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Abstract

Traditional 3D Convolutional Neural Networks (CNNs)

are computationally expensive, memory intensive, prone to

overfit, and most importantly, there is a need to improve

their feature learning capabilities. To address these issues,

we propose Rectified Local Phase Volume (ReLPV) block,

an efficient alternative to the standard 3D convolutional

layer. The ReLPV block extracts the phase in a 3D local

neighborhood (e.g., 3 × 3 × 3) of each position of the in-

put map to obtain the feature maps. The phase is extracted

by computing 3D Short Term Fourier Transform (STFT) at

multiple fixed low frequency points in the 3D local neigh-

borhood of each position. These feature maps at different

frequency points are then linearly combined after passing

them through an activation function. The ReLPV block pro-

vides significant parameter savings of at least, 33 to 133

times compared to the standard 3D convolutional layer with

the filter sizes 3 × 3 × 3 to 13 × 13 × 13, respectively. We

show that the feature learning capabilities of the ReLPV

block are significantly better than the standard 3D convo-

lutional layer. Furthermore, it produces consistently bet-

ter results across different 3D data representations. We

achieve state-of-the-art accuracy on the volumetric Mod-

elNet10 and ModelNet40 datasets while utilizing only 11%

parameters of the current state-of-the-art. We also improve

the state-of-the-art on the UCF-101 split-1 action recog-

nition dataset by 5.68% (when trained from scratch) while

using only 15% of the parameters of the state-of-the-art.

1. Introduction

Over the past few years, research in the area of 2D CNNs

has led to unprecedented advances in a number of computer

vision tasks such as image classification, semantic segmen-

tation, and image super-resolution. Apart from performance

results, 2D CNNs have also made good progress in other

complementary areas such as network compression, bina-

rization, quantization, regularization, etc. Unfortunately,

unlike their 2D counterparts, 3D CNNs have not enjoyed

the same level of performance jumps on the problems in

their domain e.g., video classification and progress in the

above mentioned complementary areas. Recent works such

as [44] and [11], list down some of the fundamental barri-

ers in modeling and training of deep 3D CNNs such as (1)

they are computationally very expensive, (2) they result in

large model size, both in terms of memory usage and disk

space, (3) they are prone to overfitting, due to a large num-

ber of parameters, (4) and there is a need to improve their

feature learning capabilities which may require fundamen-

tal changes to their network architecture or the standard 3D

convolutional layer [44, 25, 39]. Despite the above chal-

lenges, the current trend in the literature of deep 3D CNNs

is to train computationally expensive, memory intensive,

and very deep networks in order to achieve state-of-the-art

results [2, 8, 11].

In this work, we take a detour from this trend by propos-

ing an alternative to the fundamental building block of the

3D CNNs, the 3D convolutional layer, which is the pri-

mary source of high space-time complexity in 3D CNNs.

More precisely, we propose Rectified Local Phase Volume

(ReLPV) block, an efficient alternative to the standard 3D

convolutional layer in 3D CNNs. The ReLPV block com-

prises of a local phase module, the ReLU activation function

and a set of trainable linear weights. The local phase mod-

ule extracts the local phase information by computing 3D

Short Term Fourier Transform (STFT) [15] (at multiple low

frequency points) in a local n×n×n (e.g., 3×3×3) neigh-

borhood/volume of each position of the input feature map.

The output of the local phase module is then passed through

the ReLU activation function in order to obtain the acti-

vated response maps of the local phase information at the

fixed low frequency points. Finally, a set of trainable linear

weights computes the weighted combinations of these ac-

tivated response maps. The ReLPV block provides signifi-

cant parameter savings along with computational and mem-

ory savings. The ReLPV block based 3D CNNs have much

lower model complexity and are less prone to overfitting.

Most importantly, its feature learning capabilities are sig-

nificantly better than the standard 3D convolutional layer.
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Our major contributions in this work are as follows.

• We propose ReLPV block, an efficient alternative to

the standard 3D convolutional layer. The ReLPV block

significantly reduces the number of trainable parame-

ters, at least 33 to 133 times compared to the standard

3D convolutional layer with the filter sizes 3 × 3 × 3
to 13× 13× 13, respectively.

• We show that the ReLPV block achieves consistently

better results on different 3D data representations. We

show this on the volumetric ModelNet10 and Model-

Net40 datasets by achieving state-of-the-art accuracy

using just 11% parameters of the current state-of-the-

art. Moreover, we provide results on the spatiotem-

poral image sequences. In particular, on the UCF-101

split-1 action recognition dataset, improving the cur-

rent state-of-the-art by 5.68% while using just 15% pa-

rameters of the state-of-the-art.

