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Abstract

The field of image denoising is currently dominated

by discriminative deep learning methods that are trained

on pairs of noisy input and clean target images. Re-

cently it has been shown that such methods can also

be trained without clean targets. Instead, independent

pairs of noisy images can be used, in an approach

known as NOISE2NOISE (N2N). Here, we introduce

NOISE2VOID (N2V), a training scheme that takes this idea

one step further. It does not require noisy image pairs, nor

clean target images. Consequently, N2V allows us to train

directly on the body of data to be denoised and can therefore

be applied when other methods cannot. Especially inter-

esting is the application to biomedical image data, where

the acquisition of training targets, clean or noisy, is fre-

quently not possible. We compare the performance of N2V

to approaches that have either clean target images and/or

noisy image pairs available. Intuitively, N2V cannot be ex-

pected to outperform methods that have more information

available during training. Still, we observe that the denois-

ing performance of NOISE2VOID drops in moderation and

compares favorably to training-free denoising methods.

1. Introduction

Image denoising is the task of inspecting a noisy image

x = s + n in order to separate it into two components: its

signal s and the signal degrading noise n we would like to

remove. Denoising methods typically rely on the assump-

tion that pixel values in s are not statistically independent.

In other words, observing the image context of an unob-

served pixel might very well allow us to make sensible pre-

dictions on the pixel intensity.

A large body of work (e.g. [16, 19]) explicitly mod-

eled these interdependencies via Markov Random Fields

(MRFs). In recent years, convolutional neural networks

(CNNs) have been trained in various ways to predict pixel

values from surrounding image patches, i.e. from the recep-
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Figure 1: Training schemes for CNN-based denoising. Tra-

ditionally, training networks for denoising requires pairs

of noisy and clean images. For many practical appli-

cations, however, clean target images are not available.

NOISE2NOISE (N2N) [12] enables the training of CNNs

from independent pairs of noisy images. Still, also noisy

image pairs are not usually available. This motivated us to

propose NOISE2VOID (N2V), a novel training procedure

that does not require noisy image pairs, nor clean target im-

ages. By enabling CNNs to be trained directly on a body of

noisy images, we open the door to a plethora of new appli-

cations, e.g. on biomedical data.

tive field of that pixel [24, 11, 26, 6, 23, 25, 18, 14].

Typically, such systems require training pairs (xj , sj) of

noisy input images xj and their respective clean target im-

ages sj (ground truth). Network parameters are then tuned

to minimize an adequately formulated error metric (loss)

between network predictions and known ground truth.

Whenever ground truth images are not available, these

methods cannot be trained and are therefore rendered use-

less for the denoising task at hand. Recent work by Lehti-

nen et al. [12] offers an elegant solution for this problem.

Instead of training a CNN to map noisy inputs to clean

ground truth images, their NOISE2NOISE (N2N) train-
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ing attempts to learn a mapping between pairs of inde-

pendently degraded versions of the same training image,

i.e. (s+ n, s+ n
′), that incorporate the same signal s, but

independently drawn noise n and n
′. Naturally, a neural

network cannot learn to perfectly predict one noisy image

from another one. However, networks trained on this im-

possible training task can produce results that converge to

the same predictions as traditionally trained networks that

do have access to ground truth images [12]. In cases where

ground truth data is physically unobtainable, N2N can still

enable the training of denoising networks. However, this re-

quires that two images capturing the same content (s) with

independent noises (n,n′) can be acquired [3].

Despite these advantages of N2N training, there are at

least two shortcomings to this approach: (i) N2N train-

ing requires the availability of pairs of noisy images, and

(ii) the acquisition of such pairs with (quasi) constant s is

only possible for (quasi) static scenes.

Here we present NOISE2VOID (N2V), a novel training

scheme that overcomes both limitations. Just as N2N, also

N2V leverages on the observation that high quality denois-

ing models can be trained without the availability of clean

ground truth data. However, unlike N2N or traditional

training, N2V can also be applied to data for which nei-

ther noisy image pairs nor clean target images are available,

i.e. N2V is a self-supervised training method. In this work

we make two simple statistical assumptions: (i) the signal

s is not pixel-wise independent, (ii) the noise n is condi-

tionally pixel-wise independent given the signal s.

