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Abstract

Stereo matching and flow estimation are two essential

tasks for scene understanding, spatially in 3D and tempo-

rally in motion. Existing approaches have been focused

on the unsupervised setting due to the limited resource to

obtain the large-scale ground truth data. To construct a

self-learnable objective, co-related tasks are often linked

together to form a joint framework. However, the prior

work usually utilizes independent networks for each task,

thus not allowing to learn shared feature representations

across models. In this paper, we propose a single and prin-

cipled network to jointly learn spatiotemporal correspon-

dence for stereo matching and flow estimation, with a newly

designed geometric connection as the unsupervised signal

for temporally adjacent stereo pairs. We show that our

method performs favorably against several state-of-the-art

baselines for both unsupervised depth and flow estimation

on the KITTI benchmark dataset.

1. Introduction

Reconstructing 3D motion from the real-world visual

data has long been a fundamental problem in computer vi-

sion and is substantial for numerous applications such as

robotics, virtual/augmented reality, and autonomous driv-

ing. Among the tasks of understanding 3D motion, two of

the most commonly studied scenarios are optical flow esti-

mation and stereo matching for depth estimation. Generally,

the motion in 3D after projection into the image plane of a

camera stands for the optical flow between two consecutive

frames in a video, while the 3D structure captured by two

horizontally displaced cameras builds the stereo rig as the

binocular vision system of human eyes. Thus, the estima-

tion of optical flow and stereo matching, which discover the

pixel displacement across temporally adjacent frames and

stereo pairs, provide crucial access to the 3D information.

Recently, deep learning-based approaches have shown

tremendous improvement for both optical flow estimation

and stereo matching in the supervised learning setting

[2, 13, 14, 3, 11, 6, 10, 19]. However, these methods usu-

ally rely on large-scale datasets with ground truths, but such

Figure 1. Using temporally adjacent stereo pairs as input, our

model can estimate the correspondence maps of each pair via geo-

metric connections, thus bridging stereo matching and optical flow

through multiple reconstruction, forming a cycle.

annotating efforts are significantly expensive, especially in

forms of pixel-wise displacement for optical flow and stereo

matching. For eliminating limitation of datasets and poten-

tial issues such as poor model generalization across various

scenes, several approaches are proposed recently to explore

the unsupervised learning frameworks [31, 17, 9].

In the unsupervised learning setting, a common prac-

tice is to relate different tasks (e.g., optical flow, depth

estimation, or camera pose estimation) and utilize photo-

metric consistency to measure the pixel correspondences

across frames [20, 27, 28, 31, 33]. Nevertheless, existing

approaches utilize separate networks for each task, and thus

the feature representations are not effectively shared across

tasks. In this paper, we argue that there should exist a prin-

cipled model, which is capable of learning joint representa-

tions for tasks that are highly co-related.

Although the properties of pixel correspondence used in

stereo matching and optical flow estimation are slightly dif-

ferent, as the former considers the horizontal offset while

the later has movement in both horizontal and vertical di-
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rections, the common goal is obviously shared (i.e., find-

ing pixel correspondences). By taking advantages of such

a correlation, we propose to design a single network for si-

multaneously estimating optical flow and stereo matching,

and show that these two tasks are beneficial to each other

via learning shared feature representations. Moreover, we

construct an unsupervised learning framework with mod-

elling the geometric connections between both tasks based

on temporally adjacent stereo pairs (as shown in Figure 1),

in which this type of data is easily accessible as the popular-

ity of stereo video cameras. We design a warping function

that considers the consistency across adjacent video frames,

and sequentially feed the training data both from flow and

stereo pairs to meet the designed geometric constraints.

Extensive experiments are conducted on both

KITTI2012 [8] and KITTI2015 [18] benchmark dataset

to evaluate the effectiveness of the proposed method and

show favorable performance against several state-of-the-art

algorithms. In addition, we sequentially demonstrate the

mutual benefit of jointly learning both tasks of optical flow

estimation and stereo matching, successfully showing the

improvement via utilizing the proposed geometric connec-

tions built upon stereo video data. The main contributions

of the paper are summarized as the follows:

• We propose a single and principled network for joint

estimating optical flow and stereo matching to account

for their shared representations, in which the common

goal is to find pixel correspondence across images.

