
PointPillars: Fast Encoders for Object Detection from Point Clouds

Alex H. Lang Sourabh Vora Holger Caesar Lubing Zhou Jiong Yang

Oscar Beijbom

nuTonomy: an APTIV company

{alex, sourabh, holger, lubing, jiong.yang, oscar}@nutonomy.com

Abstract

Object detection in point clouds is an important aspect

of many robotics applications such as autonomous driving.

In this paper, we consider the problem of encoding a point

cloud into a format appropriate for a downstream detection

pipeline. Recent literature suggests two types of encoders;

fixed encoders tend to be fast but sacrifice accuracy, while

encoders that are learned from data are more accurate, but

slower. In this work, we propose PointPillars, a novel en-

coder which utilizes PointNets to learn a representation of

point clouds organized in vertical columns (pillars). While

the encoded features can be used with any standard 2D con-

volutional detection architecture, we further propose a lean

downstream network. Extensive experimentation shows that

PointPillars outperforms previous encoders with respect to

both speed and accuracy by a large margin. Despite only

using lidar, our full detection pipeline significantly outper-

forms the state of the art, even among fusion methods, with

respect to both the 3D and bird’s eye view KITTI bench-

marks. This detection performance is achieved while run-

ning at 62 Hz: a 2 - 4 fold runtime improvement. A faster

version of our method matches the state of the art at 105 Hz.

These benchmarks suggest that PointPillars is an appropri-

ate encoding for object detection in point clouds.

1. Introduction

Deploying autonomous vehicles (AVs) in urban environ-

ments poses a difficult technological challenge. Among

other tasks, AVs need to detect and track moving objects

such as vehicles, pedestrians, and cyclists in realtime. To

achieve this, autonomous vehicles rely on several sensors

out of which the lidar is arguably the most important. A

lidar uses a laser scanner to measure the distance to the

environment, thus generating a sparse point cloud repre-

sentation. Traditionally, a lidar robotics pipeline interprets

such point clouds as object detections through a bottom-

up pipeline involving background subtraction, followed by

spatiotemporal clustering and classification [12, 9].

20 40 60
58

60

62

64

66

Pe
rfo

rm
an

ce
 (m

AP
)

V

F

S

A
PP

All classes

20 40 60

78

80

82

84

86

Pe
rfo

rm
an

ce
 (A

P)

M

P+

V

F

S

C

A
PP

Car

20 40 60
Runtime (Hz)

42

44

46

48

50

Pe
rfo

rm
an

ce
 (A

P)

V

F

S

A

PP

Pedestrian

20 40 60
Runtime (Hz)

56

58

60

62

Pe
rfo

rm
an

ce
 (A

P)

V

F

S

A

PP

Cyclist

Figure 1. Bird’s eye view performance vs speed for our proposed

PointPillars, PP method on the KITTI [5] test set. Lidar-only

methods drawn as blue circles; lidar & vision methods drawn as

red squares. Also drawn are top methods from the KITTI leader-

board: M : MV3D [2], A AVOD [11], C : ContFuse [15], V :

VoxelNet [33], F : Frustum PointNet [21], S : SECOND [30],

P+ PIXOR++ [31]. PointPillars outperforms all other lidar-only

methods in terms of both speed and accuracy by a large margin.

It also outperforms all fusion based method except on pedestrians.

Similar performance is achieved on the 3D metric (Table 2).

Following the tremendous advances in deep learning

methods for computer vision, a large body of literature has

investigated to what extent this technology could be applied

towards object detection from lidar point clouds [33, 31, 32,

11, 2, 21, 15, 30, 26, 25]. While there are many similarities

between the modalities, there are two key differences: 1)

the point cloud is a sparse representation, while an image is

dense and 2) the point cloud is 3D, while the image is 2D.

As a result, object detection from point clouds does not triv-

ially lend itself to standard image convolutional pipelines.

Some early works focus on either using 3D convolu-

tions [3] or a projection of the point cloud into the image

12697

[14]. Recent methods tend to view the lidar point cloud

from a bird’s eye view (BEV) [2, 11, 33, 32]. This over-

head perspective offers several advantages. First, the BEV

preserves the object scales. Second, convolutions in BEV

preserve the local range information. If one instead per-

forms convolutions in the image view, one is blurring the

depth information (Fig. 3 in [28]).

However, the bird’s eye view tends to be extremely

sparse which makes direct application of convolutional

neural networks impractical and inefficient. A common

workaround to this problem is to partition the ground plane

into a regular grid, for example 10 x 10 cm, and then per-

form a hand-crafted feature encoding method on the points

in each grid cell [2, 11, 26, 32]. However, such methods

may be sub-optimal since the hard-coded feature extraction

method may not generalize to new configurations without

significant engineering efforts. To address these issues, and

building on the PointNet design developed by Qi et al. [22],

VoxelNet [33] was one of the first methods to truly do end-

to-end learning in this domain. VoxelNet divides the space

into voxels, applies a PointNet to each voxel, followed by

a 3D convolutional middle layer to consolidate the vertical

axis, after which a 2D convolutional detection architecture

is applied. While the VoxelNet performance is strong, the

inference time, at 4.4Hz, is too slow to deploy in real time.