We evaluate the performance of N2V on the BSD68

dataset [17] and simulated microscopy data1. We then

compare our results to the ones obtained by a tradition-

ally trained network [24], a N2N trained network and

several self-supervised methods like BM3D [5], non-local

means [2], and to mean- and median-filters. While it can-

not be expected that our approach outperforms methods that

have additional information available during training, we

observe that the denoising performance of our results only

drops moderately and is still outperforming BM3D.

Additionally, we apply N2V training and prediction to

three biomedical datasets: cryo-TEM images from [3], and

two datasets from the Cell Tracking Challenge2 [20]. For

all these examples, the traditional training scheme cannot be

applied due to the lack of ground truth data and N2N train-

ing is only applicable on the cryo-TEM data. This demon-

strates the tremendous practical utility of our method.

In summary, our main contributions are:

• Introduction of NOISE2VOID, a novel approach for

training denoising CNNs that requires only a body of

single, noisy images.

• Comparison of our N2V trained denoising results

1For simulated microscopy data we know the perfect ground truth.
2http://celltrackingchallenge.net/

to results obtained with existing CNN training

schemes [24, 12, 25] and non-trained methods [18, 2].

• A sound theoretical motivation for our approach as

well as a detailed description of an efficient implemen-

tation.

The remaining manuscript is structured as follows: Sec-

tion 2 contains a brief overview of related work. In Sec-

tion 3, we introduce the baseline methods we later compare

our own results to. This is followed by a detailed description

of our proposed method and its efficient implementation.

All experiments and their results are described in Section 4,

and our findings are finally discussed in Section 5.

2. Related Work

Below, we will discuss other methods that consider not

the denoising task as mentioned above, but instead the more

general task of image restoration. This includes the removal

of perturbations such as JPEG artifacts or blur. With N2V

we have to stick to the more narrow task of denoising, as we

rely on the fact that multiple noisy observations can help

us to retrieve the true signal [12]. This is not the case for

general perturbations such as blur.

We see N2V at the intersection of multiple methodolog-

ical categories. We will briefly discuss the most relevant

works in each of them. Note that N2N is omitted here, as it

has been discussed above.

In concurrent work [1], Batson et al. also introduce a

method for self-supervised training of neural networks and

other systems that is based on the idea of removing parts

of the input. They show that this scheme can not only be

applied by removing pixels, but also groups of variables in

general.

2.1. Discriminative Deep Learning Methods

Discriminative deep learning methods are trained offline,

extracting information from ground truth annotated training

sets before they are applied to test data.

In [9], Jain et al. first apply CNNs for the denoising task.

They introduce the basic setup that is still used by success-

ful methods today: Denoising is seen as a regression task

and the CNN learns to minimize a loss calculated between

its prediction and clean ground truth data.

In [25], Zhang et al. achieve state-of-the-art results, by

introducing a very deep CNN architecture for denoising.

The approach is based on the idea of residual learning [7].

Their CNN attempts to predict not the clean signal, but in-

stead the noise at every pixel, allowing for the computation

of the signal in a subsequent step. This structure allows

them to train a single CNN for denoising of images cor-

rupted by a wide range of noise levels. Their architecture

completely dispenses with pooling layers.

At about the same time Mao et al. introduce a com-

plementary very deep encoder-decoder-architecture [14] for
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the denoising task. They too make use of residual learning,

but do so by introducing symmetric skip connections be-

tween the corresponding encoding and decoding modules.

Just as [25], they are able to use a single network for vari-

ous levels of noise.

In [18] Tai et al. use recurrent persistent memory units as

part of their architecture, and further improve on previous

methods.

Recently Weigert et al. presented the CARE software

framework for image restoration in the context of fluores-

cence microscopy data [24]. They acquire their training

data by recording pairs of low- and high-exposure-images.

This can be a difficult procedure since the biological sample

must not move between exposures. We use their implemen-

tation as starting point for our experiments, including their

specific U-Net [15] architecture.

Note that N2V could in principle be applied with any of

the mentioned architectures. However, [18] and [25] present

an interesting peculiarity in this respect, as their residual

architecture requires knowledge of the noisy input at each

pixel. In N2V, this input is masked when the gradient is

calculated (see Section 3).