• We present detailed ablation and performance studies

of the proposed ReLPV block by varying its various

hyperparameters. The analysis will be beneficial for

designing ReLPV block based 3D CNNs in future.

2. Related Work

Recently, 2D CNNs have achieved state-of-the-art re-

sults in most of the computer vision problems [9]. More-

over, they have also made significant progress in other com-

plementary areas such as network compression [16, 48], bi-

narization [7, 6, 31, 21], quantization [50, 18], regulariza-

tion [5, 17, 45, 32], etc. Therefore, not surprisingly, there

have been many recent attempts to extend this success to

the problems in the domain of 3D CNNs e.g., video classi-

fication [1], 3D object recognition [26, 2] and MRI volume

segmentation [27, 3]. Unfortunately, 3D CNNs are com-

putationally expensive and require large memory and disk

space. Furthermore, they overfit very easily owing to the

large number of parameters involved. Therefore, there has

been recent interest in more efficient variants of 3D CNNs.

Inspired from the progress of network binarization tech-

niques in 2D CNNs such as BinaryConnect [7], BinaryNet

[6], and XNORNet [31], Ma et al. in [25] introduced BV-

CNNs, where they fully binarized some of the state-of-the-

art 3D CNN models introduced for recognizing voxelized

3D CAD models from the ModelNet datasets [42]. The

binarized version of the 3D CNNs saves significant com-

putation and memory requirements when compared to the

floating point baselines. However, this comes at the cost of

reduced performance. Furthermore, the binarized network

takes binarized inputs only which restricts its application for

other 3D data representations such as video classification.

Another way to reduce the model complexity of 3D

CNNs is to replace the 3D convolutions with separable con-

volutions. This technique has been explored recently in a

number of 3D CNN architectures proposed for the task of

video classification. The idea of separable convolutions is to

first convolve spatially in 2D and then convolve temporally

in 1D. This factorization is similar in spirit to the depth-

wise separable convolutions used in [43], except that here

the idea is to apply it to the temporal dimension instead of

the feature dimension. The idea has been used in a variety of

recent works, including R(2+1)D networks[39], separable-

3D CNNs [44], Pseudo-3D networks [30], and factorized

spatio-temporal CNNs [36]. The 3D CNNs based on the

idea of separable convolutions achieve competitive results

compared to the state-of-the-art on the task of video classi-

fication at a reduced space-time complexity.

3. Method

Notation. We denote the feature map output by a layer in

a 3D CNN network with the tensor I ∈ R
c×d×h×w where

h, w, d, and c are the height, width, depth, and number of

channels of the feature map, respectively.

The ReLPV Block Architecture. The ReLPV block is a

four-layer alternative representation of the standard 3D con-

volutional layer. Fig. 1 illustrates the architecture of the

ReLPV block.

Layer 1. This layer is the standard 3D convolutional layer

with a single filter of size 1× 1× 1. It takes a feature map

of size c × d × h × w as input from the previous layer,

and converts it into a single channel feature map of size

1 × d × h × w. This layer prepares the input for the 3D

STFT operation which is computed in Layer 2. Let f(x) be

the feature map output of Layer 1 with size 1× d× h× w.

Here, x is a variable denoting positions on the feature map

f(x).
Layer 2. Local phase has been successfully used in im-

ages to detect edges and contours for feature extraction [23].

Phase represents the local coherence of different spatial fre-

quencies. Edges and skeletons in image are expressed by

their coherence and play a significant role in image under-

standing [47]. Same property holds true for 3D data rep-

resentations too. e.g., videos [29]. There are many meth-

ods for extracting local phase in multiple dimensions [14].

Our method is inspired from [29]. Layer 2 extracts the lo-

cal phase spectra of f(x) by computing the 3D Short Term

Fourier Transform (STFT) in a local n×n×n neighborhood

Nx at each position x of f(x) using Equation 1.

F (v, x) =
∑

y∈Nx

f(x − y) exp−j2πvT y (1)

Here, v ∈ R
3 is a frequency variable and j =

√
−1. Using

vector notation [20], we can rewrite Equation 1 as shown in

Equation 2.

F (v, x) = wT
v fx (2)
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Figure 1: The ReLPV block architecture.