Recently SECOND [30] improved the inference speed of

VoxelNet but the 3D convolutions remain a bottleneck.

In this work, we propose PointPillars: a method for ob-

ject detection in 3D that enables end-to-end learning with

only 2D convolutional layers. PointPillars uses a novel en-

coder that learns features on pillars (vertical columns) of the

point cloud to predict 3D oriented boxes for objects. There

are several advantages of this approach. First, by learning

features instead of relying on fixed encoders, PointPillars

can leverage the full information represented by the point

cloud. Further, by operating on pillars instead of voxels

there is no need to tune the binning of the vertical direction

by hand. Finally, pillars are fast because all key operations

can be formulated as 2D convolutions which are extremely

efficient to compute on a GPU. An additional benefit of

learning features is that PointPillars requires no hand-tuning

to use different point cloud configurations such as multiple

lidar scans or even radar point clouds.

We evaluated our PointPillars network on the public

KITTI detection challenges which require detection of cars,

pedestrians, and cyclists in either BEV or 3D [5]. While

our PointPillars network is trained using only lidar point

clouds, it dominates the current state of the art including

methods that use lidar and images, thus establishing new

standards for performance on both BEV and 3D detection

(Table 1 and Table 2). At the same time, PointPillars runs

at 62 Hz, which is 2-4 times faster than previous state of

the art (Figure 1). PointPillars further enables a trade off

between speed and accuracy; in one setting we match state

of the art performance at over 100 Hz (Figure 5). We have

also released code1 to reproduce our results.

1.1. Related Work

1.1.1 Object detection using CNNs

Starting with the seminal work of Girshick et al. [6], it was

established that convolutional neural network (CNN) archi-

tectures are state of the art for detection in images. The

series of papers that followed [24, 7] advocate a two-stage

approach to this problem. In the first stage, a region pro-

posal network (RPN) suggests candidate proposals, which

are cropped and resized before being classified by a second

stage network. Two-stage methods dominated the important

vision benchmark datasets such as COCO [17] over single-

stage architectures originally proposed by Liu et al. [18]. In

a single-stage architecture, a dense set of anchor boxes is

regressed and classified in one step into a set of predictions

providing a fast and simple architecture. Recently, Lin et

al. [16] convincingly argued that with their proposed focal

loss function a single stage method is superior to two-stage

methods, both in terms of accuracy and runtime. In this

work, we use a single stage method.

1.1.2 Object detection in lidar point clouds

Object detection in point clouds is an intrinsically three di-

mensional problem. As such, it is natural to deploy a 3D

convolutional network for detection, which is the paradigm

of several early works [3, 13]. While providing a straight-

forward architecture, these methods are slow; e.g. Engelcke

et al. [3] require 0.5s for inference on a single point cloud.

Most recent methods improve the runtime by projecting the

3D point cloud either onto the ground plane [11, 2] or the

image plane [14]. In the most common paradigm the point

cloud is organized in voxels and the set of voxels in each

vertical column is encoded into a fixed-length, hand-crafted,

feature encoding to form a pseudo-image which can be pro-

cessed by a standard image detection architecture. Some

notable works include MV3D [2], AVOD [11], PIXOR [32]

and Complex YOLO [26] which all use variations on the

same fixed encoding paradigm as the first step of their ar-

chitectures. The first two methods additionally fuse the li-

dar features with image features to create a multi-modal de-

tector. The fusion step used in MV3D and AVOD forces

them to use two-stage detection pipelines, while PIXOR

and Complex YOLO use single stage pipelines.

In their seminal work Qi et al. [22, 23] proposed a simple

architecture, PointNet, for learning from unordered point

sets, which offered a path to full end-to-end learning. Vox-

elNet [33] is one of the first methods to deploy PointNets

for object detection in lidar point clouds. In their method,

1https://github.com/nutonomy/second.pytorch

12698

Point cloud

Stacked
Pillars

Learned
Features

Pseudo
image

Predictions

Pillar
Feature Net

Backbone
(2D CNN)

Detection
Head (SSD)

Point
cloud

N
PD

C
P

H
W

C

Deconv

Deconv

Deconv

Concat

Conv

Conv

Conv

H/2
W/2C

H/4
W/4

2C

H/8

W/84C

H/2
W/22C

H/2
W/22C

H/2
W/22C

H/2
W/26C

Pillar Index

Figure 2. Network overview. The main components of the network are a Pillar Feature Network, Backbone, and SSD Detection Head (see

Section 2 for details). The raw point cloud is converted to a stacked pillar tensor and pillar index tensor. The encoder uses the stacked

pillars to learn a set of features that can be scattered back to a 2D pseudo-image for a convolutional neural network. The features from the

backbone are used by the detection head to predict 3D bounding boxes for objects. Note: we show the car network’s backbone dimensions.