2.2. Internal Statistics Methods

Internal Statistics Methods do not have to be trained on

ground truth data beforehand. Instead, they can be directly

applied to a test image where they extract all required infor-

mation [27]. N2V can be seen as member of this category,

as it enables training directly on a test image.

In [2], Buades et al. introduced non-local means, a clas-

sic denoising approach. Like N2V, this method predicts

pixel values based on their noisy surroundings.

BM3D, introduced by Dabov et al. [5], is a classic in-

ternal statistics based method. It is based on the idea, that

natural images usually contain repeated patterns. BM3D

performs denoising of an image by grouping similar pat-

terns together and jointly filtering them. The downside of

this approach is the computational cost during test time. In

contrast, N2V requires extensive computation only during

training. Once a CNN is trained for a particular kind of data,

it can be applied efficiently to any number of additional im-

ages.

In [21], Ulyanov et al. show that the structure of CNNs,

inherently resonates with the distribution of natural images

and can be utilized for image restoration without requiring

additional training data. They feed a random but constant

input into a CNN and train it to approximate a single noisy

image as output. Ulyanov et al. find that when they inter-

rupt the training process at the right moment before conver-

gence, the network produces a regularized denoised image

as output.

2.3. Generative Models

In [4], Chen et al. present an image restoration approach

based on generative adversarial networks (GANs). The au-

thors use unpaired training samples consisting of noisy and

clean images. The GAN-generator learns to generate noise

and create pairs of corresponding clean and noisy images,

which are in turn used as training data in a traditional su-

pervised setup. Unlike N2V, this approach requires clean

images during training.

Finally, we want to mention the work by Van Den Oord

et al. [22]. They present a generative model that is not used

for denoising, but in spirit similar to N2V. Like N2V, Van

Den Oord et al. train a neural network to predict an unseen

pixel value based on its surroundings. The network is then

used to generate synthetic images. However, while we train

our network for a regression task, they predict a probability

distribution for each pixel. Another difference lies in the

structure of the receptive fields. While Van Den Oord et al.

use an asymmetric structure that is shifted over the image,

we always mask the central pixel in a square receptive field.

3. Methods

Here, we will begin by discussing our image formation

model. Then, we will give a short recap of the traditional

CNN training and of the N2N method. Finally, we will

introduce N2V and its implementation.

3.1. Image Formation

We see the generation of an image x = s+ n as a draw

from the joint distribution

p(s,n) = p(s)p(n|s). (1)

We assume p(s) to be an arbitrary distribution satisfying

p(si|sj) 6= p(si), (2)

for two pixels i and j within a certain radius of each other.

That is, the pixels si of the signal are not statistically inde-

pendent. With respect to the noise n, we assume a condi-

tional distribution of the form

p(n|s) =
∏

i

p(ni|si). (3)

That is, pixels values ni of the noise are conditionally inde-

pendent given the signal. We furthermore assume the noise

to be zero-mean

E [ni] = 0, (4)

which leads to

E [xi] = si. (5)

In other words, if we were to acquire multiple images with

the same signal, but different realizations of noise and av-

erage them, the result would approach the true signal. An
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example of this would be recording multiple photographs of

a static scene using a fixed tripod-mounted camera.

3.2. Traditional Supervised Training

We are now interested in training a CNN to implement

a mapping from x to s. We will assume a fully convolu-

tional network (FCN) [13], taking one image as input and

predicting another one as output.

Here we want to take a slightly different but equivalent

view on such a network. Every pixel prediction ŝi in the

output of the CNN is has a certain receptive field xRF(i)

of input pixels, i.e. the set of pixels that influence the pixel

prediction. A pixel’s receptive field is usually a square patch

around that pixel.

Based on this consideration, we can also see our CNN

as a function that takes a patch xRF(i) as input and outputs

a prediction ŝi for the single pixel i located at the patch

center. Following this view, the denoising of an entire im-

age can be achieved by extracting overlapping patches and

feeding them to the network one by one. Consequently, we

can define the CNN as the function

f(xRF(i);θ) = ŝi, (6)

where θ denotes the vector of CNN parameters we would

like to train.