• We introduce geometric constraints during the joint

learning process, which provides an effective signal for

modeling the consistency (i.e., spatiotemporal corre-

spondence) across two tasks and is then utilized as an

objective for unsupervised training.

• We develop an efficient training scheme for the joint

optimization on two tasks within a single framework

and show that both tasks benefit each other.

2. Related Works

We organize and discuss related approaches, including

stereo matching, depth estimation, optical flow estimation,

and the joint framework of them.

Unsupervised Learning of Depth Estimation. Stereo

matching for depth estimation has been a classical com-

puter vision problem for decades. Prior to the recent re-

naissance of deep learning, many approaches are proposed

to tackle this problem based on diverse strategies, such

as hand-crafting feature descriptors for matching local re-

gions across frames, or formulating stereo matching upon

a graphical model and resolving it by complicated energy

minimization. With large annotated datasets are available

(e.g., KITTI [8]) in recent years, better matching functions

to measure the similarity between image patches are learnt

by deep neural networks [15, 30, 1] which obtain significant

boost in performance. Simultaneously, estimating depth di-

rectly from monocular images based on deep models in the

supervised learning manner is also widely explored [2, 14].

However, the requirement for training data with ground

truths is expensive to meet, and thus the unsupervised learn-

ing scheme [31, 9, 32, 16] is popularly adopted. Here we

review several of them as follows.

Godard et al. [9] learn to estimate disparity maps which

are used to warp between images in a stereo pair for opti-

mizing objectives of left-right consistency. Instead of ex-

ploring the pixel correspondence within stereo pairs, given

a video sequence, [32] jointly estimates both the monocu-

lar depth of each frame as well as the camera motion such

that consecutive frames can be reconstructed between each

others, and are used for evaluating photometric consistency

as loss functions. In [16], the authors combine the con-

cept of monocular depth estimation and stereo matching,

where binocular views in a stereo pair are first synthesized

by using the depth map estimated from the monocular im-

age. Then the stereo matching network is applied to produce

the final depth estimation. Typically, these methods attempt

to regress depth map solely from monocular inevitably de-

pends on the quality of training data and hardly generalize

to unseen scenes. In contrast, the models for stereo match-

ing concentrate on learning to match pixels between images

and thus have better generalizability, in which we aim to

address the same stereo matching task in this paper. In

the work of Zhou et al. [31], the authors propose to learn

stereo matching via iterative left-right consistency check.

Godard et al. [9] also extend their monocular depth esti-

mation framework to perform stereo matching and obtain

better performance with respect to its monocular version.

Unsupervised Learning of Optical Flow. The research

works addressing optical flow estimation follow the same

evolution as the ones for depth estimation, starting from

conventional methods [4, 5], advancing to deep learning

models based on supervised setting [3, 11], and then explor-

ing unsupervised learning approaches [29, 21, 17]. When

unsupervised learning of optical flow are first introduced in

FlowNet-Simple [29] and DSTFlow [21], they utilize the

similar objectives of photometric consistency across frames

and local smoothness in the estimated flow map. However,

these works do not take the severe occlusion issue into con-

sideration when there are objects with large movement. In

order to resolve the artifacts resulted from the warping op-

eration, [25, 17, 12] handle regions of occlusion by analyz-

ing the inconsistency between forward and backward flow

maps. [17] further replaces the typical L1 loss with the

ternary census transform for measuring photometric con-
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sistency, providing more reliable constancy assumption in

realistic situations. Moreover, [12] advance the optical flow

estimation and occlusion handling by explicitly reasoning

over multiple consecutive frames within a time window.

Joint Learning Framework of Depth and Optical Flow.