PointNets are applied to voxels which are then processed by

a set of 3D convolutional layers followed by a 2D backbone

and a detection head. This enables end-to-end learning, but

like the earlier work that relied on 3D convolutions, Voxel-

Net is slow, requiring 225ms inference time (4.4 Hz) for a

single point cloud. Another recent method, Frustum Point-

Net [21], uses PointNets to segment and classify the point

cloud in a frustum generated from projecting a detection on

an image into 3D. Frustum PointNet achieved high bench-

mark performance compared to other fusion methods, but

its multi-stage design makes end-to-end learning impracti-

cal. Very recently SECOND [30] offered a series of im-

provements to VoxelNet resulting in stronger performance

and a much improved speed of 20 Hz. However, they were

unable to remove the expensive 3D convolutional layers.

1.2. Contributions

• We propose a novel point cloud encoder and network,

PointPillars, that operates on the point cloud to enable

end-to-end training of a 3D object detection network.

• We show how all computations on pillars can be posed

as dense 2D convolutions which enables inference at

62Hz; a factor of 2-4 times faster than other methods.

• We conduct experiments on the KITTI dataset and

demonstrate state of the art results on cars, pedestri-

ans, and cyclists on both BEV and 3D benchmarks.

• We conduct several ablation studies to examine the key

factors that enable a strong detection performance.

2. PointPillars Network

PointPillars accepts point clouds as input and estimates

oriented 3D boxes for cars, pedestrians and cyclists. It con-

sists of three main stages (Figure 2): (1) A feature encoder

network that converts a point cloud to a sparse pseudo-

image; (2) a 2D convolutional backbone to process the

pseudo-image into high-level representation; and (3) a de-

tection head that detects and regresses 3D boxes.

2.1. Pointcloud to PseudoImage

To apply a 2D convolutional architecture, we first con-

vert the point cloud to a pseudo-image.

We denote by l a point in a point cloud with coordinates

x, y, and z. As a first step, the point cloud is discretized

into an evenly spaced grid in the x-y plane, creating a set

of pillars P with |P| = B. Note that a pillar is a voxel

with unlimited spatial extent in the z direction and hence

there is no need for a hyper parameter to control the bin-

ning in the z dimension. The points in each pillar are then

decorated (augmented) with r, xc, yc, zc, xp, yp where r
is reflectance, the c subscript denotes distance to the arith-

metic mean of all points in the pillar, and the p subscript

denotes the offset from the pillar x, y center (see Sec 7.3 for

design details). The decorated lidar point l̂ is now D = 9
dimensional. While we focus on lidar point clouds, other

point clouds such as radar or RGB-D[27] could be used with

PointPillars by changing the decorations for each point.

The set of pillars will be mostly empty due to sparsity

of the point cloud, and the non-empty pillars will in general

have few points in them. For example, at 0.162 m2 bins

the point cloud from an HDL-64E Velodyne lidar has 6k-9k

non-empty pillars in the range typically used in KITTI for

∼ 97% sparsity. This sparsity is exploited by imposing a

limit both on the number of non-empty pillars per sample

(P) and on the number of points per pillar (N) to create a

dense tensor of size (D,P,N). If a sample or pillar holds

too much data to fit in this tensor, the data is randomly sam-

pled. Conversely, if a sample or pillar has too little data to

populate the tensor, zero padding is applied.

Next, we use a simplified version of PointNet where,

for each point, a linear layer is applied followed by Batch-

Norm [10] and ReLU [19] to generate a (C,P,N) sized

12699

Figure 3. Qualitative analysis on KITTI. We show a bird’s eye view of the lidar point cloud (top), as well as the 3D bounding boxes

projected into the image for clearer visualization. Note that our method only uses lidar. We show ground truth (gray) and predicted boxes

for car (orange), cyclist (red) and pedestrian (blue). The box orientation is shown by a line from the bottom center to the front of the box.

a b c d

Figure 4. Failure cases on KITTI. Same visualize setup from Figure 3 but focusing on several common failure modes.

tensor. This is followed by a max operation over the chan-

nels to create an output tensor of size (C,P). Note that the

linear layer can be formulated as a 1x1 convolution across

the tensor resulting in very efficient computations.

Once encoded, the features are scattered back to the

original pillar locations to create a pseudo-image of size

(C,H,W) where H and W indicate the height and width

of the canvas. Note that our choice of using pillars instead

of voxels allows us to skip the expensive 3D convolutions

in [33]’s Convolutional Middle Layer.

2.2. Backbone

We use a similar backbone as [33] and the structure is

shown in Figure 2. The backbone has two sub-networks:

one top-down network that produces features at increas-

ingly small spatial resolution and a second network that per-

forms upsampling and concatenation of the top-down fea-

tures. The top-down backbone can be characterized by a se-

ries of blocks Block(S, L, F). Each block operates at stride

S (measured relative to the original input pseudo-image).

A block has L 3x3 2D conv-layers with F output channels,

each followed by BatchNorm and a ReLU. The first con-

volution inside the layer has stride S
Sin

to ensure the block

operates on stride S after receiving an input blob of stride

Sin. All subsequent convolutions in a block have stride 1.

The final features from each top-down block are com-

bined through upsampling and concatenation as follows.