In traditional supervised training we are presented with

a set of training pairs (xj , sj), each consisting of a noisy

input image xj and a clean ground truth target sj . By again

applying our patch-based view of the CNN, we can see our

training data as pairs (xj

RF(i), s
j

i ). Where x
j

RF(i) is a patch

around pixel i, extracted from training input image x
j , and

s
j

i is the corresponding target pixel value, extracted from

the ground truth image s
j at same position. We now use

these pairs to tune the parameters θ to minimize pixel-wise

loss

arg min
θ

∑

j

∑

i

L
(

f(xj

RF(i);θ) = ŝ
j

i , s
j

i

)

. (7)

Here we consider the standard MSE loss

L
(

ŝ
j

i , s
j

i

)

= (ŝji − s
j

i )
2. (8)

3.3. Noise2Noise Training

Now let us consider the training procedure according

to [12]. N2N allows us to cope without clean ground truth

training data. Instead we start out with noisy image pairs

(xj ,x′j), where

x
j = s

j + n
j and x

′j = s
j + n

′j , (9)

that is the two training images are identical up to their noise

components nj and n
′j , which are, in our image generation

Target

Prediction

Input

(a) (b)

Figure 2: A conventional network versus our proposed

blind-spot network. (a) In the conventional network the pre-

diction for an individual pixel depends an a square patch of

input pixels, known as a pixel’s receptive field (pixels under

blue cone). If we train such a network using the same noisy

image as input and as target, the network will degenerate

and simply learn the identity. (b) In a blind-spot network,

as we propose it, the receptive field of each pixel excludes

the pixel itself, preventing it from learning the identity. We

show that blind-spot networks can learn to remove pixel

wise independent noise when they are trained on the same

noisy images as input and target.

model, just two independent samples from the same distri-

bution (see Eq. 3).

We can now again apply our patch-based perspective and

view our training data as pairs (xj

RF(i),x
′j

i ) consisting of a

noisy input patch x
j

RF(i), extracted from x
j , and a noisy

target x′j

i , taken from x
′j at the position i. As in traditional

training, we tune our parameters to minimize a loss, sim-

ilar to Eq. 7, this time however using our noisy target x′j

i

instead of the ground truth signal s
j

i . Even though we are

attempting to learn a mapping from a noisy input to a noisy

target, the training will still converge to the correct solution.

The key to this phenomenon lies in the fact that the expected

value of the noisy input is equal to the clean signal [12] (see

Eq. 5).

3.4. Noise2Void Training

Here, we go a step further. We propose to derive both

parts of our training sample, the input and the target, from

a single noisy training image x
j . If we were to simply ex-

tract a patch as input and use its center pixel as target, our

network would just learn the identity, by directly mapping

the value at the center of the input patch to the output (see

Figure 2 a).

To understand how training from single noisy images is

possible nonetheless, let us assume that we use a network

architecture with a special receptive field. We assume the

receptive field x̃RF(i) of this network to have a blind-spot

in its center. The CNN prediction ŝi for a pixel is affected
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by all input pixels in a square neighborhood except for the

input pixel xi at its very location. We term this type of

network blind-spot network (see Figure 2 b).

A blind-spot network can be trained using any of the

training schemes described above. Like with a normal net-

work, we can apply the traditional training or N2N, using

a clean target, or a noisy target respectively. The blind-

spot network has a little bit less information available for

its predictions, and we can expect its accuracy to be slightly

impaired compared to a normal network. Considering how-

ever that only one pixel out of the entire receptive field is

removed, we can assume it to still perform reasonably well.

The essential advantage of the blind-spot architecture is

its inability to learn the identity. Let us consider why this

is the case. Since we assume the noise to be pixel-wise

independent given the signal (see Eq. 3), the neighboring

pixels carry no information about the value of ni. It is thus

impossible for the network to produce an estimate that is

better than its a priori expected value (see Eq. 4).

The signal however is assumed to contain statistical de-

pendencies (see Eq. 2). As a result, the network can still

estimate the signal si of a pixel by looking at its surround-

ings.

Consequently, a blind-spot network allows us to extract

the input patch and target value from the same noisy training

image. We can train it by minimizing the empirical risk

arg min
θ

∑

j

∑

i

L
(

f(x̃j

RF(i);θ),x
j

i

)

. (10)

Note that the target x
j

i , is just as good as the N2N target

x
′j

i , which has to be extracted from a second noisy image.

