
map in [34]. The other head network predicts associa-
tions between parts, called the Part Association Field
(PAF), which is of a new composite structure. Our
encoding scheme has the capacity to store fine-grained
information on low resolution activation maps. The
precise regression to joint locations is critical, and we
use a Laplace-based L1 loss [23] instead of the vanilla
L1 loss [18]. Our experiments show that we outper-
form both bottom-up and established top-down meth-
ods on low resolution images while performing on par
on higher resolutions. The software is open source and
available online1.

2. Related Work

Over the past years, state-of-the-art methods for
pose estimation are based on Convolutional Neural
Networks [18, 3, 31, 34]. They outperform tradi-
tional methods based on pictorial structures [12, 8, 9]
and deformable part models [11]. The deep learning
tsunami started with DeepPose [39] that uses a cas-
cade of convolutional networks for full-body pose esti-
mation. Then, instead of predicting absolute human
joint locations, some works refine pose estimates by
predicting error feedback (i.e., corrections) at each it-
eration [4, 17] or using a human pose refinement net-
work to exploit dependencies between input and output
spaces [13]. There is now an arms race towards propos-
ing alternative neural network architectures: from con-
volutional pose machines [42], stacked hourglass net-
works [32, 28], to recurrent networks [2], and voting
schemes such as [26].

All these approaches for human pose estimation can
be grouped into bottom-up and top-down methods.
The former one estimates each body joint first and then
groups them to form a unique pose. The latter one runs
a person detector first and estimates body joints within
the detected bounding boxes.

Top-down methods. Examples of top-down meth-
ods are PoseNet [35], RMPE [10], CFN [20], Mask
R-CNN [18, 15] and more recently CPN [6] and
MSRA [44]. These methods profit from advances in
person detectors and vast amounts of labeled bound-
ing boxes for people. The ability to leverage that data
turns the requirement of a person detector into an ad-
vantage. Notably, Mask R-CNN treats keypoint detec-

1https://github.com/vita-epfl/openpifpaf

tions as an instance segmentation task. During train-
ing, for every independent keypoint, the target is trans-
formed to a binary mask containing a single foreground
pixel. In general, top-down methods are effective but
struggle when person bounding boxes overlap.

Bottom-up methods. Bottom-up methods include
the pioneering work by Pishchulin with DeepCut [37]
and Insafutdinov with DeeperCut [21]. They solve
the part association with an integer linear program
which results in processing times for a single image
of the order of hours. Later works accelerate the
prediction time [5] and broaden the applications to
track animal behavior [30]. Other methods drasti-
cally reduce prediction time by using greedy decoders
in combination with additional tools as in Part Affin-
ity Fields [3], Associative Embedding [31] and Per-
sonLab [34]. Recently, MultiPoseNet [24] develops a
multi-task learning architecture combining detection,
segmentation and pose estimation for people.

Other intermediate representations have been build
on top of 2D pose estimates in the image plane includ-
ing 3D pose estimates [29], human pose estimation in
videos [36] and dense pose estimation [16] that would
all profit from improved 2D pose estimates.

3. Method

The goal of our method is to estimate human poses
in crowded images. We address challenges related
to low-resolution and partially occluded pedestrians.
Top-down methods particularly struggle when pedes-
trians are occluded by other pedestrians where bound-
ing boxes clash. Previous bottom-up methods are
bounding box free but still contain a coarse feature map
for localization. Our method is free of any grid-based
constraint on the spatial localization of the joints and
has the capacity to estimate multiple poses occluding
each other.

Figure 2 presents our overall model. It is a shared
ResNet [19] base network with two head networks: one
head network predicts a confidence, precise location
and size of a joint, which we call a Part Intensity Field
(PIF), and the other head network predicts associa-
tions between parts, called the Part Association Field
(PAF). We refer to our method as PifPaf.

Before describing each head network in detail, we
briefly define our field notation.

3.1. Field Notation

Fields are a useful tool to reason about structure on
top of images. The notion of composite fields directly
motivates our proposed Part Association Fields.
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Figure 2: Model architecture. The input is an image of size (H,W ) with three color channels, indicated by “x3”.
The neural network based encoder produces PIF and PAF fields with 17×5 and 19×7 channels. An operation with
stride two is indicated by “//2”. The decoder is a program that converts PIF and PAF fields into pose estimates
containing 17 joints each. Each joint is represented by an x and y coordinate and a confidence score.