Recently, numerous works have been proposed to jointly

learn both depth and optical flow estimation models via

employing geometric relations between flow, depth, and

camera poses. In [32], based on the assumption of rigid

scenes, the pixel correspondence between temporally adja-

cent frames caused by camera movement is derived from the

estimates on both monocular depth and camera poses, and

thus it becomes the key to define objectives for joint train-

ing. GeoNet [28] follows the similar idea as [32] but partic-

ularly introduces non-rigid motion localizer to handle mov-

ing objects in the optical flow map. Yang et al. [27] explic-

itly disentangle the dynamic objects from static background

in a video based on a motion network, and carefully model

it together with depth, flow, and camera pose estimation by

using geometric constraints. The occlusion mask as well

as 3D motion maps for dynamic and static regions can thus

be obtained. DF-net [33] especially leverages the geometric

consistency between the estimated flow from optical flow

model and the synthetic 2D optical flow obtained from esti-

mates of depth and camera motion, in which it shows bene-

fits for simultaneously training monocular depth prediction

and optical flow estimation networks. Along the same track

of unsupervised learning but unlike the aforementioned re-

search works where separate networks are learned for each

task, our proposed method tackles stereo matching and op-

tical flow estimation within a single and principled network,

and relates them through geometric connections built upon

temporally adjacent stereo pairs.

3. Proposed Method

In this section, we first describe the overall structure

of how we construct the geometric relations among stereo

videos. Second, we introduce each component of the pro-

posed method, including unsupervised loss functions shared

across stereo matching and flow estimation, a newly pro-

posed 2-Warp loss that measures the consistency between

two tasks, and occlusion handling for flow estimation.

3.1. Overall Structure

As motivated previously that both optical flow estima-

tion and stereo matching aim to find pixel correspondences

across images, our goal is to learn a single and principled

network for these two tasks in an unsupervised learning

manner with exploiting their geometric relations stemmed

from stereo videos. Figure 3 illustrates the framework of

the proposed method, which will be detailed in the follow-

ing subsections.

Figure 2. The relation of bridging stereo pairs and consequent

frames. We can estimate the correspondence maps of any direc-

tions based on the input pairs and their reconstruction direction.

The network P in our method is based on the model

used in Monodepth [9], which is now extended from its

original usage of monocular depth estimation to take two

input frames and output both horizontal and vertical off-

sets for pixel correspondences across input frames. As-

suming two temporally adjacent stereo pairs are given as
{

I l,t, Ir,t, I l,t+1, Ir,t+1
}

where the superscripts l, r denote

left and right frames in a stereo pair respectively, and t, t+1
indicate their temporal indexes. Our network P is able to

perform stereo matching to obtain the forward pixel corre-

spondence Dl,t→r,t from I l,t to Ir,t as well as the backward

one Dr,t→l,t from Ir,t to I l,t :

Dl,t→r,t = P (I l,t, Ir,t)

Dr,t→l,t = P (Ir,t, I l,t)
(1)

Likewise, for another stereo pair at time t+ 1, we obtain:

Dl,t+1→r,t+1 = P (I l,t+1, Ir,t+1)

Dr,t+1→l,t+1 = P (Ir,t+1, I l,t+1)
(2)

The forward/backward optical flow maps on the left and

right views can also be estimated using our network:

F l,t→l,t+1 = P (I l,t, I l,t+1)

F l,t+1→l,t = P (I l,t+1, I l,t)

F r,t→r,t+1 = P (Ir,t, Ir,t+1)

F r,t+1→r,t = P (Ir,t+1, Ir,t)

(3)

The overall relations are shown in Figure 2. With these pixel

correspondences, we aim to reconstruct a frame given its

counterpart of a stereo pair or its temporal adjacency, based

on a warping function W . For instance, frame Ir,t can be

reconstructed as:

Ĩr,t = W (I l,t, Dr,t→l,t), (4)
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Figure 3. Overall structure of our method. Our framework consists of a single model P that estimates dense correspondence maps based

on the order of two input images for both stereo matching and optical flow. Each pair can be fed into P but in a different image order (e.g.,

(Il, Ir) and (Ir, Il)), and thus two reconstruction loss Lrec are able to be optimized based on two warping functions W obtained from

each pair. Between these two tasks, two difference are: (1) we apply left-right consistency Llr to stabilize the stereo matching part only;

(2) occlusion map derived from the correspondence maps of two opposite directions is adopted on the reconstruction loss for solving the

largely occluded area for optical flow only.

from its corresponding left view I l,t and the backward

stereo matches Dr,t→l,t. Similarly, I l,t can be recon-

structed as:

Ĩ l,t = W (I l,t+1, F l,t→l,t+1), (5)

from its next frame I l,t+1 via the flow F l,t→l,t+1. For sim-

plicity, we skip listing here for other combinations across

frames, which should be easily derivable.