This becomes clear when we consider Eqs. 9 and 3: The two

target values x
j

i and x
′j

i have an equal signal s
j

i and their

noise components are just two independent samples from

the same distribution p(ni|s
j

i ).
We have seen that a blind-spot network can in princi-

ple be trained using only individual noisy training images.

However, implementing such a network that can still oper-

ate efficiently is not trivial. We propose a masking scheme

to avoid this problem and achieve the same properties with

any standard CNN: We replace the value in the center of

each input patch with a randomly selected value form the

surrounding area (see supplementary material for details).

This effectively erases the pixel’s information and prevents

the network from learning the identity.

3.5. Implementation Details

If we implement the above training scheme naively, it

is unfortunately still not very efficient: We have to process

an entire patch to calculate the gradients for a single out-

put pixel. To mitigate this issue, we use the following ap-

proximation technique: Given a noisy training image xi, we

(a) (b) (c)

Figure 3: Blind-spot masking scheme used during

NOISE2VOID training. (a) A noisy training image. (b) A

magnified image patch from (a). During N2V training, a

randomly selected pixel is chosen (blue rectangle) and its

intensity copied over to create a blind-spot (red and striped

square). This modified image is then used as input image

during training. (c) The target patch corresponding to (b).

We use the original input with unmodified values also as

target. The loss is only calculated for the blind-spot pixels

we masked in (b).

randomly extract patches of size 64 × 64 pixels, which are

bigger than our networks receptive field (see supplementary

material for details). Within each patch we randomly select

N pixels, using stratified sampling to avoid clustering. We

then mask these pixels and use the original noisy input val-

ues as targets at their position (see Figure 3). Further details

on the masking scheme can be found in the supplementary

note. We can now simultaneously calculate the gradients

for all of them, while ignoring the rest of the predicted im-

age. This is achieved using the standard Keras pipeline with

a specialized loss function that is zero for all but the se-

lected pixels. We use the CSBDeep framework [23] as basis

for our implementation. Following the standard CSBDeep

setup, we use a U-Net [15] architecture, to which we added

batch normalization [8] before each activation function.

4. Experiments

We evaluate NOISE2VOID on natural images, simulated

biological image data, and acquired microscopy images.

N2V results are then compared to results of traditional and

NOISE2NOISE training, as well as results of training-free

denoising methods like BM3D, non-local means, and mean-

and median filters. Please refer to the supplementary mate-

rial for more details on all experiments.

4.1. Denoising of BSD68 Data

For the evaluation on natural image data we follow

the example of [25] and take 400 gray scale images with

180× 180 pixels as our training dataset. For testing we use

the gray scale version of the BSD68 dataset. Noisy versions

of all images are generated by adding zero mean Gaussian

noise with standard deviation σ = 25. Furthermore, we

used data augmentation on the training dataset. More pre-

cisely, we rotated each image three times by 90◦ and also
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Figure 4: Results and average PSNR values obtained by BM3D, traditionally trained, N2N trained, and N2V trained de-

noising networks. For BSD68 data and simulated data all methods are applicable. For cryo-TEM data ground truth images

are unobtainable. Since pairs of noisy images are available, we can still perform NOISE2NOISE training. Red, yellow, and

blue arrowheads indicate an ice artifact, two tubulin protofilaments that are known to be 4nm apart, and a 10nm gold bead,

respectively. For the CTC-MSC and CTC-N2DH data only single noisy images exist. Hence, neither traditional nor N2N

training is applicable, while our proposed training scheme can still be applied.

added all mirrored versions. During training we draw ran-

dom 64 × 64 pixel patches from this augmented training

dataset.

The network architecture we use for all BSD68 exper-

iments is a U-Net [15] with depth 2, kernel size 3, batch

normalization, and a linear activation function in the last

layer. The network has 96 feature maps on the initial level,

which get doubled while the network gets deeper. We use

a learning rate of 0.0004 and the default CSBDeep learning

rate schedule, halving the learning rate when a plateau on

the validation loss is detected.

We used batch size 128 for traditional training and batch

size 16 for NOISE2NOISE, where we found that a larger

batch leads to slightly diminished results. For NOISE2VOID

training we use a batch size of 128 and simultaneously ma-

nipulate N = 64 pixels per input patch (see Section 3.5), as

before with an initial learning rate of 0.0004.