Here, wv is the basis vector of the 3D STFT at frequency

variable v and fx is a vector containing all the positions from

the neighborhood Nx. Note that, due to the separability of

the basis functions, 3D STFT can be computed efficiently

for all the positions x in f(x) by using simple 1D convo-

lutions for each dimension. In this work, we consider 13

lowest non-zero frequency variables which are defined as

below. The selected frequency variables are shown as red

v1 = [k, 0, 0]T , v2 = [k, 0, k]T , v3 = [k, 0,−k]T ,

v4 = [0, k, 0]T , v5 = [0, k, k]T , v6 = [0, k,−k]T ,

v7 = [k, k, 0]T , v8 = [k, k, k]T , v9 = [k, k,−k]T ,

v10 = [k,−k, 0]T , v11 = [k,−k, k]T , v12 = [k,−k,−k]T ,

v13 = [0, 0, k]T , where k = 1/n

24/03/2019 draw.io

chrome-extension://pebppomjfocnoigkeepgbmcifnnlndla/index.html 1/1

V2

1/n
1/n

1/n

V1

V3

Figure 2: Frequency points used to compute the 3D

STFT. The selected frequency points are marked as red

dots. The other frequency points in the green dots are ig-

nored, as they are the complex conjugates of the selected

ones.

dots in Fig. 2. Low frequency variables are used because

they usually contain most of the information, and there-

fore they have better signal-to-noise ratio than the high fre-

quency components [14]. Let

W = [ℜ{wv1 ,wv2 , . . . ,wv13},ℑ{wv1 ,wv2 , . . . ,wv13}]T
(3)

Here, W is a 26 × n3 transformation matrix corresponding

to the 13 frequency variables. ℜ{·} and ℑ{·} return the real

and the imaginary parts of a complex number, respectively.

Hence, from Equation 2 & 3, the vector form of 3D STFT

for all the 13 frequency points v1, v2, . . . ,v13 can be written

as shown in Equation 4.

Fx = Wfx (4)

Since, Fx is computed for all positions x of the input f(x),
it results in an output feature map with size 26 × d × h ×
w. A more detailed mathematical formulation of Layer 2 is

provided in the supplementary document.

Layer 3. Applying non-linearity to the local phase informa-

tion enables the network to learn complex representations.

This layer creates activated response maps of the feature

maps obtained from Layer 2 by using an activation func-

tion. We use the ReLU activation function for better effi-

ciency and faster convergence [28].

Layer 4. This layer is the standard 3D convolutional layer

with f filters each of size 1 × 1 × 1 which takes a feature

map of size 26×d×h×w as input from Layer 3 and outputs

a feature map of size f × d×h×w. Note that, Layer 1 and

4 get learned during the training phase of the 3D CNN.

We shall use the notation ReLPV(n, f) for the ReLPV

block, where n and f are its hyperparameters. Here n de-

notes the size of the local 3D neighborhood from Layer 2

and f is the number of 1× 1× 1 filters used in Layer 4.

Importance of using STFT and Local Phase. STFT in

multidimensional space was first studied by Hinman et al.

in [15] as an efficient tool for image encoding. It has two

important properties which make it useful for our purpose:

(1) Natural images are often composed of objects with sharp

edge features. It has been observed that the Fourier phase

information accurately represents these edge features. Since

STFT in 3D space is simply a windowed Fourier transform,

the same property applies [15]. Thus, the local phase has the

ability to accurately capture the local features in the same

way as done by the convolutional filters. (2) STFT decor-

relates the input signal [15]. Regularization is key for deep

learning since it allows training of more complex models

while keeping lower levels of overfitting and achieves better

generalization. Decorrelation of features, representations,
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and hidden activations has been an active area of research

for better regularization of deep neural nets, with a variety

of novel regularizers proposed such as DeCov [5], Decorre-

lated Batch Normalization (DBN) [17], Structured Decorre-

lation Constraint (SDC) [45] and OrthoReg [32]. As STFT

decorrelates the input representations and due to the re-

duced number of learnable parameters, the ReLPV block

based 3D CNNs are less prone to overfitting and generalize

better (for results see Section 5.2).

Forward-Backward Propagation in the ReLPV Block.

The end-to-end training of a 3D CNN network with the

ReLPV blocks instead of the standard 3D convolutional lay-

ers is straightforward. The steps of forward and backward

propagation through the Layers 1, 3 and 4 of the ReLPV

block are standard operations in all deep learning libraries.

Back propagation in the Layer 2 is similar to propagating

gradients through layers without learnable parameters (e.g.

Add, Multiply etc.) as it involves applying the fixed basis

matrix W to the input. Note that, during training, only the

1 × 1 × 1 filters in Layers 1 and 4 are updated while the

weights in the matrix W remain unaffected.