3.2. Occlusion Estimation for Optical Flow

Before introducing the designed unsupervised loss func-

tions in our framework, we describe first how we tackle the

common occlusion issue for flow estimation. During train-

ing, there would be some occluded regions only visible at

frame t but having no corresponding pixels at frame t + 1,

as the camera or objects may have large movement. This

causes the inconsistent warping process in appearance be-

tween the reconstructed image and the target one.
In order to deal with the occlusion issue, we utilize the

forward-backward consistency check [23, 25, 33] to local-

ize the potentially occluded regions. More precisely, ap-
plying warping operation on a backward map by its cor-
responding forward map, e.g., W (F l,t+1→l,t, F l,t→l,t+1),
ideally could reconstruct the forward map with a nega-
tive sign in non-occluded regions. To this end, we fol-
low the technique as used in [17] and by taking the pair
of

{

I l,t, I l,t+1
}

as an example, pixels are considered as oc-
cluded while the criterion below is violated:

|F l,t→l,t+1 +W (F l,t+1→l,t
, F

l,t→l,t+1)|2

< α1(|F
l,t→l,t+1|2 + |W (F l,t+1→l,t

, F
l,t→l,t+1)|2) + α2,

(6)

where the hyper-parameters α1 and α2 are set to 0.01 and

0.5 respectively. An occlusion map O is then obtained by

setting 0 to those occluded regions and 1, otherwise.

3.3. Unsupervised Loss Functions

One key factor to make the proposed unsupervised

method work is to design plausible loss functions that

can exploit various connection across video frames. In

the following, we sequentially introduce the utilized loss
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(a) (b) (c)

Figure 4. Our proposed 2-warp modules. The arrows indicate the warping direction and a 2-warp reconstruction loss is performed when

the arrows with the same color meet, forcing reconstructed images via the 2-warp operations to be consistent. Here, we introduce three

types of 2-warp functions and will discuss them in the section of experiments.

functions, including self-supervised reconstruction loss,

smoothness loss, left-right consistency loss, and 2-Warp

consistency loss to model the relation across stereo videos.

Here, we use the pair of
{

I l,t, I l,t+1
}

as an example for ex-

planation and all the loss functions apply to both stereo/flow

pairs, unless stated specifically. The overall structure of the

proposed framework and loss functions is presented in Fig-

ure 3.

Reconstruction Loss. The reconstruction loss Lrec is

similar to the one used in Monodepth [9] but with occlusion-

aware constraints. The loss is the weighted sum of SSIM-

based loss and L1 loss which compares I l,t and its recon-

struction Ĩ l,t:

Ll,t→l,t+1
rec =

1
∑

i,j O
[
∑

i,j

(α
1− SSIM(I l,tij , Ĩ

l,t
ij )

2

+(1− α)|I l,tij − Ĩ
l,t
ij |) ·O],

(7)

where O is the occlusion map derived from Section 3.2,

subscript i, j indicates pixel coordinates, and α denotes the

weights between SSIM and L1 loss. Since our occlusion

maps are only used in the image pairs for flow estimation,

all the elements in the occlusion map would be equal to 1
when Lrec is applied on image pairs for stereo matching.

Smoothness Loss. For the smoothness loss Lsm, we

adopt the formulation introduced in [25] which encour-

ages the correspondence maps to be locally smooth but also

maintains edges that should be aligned with the structure of

images:

Ll,t→l,t+1
sm =

1

N

∑

i,j

∑

d∈(x,y)

|∂2
dF

l,t→l,t+1|e−β|∂dI
l,t

ij
| (8)

where β denotes the edge-weighted hyperparameter. Here

we adopt the second-order and the first-order derivatives on

the correspondence map and the image, respectively.

Left-right Correspondence Consistency Loss. To im-
prove the accuracy of correspondence map estimation as
well as balance the performance of left-right estimation, we
not only check the consistency of left-right reconstruction
but also check left-right correspondence. Similar to the oc-
clusion detection, our left-right consistency loss Llr is de-
rived from reconstructing the correspondence map pair by
warping each other and compute the absolute L1 difference
loss. Following [26], this consistency term is only adopted
on stereo pairs:

Ll,t→r,t

lr =
1

N

∑

i,j

|Dl,t→r,t +W (Dr,t→l,t
, D

l,t→r,t)| (9)

2-Warp Consistency Loss. To reinforce the structure of

stereo matching and optical flow estimation, we introduce

a new 2-Warp consistency loss. That is, we warp an image

twice through both the optical flow and stereo sides. Fig-

ure 4 presents three types of the possible 2-warp operations

that we investigate. We will introduce the details of the first

one as follows, while the others can be derived similarly.