In the first row of Figure 4, we compare our results

to the ones obtained by BM3D, traditional training, and

NOISE2NOISE training. We report the average PSNR num-

bers on each dataset. As mentioned earlier, N2V is not ex-

pected to outperform other training methods, as it can utilize

less information for its prediction. Still, here we observe

that the denoising performance of N2V drops moderately

below the performance of BM3D (which is not the case for

other data).

4.2. Denoising of Simulated Microscopy Data

The acquisition of close to ground truth quality mi-

croscopy data is either impossible or at the very least, diffi-

cult and expensive. Since we need ground truth data to com-

pute desired PSNR values, we decided to use a simulated

dataset for our second set of experiments. To this end, we

simulated membrane labeled cells epithelia and mimicked
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the typical image degradation of fluorescence microscopy

by first applying Poisson noise and then adding zero mean

Gaussian noise. We used this simulation scheme to gener-

ate high-SNR ground truth images and two corresponding

low-SNR input images. This data enables us to perform tra-

ditional, N2N, as well as N2V training. We used the same

data augmentation scheme as described in Section 4.1.

The network architecture we use for all experiments on

simulated data is a U-Net [15] of depth 2, kernel size 5,

batch norm, 32 initial feature maps, and a linear activation

function in the last layer. Traditional and NOISE2NOISE

training was performed with batch size 16 and an initial

learning rate of 0.0004. The NOISE2VOID training was

performed with a batch size of 128. We simultaneously ma-

nipulate N = 64 pixels per input patch (see Section 3.5).

We again use the standard CSBDeep learning rate schedule

for all three training methods.

In the second row of Figure 4 one can appreciate the

denoising quality of NOISE2VOID training, which reaches

virtually the same quality as traditional and NOISE2NOISE

training. All trained networks clearly outperform the results

obtained by BM3D.

4.3. Denoising of Real Microscopy Data

As mentioned in the previous section, ground truth qual-

ity microscopy data is typically not available. Hence, we

can no longer compute PSNR values.

The network architecture we use for all experiments on

real microscopy data is a U-Net [15] of depth 2, kernel size

3, batch norm, 32 initial feature maps, and a linear activa-

tion function in the last layer. For an efficient training of

NOISE2VOID we simultaneously manipulate N = 64 pix-

els per input patch (see Section 3.5). We use a batch size

of 128 and a initial learning rate of 0.0004. For all three

tasks we extracted random patches of 64 × 64 pixels and

augmented them as described in previous sections.

4.3.1 Cryo-TEM Data

In cryo-TEM, the acquisition of high-SNR images is not

possible due to beam induced damage [10]. Buchholz et al.

show in [3] how NOISE2NOISE training can be applied to

data acquired with a direct electron detector. To enable a

qualitative assessment, we applied N2V to the same data as

in [3].

In the third row of Figure 4, we show the raw image data,

results obtained by BM3D, NOISE2NOISE results of [3],

and our NOISE2VOID results. The runtime of both trained

methods is roughly equal and about 25 times faster then

the one of BM3D. For better orientation we marked some

known structures in the shown cryo-TEM image (see figure

caption for details). Unlike BM3D, the N2V trained net-

work is able to preserve these as good as the N2N baseline.

4.3.2 Fluorescence Microscopy Data

Finally, we tested NOISE2VOID on fluorescence mi-

croscopy data from the Cell Tracking Challenge. More

specifically, we used the datasets Fluo-C2DL-MSC (CTC-

MSC) and Fluo-N2DH-GOWT1 (CTC-N2DH). As before,

no ground truth images or second noisy images are avail-

able. Hence, only BM3D and N2V training can be applied

to this data.

In the last two rows of Figure 4, we compare our results

to BM3D. In the absence of ground truth data, we can only

judge the results visually. We find that the N2V trained net-

work gives subjectively smooth and appealing result, while

requiring only a fraction of the BM3D runtime.

