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Figure 1: Image translation tasks using (a) cross-domain models, (b) StarGAN, and (c) the proposed collaborative GAN

(CollaGAN). Cross-domain model needs large number of generators to handle multi-class data. StarGAN and CollaGAN

use a single generator with one input and multiple inputs, respectively, to synthesize the target domain image.

Abstract

In many applications requiring multiple inputs to obtain

a desired output, if any of the input data is missing, it of-

ten introduces large amounts of bias. Although many tech-

niques have been developed for imputing missing data, the

image imputation is still difficult due to complicated na-

ture of natural images. To address this problem, here we

proposed a novel framework for missing image data im-

putation, called Collaborative Generative Adversarial Net-

work (CollaGAN). CollaGAN convert the image imputa-

tion problem to a multi-domain images-to-image transla-

tion task so that a single generator and discriminator net-

work can successfully estimate the missing data using the

remaining clean data set. We demonstrate that CollaGAN

produces the images with a higher visual quality compared

to the existing competing approaches in various image im-

putation tasks.

1. Introduction

In many image processing and computer vision applica-

tions, multiple set of input images are required to generate

the desired output. For example, in brain magnetic reso-

nance imaging (MRI), MR images with T1, T2, or FLAIR

(FLuid-Attenuated Inversion Recovery) contrast are all re-

quired for accurate diagnosis and segmentation of cancer

margin [6]. In generating a 3-D volume from multiple view

camera images [5], most algorithms require the pre-defined

set of view angles. Unfortunately, the complete set of input
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data are often difficult to obtain due to the acquisition cost

and time, (systematic) errors in the data set, etc. For exam-

ple, in synthetic MR contrast generation using the Magnetic

Resonance Image Compilation (MAGiC, GE Healthcare)

sequence, it is often reported that there exists a systematic

error in synthetic T2-FLAIR contrast images, which leads

to erroneous diagnosis [30]. Missing data can also cause

substantial biases, making errorrs in data processing and

anlysis and reducing the statistical efficiency [22].

Rather than acquiring all the datasets again in this unex-

pected situation, which is often not feasible in clinical en-

vironment, it is often necessary to replace the missing data

with substituted values. This process is often referred to

as imputation. Once all missing values have been imputed,

the data set can be used as an input for standard techniques

designed for the complete data set.

There are several standard methods to impute missing

data based on the modeling assumption for the whole set

such as mean imputation, regression imputation, stochastic

imputation, etc [2, 9]. Unfortunately, these standard algo-

rithms have limitations for high-dimensional data such as

images, since the image imputation requires knowledge of

high-dimensional image data manifold.

Similar technical issues exist in image-to-image trans-

lation problems, whose goal is to change a particular as-

pect of a given image to another. The tasks such as super-

resolution, denoising, deblurring, style transfer, semantic

segmentation, depth prediction, etc can be treated as map-

ping an image from one domain to a corresponding im-

age in another domain [10, 3, 7, 8]. Here, each domain

has a different aspect such as resolution, facial expression,

angle of light, etc, and one needs to know the intrinsic

manifold structure of the image data set to translate be-

tween the domains. Recently, these tasks have been sig-

nificantly improved thanks to the generative adversarial net-

works (GANs) [11]. Specifically, CycleGAN [35] or Disco-

GAN [18] have been the main workhorse to transfer image

between two domains [17, 21]. These approaches are, how-

ever, ineffective in generalizing to multiple domain image

transfer, since N (N -1) number of generators are required

for N -domain image transfer (Fig. 1 (a)). To generalize the

idea for multi-domain translation, Choi et al [4] proposed

a so-called StarGAN which can learn translation mappings

among multiple domains by single generator (Fig. 1 (b)).

Similar multi-domain transfer network have been proposed

recently [33].