We will use i, j to enumerate spatially the output
locations of the neural network and x, y for real-valued
coordinates. A field is denoted with fij over the domain
(i, j) ∈ Z

2
+ and can have as codomain (the values of the

field) scalars, vectors or composites. For example, the
composite of a scalar field sij and a vector field vij

can be represented as {s, vx, vy} which is equivalent to
“overlaying” a confidence map with a vector field.

3.2. Part Intensity Fields

The Part Intensity Fields (PIF) detect and precisely
localize body parts. The fusion of a confidence map
with a regression for keypoint detection was introduced
in [35]. Here, we recap this technique in the language of
composite fields and add a scale σ as a new component
to form our PIF field.

PIF have composite structure. They are composed
of a scalar component for confidence, a vector compo-
nent that points to the closest body part of the par-
ticular type and another scalar component for the size
of the joint. More formally, at every output location
(i, j), a PIF predicts a confidence c, a vector (x, y) with
spread b (details in Section 3.4) and a scale σ and can
be written as pij = {pijc , pijx , pijy , pijb , pijσ }.

The confidence map of a PIF is very coarse. Fig-
ure 3a shows a confidence map for the left shoulders
for an example image. To improve the localization of
this confidence map, we fuse it with the vectorial part
of the PIF shown in Figure 3b into a high resolution
confidence map. We create this high resolution part
confidence map f(x, y) with a convolution of an unnor-
malized Gaussian kernel N with width pσ over the re-
gressed targets from the Part Intensity Field weighted
by its confidence pc:

f(x, y) =
∑

ij

pijc N (x, y|pijx , pijy , pijσ ) . (1)

This equation emphasizes the grid-free nature of the

localization. The spatial extent σ of a joint is learned
as part of the field. An example is shown in Figure 3c.
The resulting map of highly localized joints is used to
seed the pose generation and to score the location of
newly proposed joints.

3.3. Part Association Fields

Associating joints into multiple poses is challenging
in crowded scenes where people partially occlude each
other. Especially two step processes – top-down meth-
ods – struggle in this situation: first they detect per-
son bounding boxes and then they attempt to find one
joint-type for each bounding box. Bottom-up methods
are bounding box free and therefore do not suffer from
the clashing bounding box problem.

We propose bottom-up Part Association
Fields (PAF) to connect joint locations together
into poses. An illustration of the PAF scheme is
shown in Figure 4. At every output location, PAFs
predict a confidence, two vectors to the two parts
this association is connecting and two widths b
(details in Section 3.4) for the spatial precisions
of the regressions. PAFs are represented with
aij = {aijc , aijx1, aijy1, aijb1, a

ij
x2, a

ij
y2, a

ij
b2}. Visualizations

of the associations between left shoulders and left hips
are shown in Figure 5.

Both endpoints are localized with regressions that
do not suffer from discretizations as they occur in grid-
based methods. This helps to resolve joint locations
of close-by persons precisely and to resolve them into
distinct annotations.

There are 19 connections for the person class in the
COCO dataset each connecting two types of joints;
e.g., there is a right-knee-to-right-ankle association.
The algorithm to construct the PAF components at
a particular feature map location consists of two steps.
First, find the closest joint of either of the two types
which determines one of the vector components. Sec-
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(a) (b) (c)

Figure 3: Visualizing the components of the PIF for the left shoulder. This is one of the 17 composite PIF.
The confidence map is shown in (a) and the vector field is shown in (b). The fused confidence, vector and scale
components are shown in (c).

(a) mid-range offsets (b) Part Association Field

Figure 4: Illustrating the difference between Person-
Lab’s mid-range offsets (a) and Part Association Fields
(b) on a feature map grid. Blue circles represent joints
and confidences are marked in green. Mid-range off-
sets (a) have their origins at the center of feature map
cells. Part Association Fields (b) have floating point
precision of their origins.

ond, the ground truth pose determines the other vector
component to represent the association. The second
joint is not necessarily the closest one and can be far
away.

During training, the components of the field have to
point to the parts that should be associated. Similar
to how an x component of a vector field always has
to point to the same target as the y component, the
components of the PAF field have to point to the same
association of parts.