(a)
➤

(b)
➤

(c)
➤

(d) (e) (f)

Figure 5: Failure cases of N2V trained networks. (a) A

crop from the ground truth test image with the largest indi-

vidual pixel error (indicated by red arrow). (b) Result of a

traditionally trained network on the same image. (c) Result

of our N2V trained network. The network fails to predict

this bright and isolated pixel. (d) A crop from the ground

truth test image with the largest total error. (e) Result of a

traditionally trained network on the same image. (f) Result

of our N2V trained network. Both networks are not able

to preserve the grainy structure of the image, but the N2V

trained network loses more high-frequency detail.

4.4. Errors and Limitations

We want to start this section by showing extreme error

cases of N2V trained network predictions on real images

(for which our training method performs least convincing).

Figure 5 shows the ground truth image, and prediction re-

sults of traditionally trained and N2V trained networks.

While the upper row contains the image with the largest

squared single pixel error, the lower row shows the image

with the largest sum of squared pixel errors.

We see these errors as an excellent illustration, showing

a limitation of the N2V method. One of the underlying as-

sumptions of N2V is the predictability of the signal s (see
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∅
Clean target

not available.

(e)

Figure 6: Effect of structured noise on N2V trained net-

work predictions. Structured noise violates our assumption

that noise is pixel-independent (see also Eq. 3). (a) A pho-

tograph corrupted by structured noise. The hidden checker-

board pattern is barely visible. (b) The denoised result of

a traditionally trained CNN. (c) The denoised result of an

N2V trained CNN. The independent components of the

noise are removed, but the structured components remain.

(d) Structured noise in real microscopy data. (e) The de-

noised result of an N2V trained CNN. A hidden pattern in

the noise is revealed. Note that due to the lacking training

data, it is not possible to use N2N or the traditional training

scheme in this case.

Eq. 2). Both test images shown in Figure 5 include high ir-

regularities, that are difficult to predict. The more difficult it

is to predict a pixel’s signal from its surroundings the more

errors are expected to appear in N2V predictions. This is of

course true for traditional training and N2N as well. How-

ever, while these methods can utilize the value in the center

pixel of the receptive field, this value is blocked for N2V.

In Figure 6, we illustrate another limitation of our

method. N2V cannot distinguish between the signal and

structured noise that violates the assumption of pixel-wise

independence (see Eq. 3). We demonstrate this behaviour

using artificially generated structured noise applied to an

image. The N2V trained CNN removes the unpredictable

components of the noise, but reveals the hidden pattern.

Interestingly, we find the same phenomenon in real mi-

croscopy data from the Fluo-C2DL-MSC dataset. Denois-

ing with a N2V trained CNN reveals a systematic error of

the imaging system, visible as a striped pattern.

4.5. Performance over Various Noise Levels

We additionally ran our method and multiple baselines,

including mean and median filters, as well as the classical

non-local means [2], on the BSD68 dataset using various

levels of noise. To find the optimal parameter h for non-

local means we performed a grid search. We also include a
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 P
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Median filter (5x5)

N2V

Figure 7: Performance of N2V on the BSD68 dataset com-

pared to various baselines. Left: Average PSNR values as

a function of the amount of added Gaussian noise. We con-

sider square mean and median filters of 3, 5, and 7 pixels

width/height, and show the best avg. PSNR for each noise

level. ∗: Method uses ground truth for training; †: uses

noisy image pairs; ‡: uses only single noisy images. Right:

Qualitative results of the best performing mean filer, median

filter, and N2V on an image with Gaussian noise (std. 40).

comparison to DnCNN using the numbers reported in [25].

All results can be found in Figure 7.

5. Conclusion

We have introduced NOISE2VOID, a novel training

scheme that only requires single noisy acquisitions to train

denoising CNNs. We have demonstrated the applicability of

N2V on a variety of imaging modalities i.e. photography,

fluorescence microscopy, and cryo-Transmission Electron

Microscopy. As long as our initial assumptions of a pre-

dictable signal and pixel-wise independent noise are met,

N2V trained networks can compete with traditionally and

N2N trained networks. Additionally, we have analyzed the

behaviour of N2V training when these assumptions are vi-

olated.

We believe that the NOISE2VOID training scheme, as we

propose it here, will allow us to train powerful denoising

networks. We have shown multiple examples how denois-

ing networks can be trained on the same body of data which

is to be processed in the first place. Hence, N2V train-

ing will open the doors to a plethora of applications, i.e.

on biomedical image data.
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