These GAN-based image transfer techniques are closely

related to image data imputation, since the image transla-

tion can be considered as a process of estimating the miss-

ing image database by modeling the image manifold struc-

ture. However, there are fundamental differences between

image imputation and image translation. For example, Cy-

cleGAN and StarGAN are interested in transferring one im-

age to another as shown in Fig. 1 (a)(b) without considering

the remaining domain data set. However, in image imputa-

tion problems, the missing data occurs infrequently, and the

goal is to estimate the missing data by utilizing the other

clean data set. Therefore, an image imputation problem can

be correctly described as in Fig. 1(c), where one genera-

tor can estimate the missing data using the remaining clean

data set. Since the missing data domain is not difficult to es-

timate a priori, the imputation algorithm should be designed

such that one algorithm can estimate the missing data in any

domain by exploiting the data for the rest of the domains.

The proposed image imputation technique called Collab-

orative Generative Adversarial Network (CollaGAN) offers

many advantages over existing methods:

• The underlying image manifold can be learned more

synergistically from the multiple input data set sharing

the same manifold structure, rather than from a single

input. Therefore, the estimation of missing data using

CollaGAN is more accurate.

• CollaGAN still retains the one-generator architecture

similar to StarGAN, which is more memory-efficient

compared to CycleGAN.

We demonstrate the proposed algorithm shows the best per-

formance among the state-of-the art algorithms for various

image imputation tasks.

2. Related Work

2.1. Generative Adversarial Network

Typical GAN framework [11] consists of two neural net-

works: the generator G and the discriminator D. While

the discriminator tries to find the features to distinguish be-

tween fake/real samples during the train process, the gener-

ator learns to eliminate/synthesize the features which the

discriminator use to judge fake/real. Thus, GANs could

generate more realistic samples which cannot be distin-

guished by the discriminator between real and fake. GANs

have shown remarkable results in various computer vi-

sion tasks such as image generation, image translation,

etc [16, 21, 18].

2.2. Imagetoimage translation

Unlike the original GAN, Conditional GAN (Co-

GAN) [26] controls the output by adding some information

labels as an additional parameter to the generator. Here,

instead of generating a generic sample from an unknown

noise distribution, the generator learns to produce a fake

sample with a specific condition or characteristics (such as

a label associated with an image or a more detailed tag). A

successful application of conditional GAN is for the image-

to-image translation, such as pix2pix [17] for paired data,

and CycleGAN for unpaired data [23, 35].
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Figure 2: Flow of the proposed method. D has two branches: domain classification Dclsf and source classficiation Dgan

(real/fake). First, Dclsf is only trained by (1) the loss calculated from real samples (left). Then G reconstructs the target

domain image using the set of input images (middle). For the cycle consistency, the generated fake image re-entered to the

G with inputs images and G produces the multiple reconstructed outputs in original domains. Here, Dclsf and Dgan are

simultaneously trained by the loss from only (1) real images and both (1) real & (2) fake images, respectively (right).

CycleGAN [35] and DiscoGAN [18] attempt to preserve

key attributes between the input and the output images by

utilizing a cycle consistency loss. However, these frame-

works are only able to learn the relationships between two

different domains at a time. These approaches have scal-

ability limitations when dealing with multi-domains, since

each domain pair needs a separate generator-pair and total

N (N -1) number of generators are required to handle the

N -distinct domains.

StarGAN [4] and Radial GAN [33] are recent frame-

works that deal with multiple domains using a single gen-

erator. For example, in StarGAN [4], the depth-wise con-

catenation from input image and the mask vector repre-

senting the target domain helps to map the input to recon-

structed image in the target domain. Here, the discriminator

should be designed to play another role for domain classifi-

cation. Specifically, the discriminator decides that not only

the sample is real or fake, but also the class of the sample.

3. Theory

Here, we explain our Collaborative GAN framework to

handle multiple inputs to generate more realistic and more

feasible output for image imputation. Compared to Star-

GAN, which handles single-input and single-output, the

multiple-inputs from multiple domains are processed using

the proposed method.

3.1. Image imputation using multiple inputs

For ease of explanation, we assume that there are four

types (N = 4) of domains: a, b, c, and d. To handle the

multiple-inputs using a single generator, we train the gener-

ator to synthesize the output image in the target domain, x̂a,

via a collaborative mapping from the set of the other types

of multiple images, {xa}
C = {xb, xc, xd}, where the su-

perscript C denotes the complementary set. This mapping

is formally described by

x̂κ = G
(

{xκ}
C ;κ

)

(1)

where κ ∈ {a, b, c, d} denotes the target domain index that

guides to generate the output for the proper target domain,

κ. As there are N number of combinations for multiple-

input and single-output combination, we randomly choose

these combination during the training so that the generator

learns the various mappings to the multiple target domains.