First, the features are upsampled, Up(Sin, Sout, F) from

an initial stride Sin to a final stride Sout (both again mea-

sured wrt. the original pseudo-image) using a transposed

2D convolution with F final features. Next, BatchNorm

and ReLU are applied to the upsampled features. The fi-

nal output features are a concatenation of all features from

different strides.

2.3. Detection Head

We use the Single Shot Detector (SSD) [18] setup to per-

form 3D object detection. If one is interested in a different

task (e.g. segmentation), it would only require swapping

out the detection head for a head specialized for the desired

task. Similar to SSD, we match the priorboxes to the ground

truth using 2D Intersection over Union (IoU) [4]. Bounding

box height and elevation were not used for matching; in-

stead given a 2D match, the height and elevation become

additional regression targets.

3. Implementation Details

3.1. Network

Instead of pre-training our networks, all weights were

initialized randomly using a uniform distribution as in [8].

The encoder network has C = 64 output features. The

car and pedestrian/cyclist backbones are the same except

for the stride of the first block (S = 2 for car, S = 1 for

12700

pedestrian/cyclist). Both network consists of three blocks,

Block1(S, 4, C), Block2(2S, 6, 2C), and Block3(4S, 6,

4C). Each block is upsampled by the following upsampling

steps: Up1(S, S, 2C), Up2(2S, S, 2C) and Up3(4S, S, 2C).

Then the features of Up1, Up2 and Up3 are concatenated

together to create 6C features for the detection head.

3.2. Loss

We use the same loss functions introduced in SEC-

OND [30]. Ground truth boxes and anchors are defined by

(x, y, z, w, l, h, θ). The localization regression residuals be-

tween ground truth and anchors are defined by:

∆x =
xgt − xa

da
,∆y =

ygt − ya

da
,∆z =

zgt − za

ha

∆w = log
wgt

wa
,∆l = log

lgt

la
,∆h = log

hgt

ha

∆θ = sin
(

θgt − θa
)

,

where xgt and xa are respectively the ground truth and an-

chor boxes and da =
√

(wa)2 + (la)2. The total localiza-

tion loss is:

Lloc =
∑

b∈(x,y,z,w,l,h,θ)

SmoothL1 (∆b)

Since the angle localization loss cannot distinguish

flipped boxes, the heading is learned with a softmax clas-

sification loss, Ldir, on the discretized directions [30].

The object classification loss uses focal loss [16]:

Lcls = −αa (1− pa)
γ
log pa,

where pa is the class probability of an anchor. We use the
original paper settings of α = 0.25 and γ = 2. The total

loss is therefore:

L = 1
Npos

(βlocLloc + βclsLcls + βdirLdir) ,

where Npos is the number of positive anchors and βloc = 2,
βcls = 1, and βdir = 0.2.

The loss function is optimized using Adam with an initial

learning rate of 2 ∗ 10−4 which decays by a factor of 0.8
every 15 epochs. The number of epochs is 160 and 320
with a batch size of 2 and 4 for val and test respectively.

4. Experimental setup

4.1. Dataset

All experiments use the KITTI object detection bench-

mark dataset [5], which consists of samples that have both

lidar point clouds and images. We only train on lidar point

clouds, but compare with fusion methods that use both lidar

and images. The samples are originally divided into 7481

training and 7518 testing samples. For experimental studies

we split the official training set into 3712 training samples

and 3769 validation samples [1], while for our test submis-

sion we created a mini-val set of 784 samples from the val-

idation set and trained on the remaining 6733 samples. The

KITTI benchmark requires detections of cars, pedestrians,

and cyclists. Since the ground truth objects were only anno-

tated if they are visible in the image, we follow the standard

convention [2, 33] of only using lidar points that project

into the image. Following the standard literature practice

on KITTI [11, 33, 30], we train one network for cars and

one network for both pedestrians and cyclists.

4.2. Settings

Unless explicitly varied in an experimental study, we use

an xy resolution: 0.16 m, max number of pillars (P): 12000,

and max number of points per pillar (N): 100.

We use the same anchors and matching strategy as [33].

Each class anchor is described by a width, length, height,

and z center, and is applied at two orientations: 0 and 90

degrees. Anchors are matched to ground truth using the 2D

IoU with the following rules. A positive match is either

the highest with a ground truth box, or above the positive

match threshold, while a negative match is below the nega-

tive threshold. All other anchors are ignored in the loss.

At inference time we apply axis aligned non maximum

suppression (NMS) with an overlap threshold of 0.5 IoU.

This provides similar performance compared to rotational

NMS, but is much faster.

Car. The x, y, z range is [(0, 70.4), (-40, 40), (-3, 1)]

meters respectively. The car anchor has width, length, and

height of (1.6, 3.9, 1.5) m with a z center of -1 m. Matching

uses positive and negative thresholds of 0.6 and 0.45.

Pedestrian & Cyclist. The x, y, z range is [(0, 48), (-20,

20), (-2.5, 0.5)] meters respectively. The pedestrian anchor

has width, length, and height of (0.6, 0.8, 1.73) meters with

a z center of -0.6 meters, while the cyclist anchor has width,

length, and height of (0.6, 1.76, 1.73) meters with a z center

of -0.6 meters. Matching uses positive and negative thresh-

olds of 0.5 and 0.35.