Parameter analysis of the ReLPV Block. The ReLPV

block uses significantly less trainable parameters when

compared to the standard 3D convolutional layer with the

same filter size/volume and number of input-output chan-

nels. Consider a standard 3D convolutional layer with c in-

put and f output channels. Let n×n×n be the size/volume

of the filters. Thus, the total number of trainable parameters

in a standard 3D convolutional layer is c ·n3 ·f . An ReLPV

block with c input channels and f output channels consists

of just c · 1 + f · 26 trainable parameters. Thus, the ratio of

the number of trainable parameters in a standard 3D convo-

lutional layer and the proposed ReLPV block is calculated

as below.

# params. in 3D conv. layer

# params. in ReLPV block
=

c · n3 · f
c · 1 + f · 26 (5)

For simplicity, let us assume f = c, i.e., the number of input

and output channels are same. Furthermore, in practice, in

most deep 3D CNNs f ≥ 27. Therefore, let f = 27. This

reduces the above ratio to n3. Thus, for a filter of size 3 ×
3 × 3 in the standard 3D convolutional layer, the ReLPV

block uses 27 times less trainable parameters. Therefore,

numerically, ReLPV block saves atleast 27×, 125×, 343×,

729×, 1331×, and 2197× parameters during learning for

3× 3× 3, 5× 5× 5, 7× 7× 7, 9× 9× 9, 11× 11× 11,

and 13× 13× 13 3D convolutional filters, respectively.

4. Experiments

In this section, we show that the proposed ReLPV block

produces consistently better results on different 3D data

representations compared to the standard 3D convolutional

layer. We demonstrate this on voxelized 3D CAD models

and on spatiotemporal image sequences.

4.1. Experiments and Results on 3D CAD models

Datasets. ModelNet [42] is a large 3D repository of clean

CAD models (shapes). The ModelNet10 with 4,899 shapes

(train: 3991, test: 908) and ModelNet40 with 12,311 shapes

(train: 9843, test: 2468) are commonly used as benchmark-

ing datasets and consist of 10 and 40 categories, respec-

tively. Each model is aligned to a canonical frame and then

rotated at 12 and 24 evenly-sampled orientations about the

z-axis (Az×12 and Az×24 augmentation). These rotated

models are then voxelized to a 32 × 32 × 32 grid. We use

the voxelized versions of [26]. The task here is to classify a

given voxelized 3D model into its corresponding class.

4.1.1 ModelNet: Comparison with the baselines

Baselines. We start our experiments by replacing the stan-

dard 3D convolutional layer with the proposed ReLPV

block (with skip connections) in the baseline networks

VoxNet [26], VoxNetPlus [25] and LightNet [49], and call

these new networks as LP-VoxNet, LP-VoxNetPlus, and

LP-LightNet, respectively. Here LP stands for Local Phase.

The standard 3D convolutional layer is replaced with the

ReLPV block in a straightforward manner. For example

the VoxNet network [26] has the following architecture:

conv3D(5, 32, 2)−conv3D(3, 32, 1)−MP(2)−FC(128)−
FC(K). Here, conv3D(n, f, s) is the standard 3D convolu-

tional layer with f filters each of size n × n × n applied

with stride s. MP denotes Max Pooling. FC stands for fully

connected layer. K is the number of classes. The equiva-

lent local phase version of VoxNet is: ReLPV(5, 32, 2) −
ReLPV(3, 32, 1)−MP(2)−FC(128)−FC(K). In our ear-

lier discussion on the architecture of the ReLPV block, we

focused only on the important hyperparameters and did not

discuss other hyperparameters that are commonly used in

the standard 3D conv layer, such as the stride information.

Such information can easily be incorporated in the ReLPV

architecture. Similar procedure is followed while preparing

LP-VoxNetPlus and LP-LightNet networks.

Training. We train these new networks using SGD as op-

timizer with momentum 0.9 and categorical crossentropy

as loss. During training, we start with a learning rate of

0.008 and reduce it by a factor of 2 if the validation loss

plateaus. For LP-VoxNet and LP-VoxNetPlus networks,

following [26, 25], we first train them on ModelNet40 and

then fine-tune on ModelNet10. The opposite is done on LP-

LightNet network as done in [49]. Following [26, 25, 49],

all networks were trained on 12 evenly-sampled rotations of

each instance about the z-axis (Az × 12 augmentation). No

data augmentation was done on the test data.

Results. Table 1 presents the comparison of the new net-
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Figure 3: Experiments and comparison with the state-of-the-art. LP-3DCNN network building blocks and architecture.