3.4. Adaptive Regression Loss

Human pose estimation algorithms tend to struggle
with the diversity of scales that a human pose can have
in an image. While a localization error for the joint of
a large person can be minor, that same absolute er-
ror might be a major mistake for a small person. We
use an L1-type loss to train regressive outputs. We
improve the localization ability of the network by in-
jecting a scale dependence into that regression loss with

the SmoothL1 [14] or Laplace loss [23].
The SmoothL1 loss allows to tune the radius rsmooth

around the origin where it produces softer gradients.
For a person instance bounding box area of Ai and
keypoint size of σk, r

smooth
i,k can be set proportionally

to
√
Aiσk which we study in Table 3.

The Laplace loss is another L1-type loss that is at-
tenuated via the predicted spread b:

L = |x− µ|/b+ log(2b) . (2)

It is independent of any estimates of Ai and σk and we
use it for all vectorial components.

3.5. Greedy Decoding

Decoding is the process of converting the output fea-
ture maps of a neural network into sets of 17 coordi-
nates that make human pose estimates. Our process is
similar to the fast greedy decoding used in [34].

A new pose is seeded by PIF vectors with the highest
values in the high resolution confidence map f(x, y) de-
fined in equation 1. Starting from a seed, connections
to other joints are added with the help of PAF fields.
The algorithm is fast and greedy. Once a connection
to a new joint has been made, this decision is final.

Multiple PAF associations can form connections be-
tween the current and the next joint. Given the loca-
tion of a starting joint ~x, the scores s of PAF associa-
tions a are calculated with

s(a, ~x) = ac exp

(

−||~x− ~a1||2
b1

)

f2(ax2, ay2) (3)

which takes into account the confidence in this connec-
tion ac, the distance to the first vector’s location cal-
ibrated with the two-tailed Laplace distribution prob-
ability and the high resolution part confidence at the
second vector’s target location f2. To confirm the pro-
posed position of the new joint, we run reverse match-
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(a) (b)

Figure 5: Visualizing the components of the PAF that associates left shoulder with left hip. This is one of the
19 PAF. Every location of the feature map is the origin of two vectors which point to the shoulders and hips to
associate. The confidence of associations ac is shown at their origin in (a) and the vector components for ac > 0.5
are shown in (b).

ing. This process is repeated until a full pose is ob-
tained. We apply non-maximum suppression at the
keypoint level as in [34]. The suppression radius is dy-
namic and based on the predicted scale component of
the PIF field. We do not refine any fields neither during
training nor test time.

4. Experiments

Cameras in self-driving cars have a wide field of
view and have to resolve small instances of pedestri-
ans within that field of view. We want to emulate
that small pixel-height distribution of pedestrians with
a publicly available dataset and evaluation protocol for
human pose estimation.

In addition, and to demonstrate the broad applica-
bility of our method, we also investigate pose estima-
tion in the context of the person re-identification task
(Re-Id) – that is, given an image of a person, iden-
tify that person in other images. Some prior work has
used part-based or region-based models [45, 7, 43] that
would profit from quality pose estimates.

Datasets. We quantitatively evaluate our proposed
method, PifPaf, on the COCO keypoint task [27] for
people in low resolution images. Starting from the orig-
inal COCO dataset, we constrain the maximum image
side length to 321 pixels to emulate a crop of a 4k
camera. We obtain person bounding boxes that are
66 ± 65 px high. The COCO metrics contain a break-
down for medium-sized humans under APM and ARM

that have bounding box area in the original image be-
tween between (32 px)2 and (96 px)2. After resizing for

low resolution, this corresponds to bounding boxes of
height 44± 19 px.

We qualitatively study the performance of our meth-
od on images captured by self-driving cars as well as
random crowded scenarios. We use the recently re-
leased nuScenes dataset [33]. Since labels and evalu-
ation protocols are not yet available we qualitatively
study the results.

In the context of Re-Id, we investigate the popular
and publicly available Market-1501 dataset [46]. It con-
sists of 64×128 pixel crops of pedestrians. We apply the
same model that we trained on COCO data. Figure 8
qualitatively compares extracted poses from Mask R-
CNN [18] with our proposed method. The comparison
shows a clear improvement of the poses extracted with
our PifPaf method.

Performance on higher resolution images is not the
focus of this paper, however other methods are opti-
mized for full resolution COCO images and therefore
we also show our results and comparisons for high res-
olution COCO poses.