Following previous works of depth estimation, we do not

apply occlusion maps on stereo pairs, so that we could eas-

ily derive the 2-warp occlusion maps from estimated flow

maps. To reconstruct Ir,t from I l,t+1 via I l,t, the occlusion

map and the 2-warp reconstructed image are written as:

Or,t→l,t+1 = W (Ol,t→l,t+1, Dr,t+1→l,t+1). (10)

Ïr,t = W (W (I l,t+1, F l,t→l,t+1), F r,t→l,t). (11)

The occlusion regions between the stereo pairs at time t

is the area where objects occlude the background at time
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t+1, so the occlusion area can be mapped by Dl,t+1→r,t+1.

Therefore, warping Ol,t→l,t+1 by Dr,t+1→l,t+1 as our 2-

warp occlusion map is valid. Similar to (7), we could ap-

ply the occlusion-aware reconstruction loss between recon-

structed Ïr,t from I l,t+1 via I l,t and the reconstructed Ĩr,t

directly from Ir,t+1, as illustrated in Figure 4(a).

Lr,t→l,t+1
2warp =

1
∑

i,j O
r,t→l,t+1

[
∑

i,j

(α
1− SSIM(Ïr,tij , Ĩ

r,t
ij )

2

+(1− α)|Ïr,tij − Ĩ
r,t
ij |) ·Or,t→l,t+1].

(12)

Total Loss. The total loss of the proposed framework is:

Ltotal = Lrec +λsmLsm +λlrLlr +λ2warpL2warp (13)

We note that, all these terms except 2-Warp consistency,

have its mirrored counterpart at each scale for the multi-

scale estimation as in Monodepth [9].

4. Experimental Results

We evaluate the proposed method for both depth estima-

tion and flow estimation on the KITTI dataset [8]. We show

that our framework is able to achieve competitive perfor-

mance on both tasks. Moreover, to show the merit of jointly

learning the shared feature representations, we conduct ex-

periments to validate that introducing stereo and flow pairs

improves both performance. We further enforce geometric

constraints to construct the spatiotemporal correspondence

in the stereo video and show that such constraint improves

the performance via our newly proposed warping function.

The code and model will be made available for the public.

More results are provided in the supplementary material.

4.1. Implementation Details

During training, we use a batch of size 2, each with two

adjacent stereo pairs, i.e., 4 stereo pairs and 4 flow pairs.

Images are scaled to the size of 512 × 256. Our model is

based on Monodepth [9] using ResNet-50 as the encoder,

with modifications of the last layer before output at each

scale to generate 2-channel maps including horizontal and

vertical correspondence maps. The data augmentation fol-

lows Monodepth, containing left-right flipping, color aug-

mentation of random gamma, brightness and color shifts,

where each augmentation type has 50% of chances to be

selected. Each color augmentation is sampled by uniform

distributions in the ranges of [0.8, 1.2], [0.5, 2.0], [0.8, 1.2]

respectively. We use Adam as our optimizer with default

parameter settings. The learning rate is set as 10−4and we

apply learning rate decay which is halved every 3 epochs

for 5 times when training on full training set. Our hyper-

parameters {α, β, λsm, λlr, λ2warp} are set to {0.85, 10,

10, 0.5, 0.2}. When only training on stereo pairs, λlr would

be 1 for balancing the proportion of stereo pairs in a batch.

Please note that we use a model variant trained without 2-

warp consistency loss (i.e. denoted as Ours (flow+stereo) in

Table 1, 2, and 3) for better initializing the learning of our

proposed full models.

4.2. Dataset and Setting

The KITTI dataset contains stereo sequences of real road

scenes, providing accurate but sparse depth and optical flow

ground truth for a small subset. We evaluate our method on

the KITTI 2012 and 2015 datasets, in which there are 194

and 200 pairs of flow and stereo with high quality annota-

tions, covering 28 scenes of the KITTI raw dataset. During

training, we generate 28968 cycles (i.e., a cycle contains 4

images as in Figure 2) from the remaining 33 scenes.