Network ModelNet40 (%) ModelNet10 (%)

VoxNet [26] (baseline) 83 92

Binary VoxNet [25] 81.63 90.69

LP-VoxNet (ours) 86.26 92.24

VoxNetPlus [25] (baseline) 83.91 93.36

Binary VoxNetPlus [25] 85.47 92.32

LP-VoxNetPlus (ours) 88.1 93.4

LightNet [49] (baseline) 86.90 93.39

Binary LightNet [25] 84.24 92.36

LP-LightNet (ours) 87.5 92.95

Table 1: Comparison of the baseline networks with the

Local Phase and binarized versions. The Local Phase ver-

sion outperforms the baseline and their binarized versions.

works with their corresponding baselines. We also compare

the new networks with the binarized version of the baselines

[25] (as described in section 2). The local phase version

clearly outperforms the corresponding baselines and their

binarized versions on both the ModelNet10 and the Model-

Net40 datasets.

4.1.2 ModelNet: Comparison with the state-of-the-art

Network Architecture. We follow ideas from the

Voxception-ResNet (VRN) architecture of [2] which adopts

a simple inception-style architecture with ResNet-style skip

connections. The intuition behind this design is to have a

maximum number of possible pathways for information to

flow through the network. For the first non-downsampling

block that follows the input layer (Fig. 3a), we concatenate

an equal number (128) of feature maps from two ReLPV

blocks with different local phase volume sizes (3×3×3 and

5×5×5). For other non-downsampling blocks, we augment

the above structure with an additional 1×1×1 convolutional

layer that outputs the same number (128) of feature maps as

the ReLPV blocks and concatenate it with the other feature

maps as shown in Fig. 3b. This architecture allows the net-

work to choose between taking a weighted average of the

feature maps in the previous layer (i.e. by heavily weight-

ing the 1 × 1 × 1 convolutions) or focusing on local phase

information (i.e., by heavily weighting the ReLPV blocks).

Along with this, skip connections are added as shown in

Fig. 3b for smoother flow of the gradients to the previous

layers. For downsampling, we use average pooling with

pool size 2 and stride 2. Our final model is shown in Fig. 3c

with five non-downsampling blocks, followed by two fully

connected layers each of size 512, and a final softmax layer

for classification. All non-downsampling layers (after batch

normalization) and fully connected layers are followed by

the ReLU activation function. The layer conv3D(1, 256) is

used after the final non-downsampling layer to reduce the

number of parameters in the fully connected layers.

Training and Testing. The input to our network are voxels

of size 32×32×32 from the ModelNet datasets. Following

[2], we change the binary voxel range from {0,1} to {-1,5}
to encourage the network to pay more attention to positive

entries. Network is trained using SGD as optimizer with

momentum 0.9 and categorical crossentropy as loss. During

training, we start with a learning rate of 0.008 and reduce it

by a factor of 5 if the validation loss plateaus. All weights

are initialized using orthogonal initialization. The network

is first trained on the Az×12 augmented data, then it is fine-

tuned on the Az × 24 augmented data at low learning rate.

No data augmentation was done on the test data. Apart from

rotations, the data is augmented by adding noise, random

translations and horizontal flips to each training example,

as done in [26, 2].

Results. Table 2 compares our results with other methods

that use voxelized/volumetric ModelNet datasets as input.
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Network Framework Augmentation Parameters (Millions) ModelNet40 (%) ModelNet10 (%)

3D ShapeNets [42] Single, Volumetric Az×12 ≈ 38 77 83.5

Beam Search [46] Single, Volumetric - ≈ 0.08 81.26 88

3D-GAN [41] Single, Volumetric - ≈11 83.3 91

VoxNet [26] Single, Volumetric Az×12 ≈ 0.92 83 92

LightNet [49] Single, Volumetric Az×12 ≈ 0.30 86.90 93.39

ORION [33] Single, Volumetric Az×12 ≈ 0.91 - 93.8

VRN [2] Single, Volumetric Az×24 ≈ 18 91.33 93.61

LP-3DCNN (ours) Single, Volumetric Az×12 ≈ 2 89.4 93.76

LP-3DCNN (ours) Single, Volumetric Az×24 ≈ 2 92.1 94.4

FusionNet [13] Ensemble, Vol.+ Mul. (Az, El)×60 ≈118 90.8 93.11

VRN Ensemble [2] Ensemble, Volumetric Az×24 ≈ 108 95.54 97.14

Table 2: Performance results on the ModelNet datasets. Az stands for azimuth rotation and El stands for elevation rotation.

“-” means that information is not provided for the item in the paper. Vol. stands for volumetric, Mul. stands for multi-view.