Evaluation. The COCO keypoint detection task is
evaluated like an object detection task, with the core
metrics being variants of average precision (AP) and
average recall (AR) thresholded at an object keypoint
similarity (OKS) [27]. COCO assumes a fixed ratio of
keypoint size to bounding box area per keypoint type
to define OKS. For each image, pose estimators have
to provide the 17 keypoint locations per pose and a
score for each pose. Only the top 20 scoring poses are
considered for evaluation.
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AP AP0.50 AP0.75 APM APL AR AR0.50 AR0.75 ARM ARL

Mask R-CNN∗ [18] 41.6 68.1 42.5 28.2 59.8 49.0 76.0 50.0 35.6 67.5
OpenPose [3] 37.6 62.5 37.2 25.0 55.3 43.9 65.3 44.9 26.7 67.5
PifPaf (ours) 50.0 73.5 52.9 35.9 69.7 55.0 76.0 57.9 39.4 76.4

Table 1: Applying pose estimation to low resolution images with the long side equal to 321 px for top-down (top
part) and bottom-up (bottom part) methods. For the Mask R-CNN and OpenPose reference values, we ran the
implementations by [40, 41] modified to enforce the maximum image side length. ∗Mask R-CNN was retrained for
low resolution. The PifPaf result is based on a ResNet50 backbone.

Implementation details. All our models are based
on Imagenet pretrained base networks followed by cus-
tom, multiple head sub-networks. Specifically, we use
the 64115 images in the 2017 COCO training set that
have a person annotation for training. Our validation is
done on the 2017 COCO validation set of 5000 images.
The base networks are modified ResNet50/101/152
networks. The head networks are single-layer 1x1 sub-
pixel convolutions [38] that double the spatial resolu-
tion. The confidence component of a field is normalized
with a sigmoid non-linearity.

The base network has various modification options.
The strides of the input convolution and the input max-
pooling operation can be changed. It is also possible to
remove the max-pooling operation in the input block
and the entire last block. The default modification
used here is to remove the max-pool layer from the
input block.

We apply only few and weak data augmentations.
To create uniform batches, we crop images to squares
where the side of the square is between 95% and 100%
of the short edge of the image and the location is cho-
sen randomly. These are large crops to keep as much
of the training data as possible. Half of the time the
entire image is used un-cropped and bars are added
to make it square. The subsequent resizing uses bicu-
bic interpolation. Training images and annotations are
randomly horizontally flipped.

The components of the fields that form confidence
maps are trained with independent binary cross en-
tropy losses. We use L1 losses for the scale components
of the PIF fields and use Laplace losses for all vectorial
components.

During training, we fix the running statistics of the
Batch Normalization operations [22] to their pretrained
values [34]. We use the SGD optimizer with a learn-
ing rate of 10−3, momentum of 0.95, batch size of 8
and no weight decay. We employ model averaging to
extract stable models for validation. At each optimiza-
tion step, we update an exponentially weighted version
of the model parameters. Our decay constant is 10−3.
The training time for 75 epochs of ResNet101 on two

GTX1080Ti is approximately 95 hours.

Baselines. We compare our proposed PifPaf method
against the reproducible state-of-the-art bottom-up
OpenPose [3] and top-down Mask R-CNN [18] meth-
ods. While our goal is to outperform bottom-up ap-
proaches, we still report results of a top-down approach
to evaluate the strength of our method. Since this is an
emulation of small humans within a much larger image,
we modified existing methods to prevent upscaling of
small images.

Results. Table 1 presents our quantitative results on
the COCO dataset. We outperform the bottom-up
OpenPose and even the top-down Mask R-CNN ap-
proach on all metrics. These numbers are overall lower
than their higher resolution counterparts. The two con-
ceptually very different baseline methods show similar
performance while our method is clearly ahead by over
18% in AP.

Our quantitative results emulate the person distri-
bution in urban street scenes using a public, annotated
dataset. Figure 6 shows qualitative results of the kind
of street scenes we want to address. Not only do we
have less false positives, we detect pedestrians who par-
tially occlude each other. It is interesting to see that
a critical gesture such as “waving” towards a car is
only detected with our method. Both Mask-RCNN and
OpenPose have not accurately estimated the arm ges-
ture in the first row of Figure 6. Such level of difference
can be fundamental in developing safe self-driving cars.