To compare with other methods on depth estimation

from the test set split by Eigen et al. [2], which contains

697 pairs from 29 scenes in the KITTI raw dataset, We use

the remaining 32 scenes and sample a subset consisting of

8000 cycles for training. We cap the depth to 0-80 meters

with the same crop as in Garg et al. [7] during evaluation.

4.3. Results for Depth Estimation

KITTI Split. In Table 1, we compare our results with

state-of-the-art approaches [24, 9, 27] categorized by the

use of stereo pairs during training and testing. Compared to

[9] with the same setting, our models considering both the

flow and stereo pairs consistently performs better in all the

metric. Note that, we use the same number of training data

in training all the models for fair comparisons. With com-

paring among our variants, adding flow pairs that are jointly

learned within the same model with stereo pairs improves

the base model (i.e., stereo only) by a significant margin.

Further including the proposed 2-warp geometric connec-

tions brings additional gains in performance, using either

type of the 2-warp operations as in Figure 4.

Eigen Split. In Table 2, we show depth estimation perfor-

mance compared to state-of-the-art methods [2, 9, 27, 32,

28] on the Eigen split. While existing methods do not have

the same setting of using stereo pairs during training/testing,

we show that our model significantly improves the perfor-

mance by adding stereo pairs during testing, in which such

data can be obtained as a free resource that only slightly

increases the computational cost. Note that, adding flow

pairs without 2-warp consistency does not significantly im-

prove the performance here in this Eigen split. The potential

cause is due to the nature that flow estimation is considered

to be harder than stereo matching, and the Eigen split is

much smaller than the KITTI split. Therefore, learning op-

tical flow simultaneously could lead to slower convergence

and affect the performance of stereo matching. After we
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Table 1. Quantitative evaluation of the depth estimation task on KITTI 2015 stereo set. Our results are capped between 0-80 meters. Our

full model includes settings with three types of 2-warp operations from Figure 4 and full-1,2,3 correspond to Figure 4(a), 4(b) and 4(c)

respectively. Using stereo pairs during training/testing is also indicated in the table.

Method Train Test Lower the better Higher the better

Stereo Stereo Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Wang et al. [24] 0.148 1.187 5.496 0.226 0.812 0.938 0.975

Godard et al. [9] X 0.097 0.896 5.093 0.176 0.879 0.962 0.986

Yang et al. [27] X 0.099 0.986 6.122 0.194 0.860 0.957 0.986

Godard et al. [9] X X 0.068 0.835 4.392 0.146 0.942 0.978 0.989

Ours (stereo only) X X 0.078 0.811 4.700 0.174 0.918 0.965 0.983

Ours (flow + stereo) X X 0.0653 0.819 4.268 0.151 0.946 0.979 0.990

Ours (full-1) X X 0.0631 0.756 4.207 0.147 0.947 0.979 0.990

Ours (full-2) X X 0.0620 0.747 4.113 0.146 0.948 0.979 0.990

Ours (full-3) X X 0.0630 0.773 4.195 0.147 0.947 0.979 0.990

Table 2. Quantitative evaluation of the depth estimation task on the KITTI raw dataset split by Eigen et al. [2]. All results are cropped

based on the setting in [7]. Using stereo pairs during training/testing or supervised data is indicated in the table.

Method Train Test Super- Lower the better Higher the better

Stereo Stereo vised Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [2] X 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Godard et al. [9] X 0.114 0.898 4.935 0.206 0.861 0.949 0.976

Yang et al. [27] X 0.114 1.074 5.836 0.208 0.856 0.939 0.976

Zhou et al. [32] 0.198 1.836 6.565 0.275 0.718 0.901 0.960

GeoNet [28] 0.153 1.328 5.737 0.232 0.802 0.934 0.972

Ours (stereo only) X X 0.090 0.844 4.373 0.190 0.900 0.954 0.976

Ours (flow + stereo) X X 0.094 0.791 4.455 0.188 0.897 0.957 0.978

Ours (full-1) X X 0.089 0.766 4.369 0.183 0.905 0.959 0.979

Ours (full-2) X X 0.088 0.759 4.346 0.184 0.906 0.959 0.979

Ours (full-3) X X 0.087 0.765 4.380 0.184 0.906 0.959 0.978

advance to include 2-warp consistency objective in our full

models, it successfully overcomes the aforementioned issue

and improves the performance, as now each stereo pair or

temporally adjacent one can contribute multiple times to the

same network P by the proposed 2-warp function.