4.3. Data Augmentation

Data augmentation is critical for good performance on

the KITTI benchmark [30, 32, 2].

First, following SECOND [30], we create a lookup table

of the ground truth 3D boxes for all classes and the asso-

ciated point clouds that falls inside these 3D boxes. Then

for each sample, we randomly select 15, 0, 8 ground truth

samples for cars, pedestrians, and cyclists respectively and

place them into the current point cloud. We found these

settings to perform better than the proposed settings [30].

Next, all ground truth boxes are individually augmented.

Each box is rotated (uniformly drawn from [−π/20, π/20])

12701

Method Modality
Speed

(Hz)

mAP Car Pedestrian Cyclist

Mod. Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

MV3D [2] Lidar & Img. 2.8 N/A 86.02 76.90 68.49 N/A N/A N/A N/A N/A N/A

Cont-Fuse [15] Lidar & Img. 16.7 N/A 88.81 85.83 77.33 N/A N/A N/A N/A N/A N/A

Roarnet [25] Lidar & Img. 10 N/A 88.20 79.41 70.02 N/A N/A N/A N/A N/A N/A

AVOD-FPN [11] Lidar & Img. 10 64.11 88.53 83.79 77.90 58.75 51.05 47.54 68.09 57.48 50.77

F-PointNet [21] Lidar & Img. 5.9 65.39 88.70 84.00 75.33 58.09 50.22 47.20 75.38 61.96 54.68

HDNET [31] Lidar & Map 20 N/A 89.14 86.57 78.32 N/A N/A N/A N/A N/A N/A

PIXOR++ [31] Lidar 35 N/A 89.38 83.70 77.97 N/A N/A N/A N/A N/A N/A

VoxelNet [33] Lidar 4.4 58.25 89.35 79.26 77.39 46.13 40.74 38.11 66.70 54.76 50.55

SECOND [30] Lidar 20 60.56 88.07 79.37 77.95 55.10 46.27 44.76 73.67 56.04 48.78

PointPillars Lidar 62 66.19 88.35 86.10 79.83 58.66 50.23 47.19 79.14 62.25 56.00

Table 1. Results on the KITTI test BEV detection benchmark.

Method Modality
Speed

(Hz)

mAP Car Pedestrian Cyclist

Mod. Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

MV3D [2] Lidar & Img. 2.8 N/A 71.09 62.35 55.12 N/A N/A N/A N/A N/A N/A

Cont-Fuse [15] Lidar & Img. 16.7 N/A 82.54 66.22 64.04 N/A N/A N/A N/A N/A N/A

Roarnet [25] Lidar & Img. 10 N/A 83.71 73.04 59.16 N/A N/A N/A N/A N/A N/A

AVOD-FPN [11] Lidar & Img. 10 55.62 81.94 71.88 66.38 50.80 42.81 40.88 64.00 52.18 46.61

F-PointNet [21] Lidar & Img. 5.9 57.35 81.20 70.39 62.19 51.21 44.89 40.23 71.96 56.77 50.39

VoxelNet [33] Lidar 4.4 49.05 77.47 65.11 57.73 39.48 33.69 31.5 61.22 48.36 44.37

SECOND [30] Lidar 20 56.69 83.13 73.66 66.20 51.07 42.56 37.29 70.51 53.85 46.90

PointPillars Lidar 62 59.20 79.05 74.99 68.30 52.08 43.53 41.49 75.78 59.07 52.92

Table 2. Results on the KITTI test 3D detection benchmark.

and translated (x, y, and z independently drawn from

N (0, 0.25)) to further enrich the training set.

Finally, we perform two sets of global augmentations

that are jointly applied to the point cloud and all boxes.

First, we apply random mirroring flip along the x axis [32],

then a global rotation and scaling [33, 30]. Finally, we ap-

ply a global translation with x, y, z drawn from N (0, 0.2)
to simulate localization noise.

5. Results

Quantitative Analysis. All detection results are mea-

sured using the official KITTI evaluation detection metrics

which are: bird’s eye view (BEV), 3D, 2D, and average ori-

entation similarity (AOS). The 2D detection is done in the

image plane and average orientation similarity assesses the

average orientation (measured in BEV) similarity for 2D de-

tections. The KITTI dataset is stratified into easy, moderate,

and hard difficulties, and the official KITTI leaderboard is

ranked by performance on moderate.

As shown in Table 1 and Table 2, PointPillars outper-

forms all published methods with respect to mean average

precision (mAP)2. Compared to lidar-only methods, Point-

Pillars achieves better results across all classes and diffi-

culty strata except for the easy car stratum. It also outper-

forms fusion based methods on cars and cyclists.

While PointPillars predicts 3D oriented boxes, the BEV

2Val results were BEV AP of (87.7, 67.9, 66.8) and 3D AP of (77.4,

61.8, 64.9) on the moderate strata for cars, pedestrians, and cyclists.

and 3D metrics do not take orientation into account. Orien-

tation is evaluated using AOS [5], which requires projecting

the 3D box into the image, performing 2D detection match-

ing, and then assessing the orientation of these matches.