In order to make a fair comparison, we only consider vol-

umetric network frameworks in this work. We do not in-

clude multi-view networks or point cloud-based networks.

In single network framework, our proposed network outper-

forms all the previous networks on both the ModelNet10

and the ModelNet40 datasets. Furthermore, it uses just 2

million parameters compared to the current state-of-the-art,

the VRN network, that uses 18 million parameters. In the

ensemble framework, the VRN achieves the best perfor-

mance on both the ModelNet10 and ModelNet40 datasets.

However, it has the most complex network architecture with

up to 45 layers and 108 million parameters, taking almost

6 days to train. In ensemble framework, our network out-

performs FusionNet [13] while using almost 59 times less

parameters and significantly less data augmentation.

4.2. Experiments and Results on Spatiotemporal
Image Sequences

Dataset. We use the UCF-101 split-1 action recognition

dataset [34]. The dataset has been used as a benchmark

dataset in [37, 38, 8] for the performance studies and for

searching 3D CNN network architectures and hyperparam-

eters for action recognition tasks.

Baseline. We use the experimental 3D CNN network pro-

posed by [37] for action recognition as baseline which is

a smaller version of the C3D network [37]. For simplic-

ity, we call this network as mini C3D network or mC3D.

The mC3D network with filter size n × n × n denoted as

mC3Dn has the following architecture: conv3D(n, 64) −
MP(2) − conv3D(n, 128) − MP(2) − conv3D(n, 256) −
MP(2) − conv3D(n, 256) − MP(2) − conv3D(n, 256) −
MP(2)− FC(2048)− FC(2048)− FC(101). Each 3D con-

volutional and fully connected layer is followed by a ReLU

activation function. All the convolution layers are applied

with appropriate padding and stride 1 such that there is no

change in size of the tensor from the input to the output of

these layers. Following [37], the input to the network are

videos of dimension 3× 16× 112× 112.

The equivalent local phase version of the above network,

denoted as LP-mC3Dn, is prepared by replacing the stan-

dard 3D convolutional layers with the ReLPV blocks as

done in Section 4.1.1. Here, n denotes the size of the lo-

cal 3D neighborhood in which STFT is computed.

Training. Following [37], we use SGD as optimizer

with Nesterov momentum with value 0.9 and categorical

crossentropy as loss. We train the networks for 16 epochs

starting with a learning rate of 0.003 and decreasing it by

a factor of 10 after every 4 epochs. Note that all the net-

works are trained from scratch. No data augmentation such

as frame translation, rotation, or scaling is used. We re-

trained all the baseline networks (for n = 3, 5, 7). The re-

sults were found to be consistent with Fig.2 in [37].

Results. Early works such as [37, 22] showed that train-

ing relatively shallow 3D CNNs from scratch on the UCF-

101 split-1 dataset achieve performance between 41−44%.

Recent works such as [38, 8] use deep 3D Residual Con-

vNet architectures to achieve better results. Table 3 reports

our results on the UCF-101 split-1 dataset. We improve

the state-of-the-art by 5.68% while using just five ReLPV

Network Parameters Model Size FLOP Acc.

(Millions) (Mb) (Millions) (%)

2D-ResNet 18 [12, 38] ≈ 11.2 - - 42.2

2D-ResNet 34 [12, 38] ≈ 21.5 - - 42.2

3D-ResNet 18 [38] ≈ 33.2 254 - 45.6

3D-ResNet 34 [38] ≈ 63.5 485 - 45.9

3D-ResNet 101 [8] ≈ 86.06 657 - 46.7

3D STC-ResNet 101 [8] - - - 47.9

mC3D3 [37] (baseline) ≈ 18 139.6 34.88 44

LP-mC3D3 (ours) ≈ 13 106.2 26.072 53.58

mC3D5 [37] (baseline) ≈ 34.32 274.6 68.64 42.5

LP-mC3D5 (ours) ≈ 13 106.2 26.077 51.44

mC3D7 [37] (baseline) ≈ 71.88 575 143.72 42.3

LP-mC3D7 (ours) ≈ 13 106.2 26.08 50.54

mC3D9 (baseline) ≈ 138.34 1100 276.68 36.17

LP-mC3D9 (ours) ≈ 13 106.2 26.083 48.99

Table 3: Performance results on the UCF-101 split-1 ac-

tion recognition dataset. Comparison of the ReLPV block

based 3D CNNs with their corresponding baselines and

other state-of-the-art networks. All the networks are trained

from scratch.
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blocks. Our network uses 13 million parameters compared

to the 3D STC-ResNet 101 network [8], which is built on

the top of 3D ResNet 101 network and uses more than 86

million parameters. Furthermore, all the local phase ver-

sions with different local phase volumes significantly out-

perform the corresponding baseline networks.