4.4. Results for Flow Estimation

In Table 3, we show our unsupervised flow results com-

pared with state-of-the-art supervised methods [11, 22] and

unsupervised approaches [17, 28, 33]. The results suggest

that our model without using 2-warp already performs fa-

vorably against other unsupervised framework. It demon-

strates the benefit of using a single network to jointly learn

feature representations shared across two highly co-related

tasks (i.e., flow estimation and stereo matching) and help

improve both performance. In addition, even optical flow

estimation is a harder task, our proposed 2-warp consistency

loss is able to encourage the tighter connection across two

tasks and thus further boost the performance. We also ob-

serve from the KITTI 2015 dataset that all three variants

of our full model achieve similar improvement in a signif-

icant margin, in which it shows that our proposed 2-warp

consistency loss could benefit the estimation of pixel corre-

spondences regardless the warping directions.

4.5. Results without sharing weights

In order to demonstrate the benefit of using a single net-

work for both flow estimation and stereo matching instead

of having separate architectures for each task, we train a

model variant of full-2 with untying the weights of both

tasks and test it on KITTI 2015, which is denoted as Ours

(w/o sharing) in Table 3. We find its performance compara-

ble to our full model in stereo matching but much worse in

optical flow estimation. The main reason is that the learn-

ing rates for flow and depth networks are now hard to bal-

ance without well-tuning, and the performance of optical

flow estimation becomes unstable for the 2-warp operation.

This shows the advantage of having a single and principled
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Table 3. Quantitative evaluation on the optical flow task. EPE means average end-point-error where the postfix “-noc” and “-occ” only

accounts for non-occlusion regions and occlusion regions, respectively. Fl means the error rate of the flow map values where one pixel is

considered wrong if the EPE is <3px or <5%.

KITTI 2012 KITTI 2015

Method Train Super- train train train train train train train train

Stereo vised EPE-all EPE-noc EPE-all Fl-all EPE-noc Fl-noc EPE-occ Fl-occ

Flownet2 [11] X 4.09 - 10.06 30.37% - - - -

Flownet2-CSS [11] X 3.55 - 8.94 29.77% - - - -

PWC-Net [22] X 4.14 10.35 33.67% - - - -

UnFlow-CSS [17] 3.29 1.26 8.10 23.27% - - - -

GeoNet [28] - - 10.81 - 8.05 - - -

DF-net [33] 3.54 - 8.98 26.01% - - - -

Ours (flow only) 4.29 1.98 9.70 32.77% 5.23 25.89% 26.06 65.08%

Ours (flow + stereo) X 2.64 1.45 7.47 28.54% 4.707 22.56% 17.83 56.29%

Ours (w/o sharing) X 3.49 1.99 8.78 34.56% 5.33 28.65% 21.38 62.61%

Ours (full-1) X 2.59 1.41 7.021 27.34% 4.257 21.41% 17.57 54.78%

Ours (full-2) X 2.61 1.39 7.044 27.73% 4.229 21.65% 17.89 55.74%

Ours (full-3) X 2.56 1.388 7.134 27.13% 4.306 21.19% 17.79 54.09%

Image Our Depth Map GT Depth Map Our Flow Map GT Flow Map

Figure 5. Example results on KITTI. In each row, we sequentially show the left image at time t, our predicted depth map, the ground truth

depth, our flow prediction, and the ground truth flow.

network for both tasks. We show some example results in

Figure 5.

5. Conclusions

In this paper, we propose to use a single, principled net-

work to perform both stereo matching and flow estimation.

The advantage lies in that the feature representations can be

jointly learned and shared across two tasks, which all aim

to predict pixel correspondences, spatially and temporally.

Given a stereo video, we further enforce geometric con-

nections between adjacent stereo pairs, in which a 2-warp

consistency term is introduced to optimize the reconstruc-

tion loss via the warping functions. Experimental results

show that the proposed framework facilitates the informa-

tion from two tasks and thus improves the performance on

both depth and flow estimation.
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