The performance of PointPillars on AOS significantly ex-

ceeds in all strata as compared to the only two 3D detection

methods [11, 30] that predict oriented boxes (Table 3). In

general, image only methods perform best on 2D detection

since the 3D projection of boxes into the image can result in

loose boxes depending on the 3D pose. Despite this, Point-

Pillars moderate cyclist AOS of 68.16 outperforms the best

image based method [29].

Qualitative Analysis. We provide qualitative results in

Figure 3 and 4. While we only train on lidar point clouds,

for ease of interpretation we visualize the 3D bounding box

predictions from the BEV and image perspective. Figure 3

shows our detection results, with tight oriented 3D bound-

ing boxes. The predictions for cars are particularly accu-

rate and common failure modes include false negatives on

difficult samples (partially occluded or faraway objects) or

false positives on similar classes (vans or trams). Detect-

ing pedestrians and cyclists is more challenging and leads

to some interesting failure modes. Pedestrians and cyclists

are commonly misclassified as each other (see Figure 4a

for a standard example and Figure 4d for the combination

of pedestrian and table classified as a cyclist). Addition-

ally, pedestrians are easily confused with narrow vertical

features of the environment such as poles or tree trunks (see

12702

Method Modality
Speed

(Hz)

mAOS Car Pedestrian Cyclist

Mod. Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

SubCNN [29] Img. 0.5 72.71 90.61 88.43 78.63 78.33 66.28 61.37 71.39 63.41 56.34

AVOD-FPN [11] Lidar & Img. 10 63.19 89.95 87.13 79.74 53.36 44.92 43.77 67.61 57.53 54.16

SECOND [30] Lidar 20 54.53 87.84 81.31 71.95 51.56 43.51 38.78 80.97 57.20 55.14

PointPillars Lidar 62 68.86 90.19 88.76 86.38 58.05 49.66 47.88 82.43 68.16 61.96

Table 3. Results on the KITTI test average orientation similarity (AOS) detection benchmark. SubCNN is the best performing image only

method, while AVOD-FPN, SECOND, and PointPillars are the only 3D object detectors that predict orientation.

Figure 4b). In some cases we correctly detect objects that

are missing in the ground truth annotations (see Figure 4c).

6. Realtime Inference

As indicated by our results (Table 1, Figure 1, and Fig-

ure 5), PointPillars represent a significant improvement in

terms of inference runtime. In this section, we break down

our runtime and consider the different design choices that

enabled this speedup. We focus on the car network, but the

pedestrian and bicycle network runs at a similar speed since

the smaller range cancels the effect of the backbone operat-

ing at lower strides. All runtimes are measured on a desktop

with an Intel i7 CPU and a 1080ti GPU.

The main inference steps are as follows. First, the point

cloud is loaded and filtered based on range and visibility in

the images (1.4 ms). Then, the points are organized in pil-

lars and decorated (2.7 ms). Next, the PointPillar tensor is

uploaded to the GPU (2.9ms), encoded (1.3ms), scattered

to the pseudo-image (0.1 ms), and processed by the back-

bone and detection heads (7.7ms). Finally NMS is applied

on the CPU (0.1ms) for a total runtime of 16.2 ms.

Encoding. The key design to enable this runtime is the

PointPilar encoding. For example, at 1.3ms it is 2 orders of

magnitude faster than the VoxelNet encoder (190ms) [33].

Recently, SECOND proposed a faster sparse version of the

VoxelNet encoder for a total network runtime of 50 ms.

They did not provide a runtime analysis, but since the rest

of their architecture is similar to ours, it suggests that the

encoder is still significantly slower; in their open source im-

plementation3 the encoder requires 48ms.

Slimmer Design. We found that using fewer parameters

did not affect detection performance. We reduced PyTorch

runtime by 2.5 ms by using a single PointNet in our en-

coder, instead of 2 sequential PointNets as in [33]. The first

block dimension was lowered to 64 to match the encoder

output size, which reduced the runtime by 4.5 ms. Finally,

we saved another 3.9 ms by cutting the output dimensions

of the upsampled feature layers by half to 128.

TensorRT. While all our experiments were performed in

PyTorch [20], the final GPU kernels for encoding, backbone

3https://github.com/traveller59/second.pytorch

and detection head were built using NVIDIA TensorRT,

which is a library for optimized GPU inference. Switch-

ing to TensorRT gave a 45.5% speedup from the PyTorch

pipeline which runs at 42.4 Hz.

The Need for Speed. As seen in Figure 5, PointPillars

can achieve 105 Hz with limited loss of accuracy. While it

could be argued that such runtime is excessive since a lidar

typically operates at 20Hz, there are two key things to keep

in mind. First, due to an artifact of KITTI ground truth an-

notations, only the ∼ 10% of lidar points which project into

the front image are utilized. However, an operational AV

needs to view the full environment and process the complete

point cloud, significantly increasing runtime. Second, tim-

ing measurements in the literature are typically done on a

high-power desktop GPU. However, an operational AV may

instead use embedded GPUs or embedded compute which

will likely have lower throughput.