5. Discussion and Analysis

In this section, we present detailed ablation and perfor-

mance studies of the ReLPV block. Furthermore, we dis-

cuss some statistical advantages afforded by the ReLPV

block over the standard 3D convolutional layer.

5.1. Spacetime Complexity of the ReLPV block

Model size. Table 3 shows that the ReLPV block based

3D CNNs use less parameters and occupy less disk space

when compared to the corresponding baselines. Further-

more, with an increase in the local phase volume (while

keeping other hyperparameters constant) from 3 to 9, there

is no change in the number of trainable parameters or model

size in the ReLPV block based networks. In contrast, there

is a significant rise in the number of parameters and model

size in baseline networks with an increase in filter size. We

believe this feature of the ReLPV block can be of huge ben-

efit for 3D CNNs in resource constraint environment.

Computational cost. We discussed in Section 3 that due to

the separability of the basis functions, STFT can be com-

puted efficiently by using simple 1D convolutions for each

dimension. This technique of computing 3D STFT using

separable convolutions saves huge computational costs and

has been of recent interest in 3D CNNs as discussed in Sec-

tion 2. Table 3 reports the computation cost in terms of the

number of Floating Point Operations (FLOP) of the models.

The FLOP values of the ReLPV block based 3D CNN are

less when compared to the corresponding baselines. Fur-

thermore, they vary very little with an increase in the lo-

cal phase volume. However, for the baseline networks, the

FLOP values increase by almost 8 times with an increase of

filter size from 3 to 9.

5.2. Statistical advantages of the ReLPV block

As discussed earlier, one of the major challenges in train-

ing deep 3D CNNs is to avoid overfitting [37, 38, 11]. A re-

cent study by Hara et al. in [11] shows that even a relatively

shallow 3D CNN such as 3D ResNet-18 tends to overfit sig-

nificantly on action recognition datasets such as UCF-101

[34] and HMDB-51 [24]. This is partly due to the large

number of trainable parameters in 3D CNNs in comparison

to their 2D counterparts and partly due to the unavailabil-

ity of large scale 3D datasets [38, 11]. These pose a ma-

jor bottleneck in training deep 3D CNNs. In order to curb

overfitting, various training methods such as data augmenta-

tion, training shallow networks, and novel regularizers such

Figure 4: Overfitting results on the UCF-101 split-1

dataset. The LP-mC3D3 network overfits less and gener-

alizes significantly better compared to the baseline mC3D3

network.

Figure 5: ReLPV block STFT volume search. LP-mC3D3

network with STFT volume of 3× 3× 3 performs the best.

as Dropout [35], DropConnect [40], and Maxout [10] have

been introduced. While regularizers such as [40, 35, 10]

have been proposed to regularize the fully connected lay-

ers of the network, recent works such as [4, 19, 35] show

that regularizing the convolutional layers of the network

is equally important. Our ReLPV block when used in the

place of the standard 3D convolutional layer in deep 3D

CNNs, naturally regularizes the network due to its use of

significantly less trainable parameters and due to the decor-

relation property of STFT (see Section 3). Fig. 4 reports

our result on the overfitting experiment. The LP-mC3D3,

network clearly overfits less and generalizes significantly

better when compared to the baseline mC3D3 network.

5.3. Exploring the Local Phase Volume of the
ReLPV block

As described earlier, the ReLPV block takes two hyper-

parameters as input, one of which is the size of the local vol-

ume in which the STFT is computed (and the local phase is

extracted) for each position of the input feature map. In
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this section, we explore this hyperparameter. We exper-

iment with different sizes of local volumes, in particular

from 3 × 3 × 3 to 9 × 9 × 9. We found that the perfor-

mance of the ReLPV block decreases with an increase in

the STFT volume. Fig. 5 presents the clip accuracy of the

LP-mC3Dn network on the UCF-101 test split-1 dataset for

various STFT volumes ranging from 3× 3× 3 to 9× 9× 9
over 16 epochs. The LP-mC3D3 network with STFT vol-

ume of 3 × 3 × 3 performs the best while the LP-mC3D9

network performs the worst. Note that, an analogous study

was carried out in [37] for the standard 3D convolutional

layer where it was found that the 3D CNNs with 3× 3× 3
convolutional kernels in all the layers perform the best.