We further show qualitative results on more crowded
images in Figure 7. For perspectives like the one in the
second row, we observe that bounding boxes of close-by
pedestrians occlude further away pedestrians. This is
a difficult scenario for top-down methods. Bottom-up
methods perform here better which we can also observe
for our PifPaf method.

To quantify the performance on the Market-1501
dataset, we created a simplified accuracy metric. The
accuracy is 43% for Mask R-CNN and 96% for PifPaf.
The evaluation is based on the number of images with
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Figure 6: Illustration of our PifPaf method (right hand-side) against OpenPose [3] (first column) and Mask R-
CNN [40] (second column) on the nuScenes dataset. We highlight with bounding boxes all humans that other
methods did not detect, and with circles all false positives. Note that our method correctly estimates the waving
pose (first row, first bounding box) of a person whereas the others fail to do so.

Figure 7: Illustration of our PifPaf method (right hand-side) against Mask R-CNN [40] (left hand-side). We
highlight with bounding boxes all humans where Mask R-CNN misses their poses with respect to our method. Our
method estimates all poses that Mask R-CNN estimates as well as the ones highlighted with bounding boxes.
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Figure 8: A selection of images from the Market-1501 [46] dataset. The left image is the output from Mask R-CNN.
To improve the Mask R-CNN result, we forced it to predict exactly one pose in a bounding box that spans the
entire image. The right image is the output of our PifPaf method that was not constrained to one person and
could have chosen to output none or multiple poses, which is a harder task.

AP APM APL

Mask R-CNN [18] 63.1 58.0 70.4
OpenPose [3] 61.8 57.1 68.2
PersonLab [34] – single-scale 66.5 62.4 72.3
PifPaf – single-scale (ours) 66.7 62.4 72.9

Table 2: Metrics in percent evaluated on the COCO
2017 test-dev set at optimal resolutions for top-down
(top part) and bottom-up (bottom part) methods.

AP APM APL

vanilla L1 41.7 26.5 62.5
SmoothL1, r = 0.2

√
Aiσk 42.0 26.9 62.6

SmoothL1, r = 0.5
√
Aiσk 41.9 27.0 62.5

SmoothL1, r = 1.0
√
Aiσk 41.6 26.5 62.3

Laplace 45.1 31.4 64.0
Laplace (using b in decoder) 45.5 31.4 64.9

Table 3: Study of the dependence on the type of L1

loss. Metrics are reported in percent. All models have
a ResNet50 backbone and were trained for 20 epochs.

a correct pose out of 202 random images from the train
set. A correct pose has up to three joints misplaced.

Other methods are optimized for higher resolution
images. For a fair comparison, we show a quantitative
comparison on the high resolution COCO 2017 test-
dev set in Table 2. We perform on par with the best
existing bottom-up method.

Ablation Studies. We studied the effects of var-
ious design decisions that are summarized in Ta-
ble 3. We found that we can tune the performance
towards smaller or larger objects by modifying the
overall scale of rsmooth and so we studied its impact.
However, the real improvement is obtained with the
Laplace-based loss. The added scale component σ to

AP [%] t [ms] tdec [ms]

ResNet50 62.6 222 178
ResNet101 65.7 (60.0) 240 (355) 175
ResNet152 67.4 263 173

Table 4: Interplay between precision and single-image
prediction time t on a GTX1080Ti with different
ResNet backbones for the COCO val set. Last column
is the decoding time tdec. PersonLab [34] timing num-
bers (which include decoding instance masks) are given
in parenthesis where available at image width 801px.

the PIF field improved AP of our ResNet101 model
from 64.5% to 65.7%.

Runtime. Metrics for varying ResNet backbones are
in Table 4. For the same backbone, we outperform
PersonLab by 9.5% in AP with a simultaneous 32%
speed up.

5. Conclusions

We have developed a new bottom-up method for
multi-person 2D human pose estimation that addresses
failure modes that are particularly prevalent in the
transportation domain, i.e., in self-driving cars and
social robots. We demonstrated that our method out-
performs previous state-of-the-art methods in the low
resolution regime and performs on par at high resolu-
tion.

The proposed PAF fields can be applied to other
tasks as well. Within the image domain, predicting
structured image concepts [25] is an exciting next step.
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