7. Ablation Studies

7.1. Spatial Resolution

Varying the size of the spatial binning provides a trade-

off between speed and accuracy. Smaller pillars allow finer

localization and lead to more features, while larger pillars

are faster due to fewer non-empty pillars (speeding up the

encoder) and a smaller pseudo-image (speeding up the CNN

backbone). Figure 5 shows that the larger bin sizes lead

to faster networks; at 0.282 we achieve 105 Hz at similar

performance to previous methods. The decrease in perfor-

mance was mainly due to the pedestrian and cyclist classes,

while car performance was stable across the bin sizes.

7.2. Per Box Data Augmentation

Both VoxelNet [33] and SECOND [30] recommend ex-

tensive per box augmentation. However, in our experi-

ments, minimal box augmentation worked better. In par-

ticular, the detection performance for pedestrians degraded

significantly with more box augmentation. Our hypothesis

is that the introduction of ground truth sampling mitigates

the need for extensive per box augmentation.

7.3. Point Decorations

The encoder takes the raw lidar returns: x, y, z, and re-

flectance, r, and adds deltas from pillar point cluster center

12703

0 20 40 60 80 100
Inference speed (Hz)

62
64
66
68
70
72
74

m
ea

n
Av

er
ag

e
Pr

ec
isi

on

VoxelNet

Frustum PointNet
SECOND

Complex-YOLO

PointPillars

Figure 5. BEV detection performance (mAP) vs speed (Hz) on

the KITTI [5] val set across pedestrians, bicycles and cars. Blue

circles indicate lidar only methods, red squares indicate methods

that use lidar & vision. Different operating points were achieved

by using pillar grid sizes in {0.122, 0.162, 0.22, 0.242, 0.282}m2

and max-pillars of 16000, 12000, 12000, 8000, 8000 respectively.

(∆xc, ∆yc, ∆zc) (as was done in VoxelNet [33]) and the

distance from the pillar center (∆xp, ∆yp) (our contribu-

tion). The pillar offsets (∆xp, ∆yp) encode the point lo-

cation in the local coordinate system of each pillar. They

are independent of the other points and thus standardize the

local context of the points in a manner that is complemen-

tary to the 2D convolutions in x and y. We did not include

the z pillar offset since this is a constant offset for all the

points. While the cluster offsets (∆xc, ∆yc, ∆zc) provide

another way to standardize the local context of the points, it

requires calculating a summary statistic and hence creates a

dependency between the points. Data augmentation and the

subsampling of points in a pillar changes the cluster center,

which leads to the higher variance when training only with

the cluster offsets and not the pillar offsets. The strength of

our decoration choice is shown in Table 4.

7.4. Encoding

To assess the impact of the proposed PointPillar encod-

ing in isolation, we implemented several encoders in the

official codebase of SECOND [30]. For details on each en-

coding, we refer to the original papers.

As shown in Table 5, learning the feature encoding is

strictly superior to fixed encoders across all resolutions.

This is expected as most successful deep learning archi-

tectures are trained end-to-end. Further, the differences in-

crease with larger bin sizes where the lack of expressive

power of the fixed encoders are accentuated due to a larger

point cloud in each pillar. Among the learned encoders Vox-

elNet is stronger than PointPillars. However, when the com-

parison is made for a similar inference time, it is clear that

PointPillars offers a better operating point (Figure 5).

There are a few curious aspects of Table 5. First, despite

notes in the original papers that their encoder only works on

cars, we found that the MV3D [2] and PIXOR [32] encoders

can learn pedestrians and cyclists quite well. Second, our

implementations beat the respective published results by a

x,y, z r xc, yc, zc xp, yp BEV mAP ∆ mAP

X 66.6 -6.0

X X 70.5 -2.1

X X X 70.4 -2.2

X X X 71.4 -1.2

X X X X 72.6 0.0

Table 4. Ablation study for encoder point decorations. The lidar

sensor outputs the spatial location, x, y, z, and reflectance r, of

each lidar return. This can be supplemented with the cluster center

offset (∆xc, ∆yc, ∆zc) or pillar center offset (∆xp, ∆yp). The

best detection performance uses all this information.

Encoder Type 0.162 0.202 0.242 0.282

MV3D [2] Fixed 72.8 71.0 70.8 67.6

C. Yolo [26] Fixed 72.0 72.0 70.6 66.9

PIXOR [32] Fixed 72.9 71.3 69.9 65.6

VoxelNet [33] Learn 74.4 74.0 72.9 71.9

PointPillars Learn 73.7 72.6 72.9 72.0

Table 5. Encoder performance evaluation. To fairly compare en-

coders, the same network architecture and training procedure was

used and only the encoder and xy resolution were changed be-

tween experiments. Performance is measured as BEV mAP on

KITTI val. Learned encoders clearly beat fixed encoders, espe-

cially at larger resolutions.

large margin (1− 10 mAP). While this is not a direct com-

parison since we only used the respective encoders and not

the full network architectures, the performance difference is

noteworthy. We see several potential reasons. For VoxelNet

and SECOND we suspect the boost in performance comes

from improved data augmentation hyperparameters as dis-

cussed in Section 7.2. Among the fixed encoders, roughly

half the performance increase can be explained by the intro-

duction of ground truth database sampling [30], which we

found to boost the mAP by around 3% mAP. The remaining

differences are likely due to a combination of multiple hy-

perparameters including network design (number of layers,

type of layers, whether to use a feature pyramid); anchor

box design (or lack thereof [32]); localization loss with re-

spect to 3D and angle; classification loss; optimizer choices

(SGD vs Adam, batch size); and more. However, a more

careful study is needed to isolate each cause and effect.