5.4. Exploring the number of feature maps output
by the ReLPV block

In this section, we explore another hyperparameter, the

number of feature maps output by the ReLPV block. In

simple words, we explore the effect of varying the num-

ber of 1 × 1 × 1 filters in the Layer 4 of the ReLPV block

(see Section 3). For this, we use a modified version of the

LP-mC3Dn network and experiment with different pairs of

ReLPV block hyperparameters (n, f). Let LP-mC3Dn,f

be our experimental network with the following architec-

ture: Input layer−ReLPV(n, f)−MP(2)−ReLPV(n, f)−
MP(2)−ReLPV(n, f)−MP(2)−ReLPV(n, f)−MP(2)−
ReLPV(n, f) − conv3D(1 × 1 × 1, 256) − MP(2) −
FC(2048)− FC(2048)− FC(101). The layer Conv3D(1×
1 × 1, 256) is used after the last ReLPV block so that the

number of parameters in the fully-connected layers does not

vary across different networks. Table 4 presents our results

of the experiment on the UCF-101 split-1 test set. We ob-

serve that, for a fixed value of the local STFT volume (the

hyperparameter n), performance improves with an increase

in the number of 1 × 1 × 1 filters (the hyperparameter f ).

Another important observation is that the model size and the

number of trainable parameters vary by a very small amount

with an increase in the value of the hyperparameter f .

5.5. ReLPV Block based Hybrid 3D CNN Models

In this section, we explore the performance effects of us-

ing ReLPV blocks and the standard 3D convolutional lay-

ers in a single 3D CNN network. We call such networks as

hybrid 3D CNNs. We experiment with two types of varia-

tions. In the first variation, we replace the top few layers

(following the input layer) of a traditional 3D CNN net-

work (baseline mC3D3) with the ReLPV blocks such that

the feature maps learned by the ReLPV blocks are input to

the later standard 3D convolutional layers. In the second

variation, the bottom layers are replaced with the ReLPV

blocks such that the feature maps learned by the standard

3D convolutional layers are input to the later ReLPV blocks.

We use the notation mC3D3(Bl/Tl) to denote that l bot-

Network Parameters (Milions) Model Size (Mb) Acc.

LP-mC3D3,64 ≈ 12.84 104.2 50.96

LP-mC3D3,128 ≈ 12.93 104.9 51.84

LP-mC3D3,256 ≈ 13.20 107.1 53.50

LP-mC3D5,64 ≈ 12.84 104.2 50.29

LP-mC3D5,128 ≈ 12.93 104.9 51.10

LP-mC3D5,256 ≈ 13.20 107.1 53.22

LP-mC3D7,64 ≈ 12.84 104.2 47.66

LP-mC3D7,128 ≈ 12.93 104.9 50.10

LP-mC3D7,256 ≈ 13.20 107.1 51.14

Table 4: Exploring the number of feature maps output

by the ReLPV block. Performance improves with increase

in value of f .

Network Parameters (Millions) Model Size (Mb) Acc.

mC3D3(T1) ≈ 17.44 139.9 51.51

mC3D3(T2) ≈ 16.13 138.5 47.67

mC3D3(T3) ≈ 13.20 132.1 43.95

mC3D3(B1) ≈ 15.82 126.9 35.1

mC3D3(B2) ≈ 14.13 113.7 36.47

mC3D3(B3) ≈ 13.30 107.3 40.84

Table 5: Results on hybrid 3D CNN architectures. Per-

formance results on the UCF-101 split-1 test set.

tom/top successive 3D conv layers of mC3D3 are replaced

with the ReLPV block. Table 5 reports our results of the

experiments. We observe that replacing standard 3D convo-

lutional layers with the ReLPV blocks at the top of a tradi-

tional 3D CNN network improves its performance while the

opposite happens when ReLPV blocks are added in the bot-

tom layers. However, the hybrid 3D CNNs do not outper-

form the LP-mC3D3 network where all layers are replaced

with the ReLPV block (Table 3).

6. Conclusion

In this work, we have proposed ReLPV block, an effi-

cient alternative to the standard 3D convolutional layer, in

order to reduce the high space-time and model complexity

of the traditional 3D CNNs. The ReLPV block when used

in place of the standard 3D convolutional layer in traditional

3D CNNs, significantly improves the performance of the

baseline architectures. Furthermore, they produces consis-

tently better results across different 3D data representations.

Our proposed ReLPV block based 3D CNN architectures

achieve state-of-the-art results on the ModelNet and UCF-

101 split-1 action recognition datasets. We plan to apply

ReLPV block in 3D CNN architectures for other 3D data

representations and tasks such as 3D MRI segmentation.
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