8. Conclusion

In this paper, we introduce PointPillars, a novel deep net-

work and encoder that can be trained end-to-end on lidar

point clouds. We show that on the KITTI challenge, Point-

Pillars dominates all existing methods by offering higher

detection performance (BEV and 3D mAP) at a faster

speed. Our results suggests that PointPillars offers the best

architecture so far for 3D object detection from lidar.

12704

References

[1] X. Chen, K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma, S. Fi-

dler, and R. Urtasun. 3d object proposals for accurate object

class detection. In NIPS, 2015.

[2] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia. Multi-view 3d

object detection network for autonomous driving. In CVPR,

2017.

[3] M. Engelcke, D. Rao, D. Z. Wang, C. H. Tong, and I. Posner.

Vote3deep: Fast object detection in 3d point clouds using

efficient convolutional neural networks. In ICRA, 2017.

[4] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The pascal visual object classes (VOC)

challenge. International Journal of Computer Vision, 2010.

[5] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for au-

tonomous driving? the KITTI vision benchmark suite. In

CVPR, 2012.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014.

[7] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask R-

CNN. In ICCV, 2017.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In ICCV, 2015.

[9] M. Himmelsbach, A. Mueller, T. Lüttel, and H.-J. Wünsche.

Lidar-based 3d object perception. In Proceedings of 1st

international workshop on cognition for technical systems,

2008.

[10] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

CoRR, abs/1502.03167, 2015.

[11] J. Ku, M. Mozifian, J. Lee, A. Harakeh, and S. Waslander.

Joint 3d proposal generation and object detection from view

aggregation. In IROS, 2018.

[12] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell,

G. Fiore, L. Fletcher, E. Frazzoli, A. Huang, S. Karaman,

et al. A perception-driven autonomous urban vehicle. Jour-

nal of Field Robotics, 2008.

[13] B. Li. 3d fully convolutional network for vehicle detection

in point cloud. In IROS, 2017.

[14] B. Li, T. Zhang, and T. Xia. Vehicle detection from 3d lidar

using fully convolutional network. In RSS, 2016.

[15] M. Liang, B. Yang, S. Wang, and R. Urtasun. Deep contin-

uous fusion for multi-sensor 3d object detection. In ECCV,

2018.

[16] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal

loss for dense object detection. PAMI, 2018.

[17] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Com-

mon objects in context. In ECCV, 2014.

[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y.

Fu, and A. C. Berg. SSD: Single shot multibox detector. In

ECCV, 2016.

[19] V. Nair and G. E. Hinton. Rectified linear units improve re-

stricted boltzmann machines. In ICML, 2010.

[20] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. In NIPS-W, 2017.

[21] C. R. Qi, W. Liu, C. Wu, H. Su, and L. J. Guibas. Frus-

tum pointnets for 3d object detection from RGB-D data. In

CVPR, 2018.

[22] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation.

In CVPR, 2017.

[23] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep

hierarchical feature learning on point sets in a metric space.

In NIPS, 2017.

[24] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In NIPS, 2015.

[25] K. Shin, Y. Kwon, and M. Tomizuka. Roarnet: A robust 3d

object detection based on region approximation refinement.

arXiv:1811.03818, 2018.

[26] M. Simon, S. Milz, K. Amende, and H.-M. Gross. Complex-

YOLO: Real-time 3d object detection on point clouds.

arXiv:1803.06199, 2018.

[27] S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d: A rgb-

d scene understanding benchmark suite. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 567–576, 2015.

[28] Y. Wang, W.-L. Chao, D. Garg, B. Hariharan, M. Camp-

bell, and K. Q. Weinberger. Pseudo-lidar from visual depth

estimation: Bridging the gap in 3d object detection for au-

tonomous driving. In CVPR, 2019.

[29] Y. Xiang, W. Choi, Y. Lin, and S. Savarese. Subcategory-

aware convolutional neural networks for object proposals

and detection. In IEEE Winter Conference on Applications

of Computer Vision (WACV), 2017.

[30] Y. Yan, Y. Mao, and B. Li. SECOND: Sparsely embedded

convolutional detection. Sensors, 18(10), 2018.

[31] B. Yang, M. Liang, and R. Urtasun. HDNET: Exploiting HD

maps for 3d object detection. In CoRL, 2018.

[32] B. Yang, W. Luo, and R. Urtasun. PIXOR: Real-time 3d

object detection from point clouds. In CVPR, 2018.

[33] Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning for

point cloud based 3d object detection. In CVPR, 2018.

12705