3.2. Network losses

Multiple cycle consistency loss One of the key concepts

for the proposed method is the cycle consistency for mul-

tiple inputs. Since the inputs are multiple images, the cy-

cle loss should be redefined. Suppose that the output from

the forward generator G is x̂a. Then, we could generate

N − 1 number of new combinations as the other inputs for

the backward flow of the generator (Fig. 2 middle). For ex-

ample, when N = 4, there are three combinations of multi-

input and single-output so that we can reconstruct the three

images of original domains using backward flow of the gen-

erator as:

x̃b|a = G({x̂a, xc, xd}; b)

x̃c|a = G({x̂a, xb, xd}; c)

x̃d|a = G({x̂a, xb, xc}; d)

Then, the associated multiple cycle consistency loss can be

defined as following:

Lmcc,a = ||xb − x̃b|a||1 + ||xc − x̃c|a||1 + ||xd − x̃d|a||1
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where ||·||1 is the l1-norm. In general, the cycle consistency

loss for the forward generator x̂κ can be written by

Lmcc,κ =
∑

κ′ 6=κ

||xκ′ − x̃κ′|κ||1 (2)

where

x̃κ′|κ = G
(

{x̂κ}
C ;κ′

)

. (3)

Discriminator Loss As mentioned before, the discrimina-

tor has two roles: one is to classify the source which is real

or fake, and the other is to classify the type of domain which

is class a, b, c or d. Therefore, the discriminator loss con-

sists of two parts: adversarial loss and domain classification

loss. As shown in Fig. 2, this can be realized using a dis-

criminator with two paths Dgan and Dclsf that share the

same neural network weights except the last layers.

Specifically, the adversarial loss is necessary to make the

generated images as real as possible. The regular GAN

loss might lead to the vanishing gradients problem during

the learning process [24, 1]. To overcome such problem

and improve the robustness of the training, the adversarial

loss of Least Square GAN [24] was utilized instead of the

original GAN loss. In particular for the optimization of the

discriminatorDgan, the following loss is minimized:

Ldsc
gan(Dgan) = Exκ

[(Dgan(xκ)−1)2]+Ex̃
κ|κ

[(Dgan(x̃κ|κ))
2],

whereas the generator is optimized by minimizing the fol-

lowing loss:

Lgen
gan(G) = Ex̃

κ|κ
[(Dgan(x̃κ|κ)− 1)2]

where x̃κ|κ is defined in (3).

Next, the domain classification loss consists of two parts:

Lreal
clsf and Lfake

clsf . They are the cross entropy loss for domain

classification from the real images and the fake image, re-

spectively. Recall that the goal of training G is to generate

the image properly classified to the target domain. Thus, we

first need a best classifier Dclsf that should only be trained

with the real data to guide the generator properly. Accord-

ingly, we first minimize the loss Lreal
clsf to train the classifier

Dclsf , then Lfake
clsf is minimized by training G with fixing

Dclsf so that the generator can be trained to generate sam-

ples that can be classified correctly.

Specifically, to optimize the Dclsf , the following Lreal
clsf

should be minimizied with respect to Dclsf :

Lreal
clsf (Dclsf ) = Exκ

[− log(Dclsf (κ;xκ))] (4)

where Dclsf (κ;xκ) can be interpreted as the probability to

correctly classify the real input xκ as the class κ. On the

other hand, the generator G should be trained to generate

fake samples which are properly classified by the Dclsf .

Thus, the following loss should be minimized with respect

to G:

Lfake
clsf (G) = Ex̂

κ|κ
[− log(Dclsf (κ; x̂κ|κ))] (5)

Structural Similarity Index Loss Structural Similarity In-

dex (SSIM) is one of the state-of-the-art metrics to measure

the image quality [32]. The l2 loss, which is widely used for

the image restoration tasks, has been reported to cause the

blurring artifacts on the results [21, 25, 34]. SSIM is one of

the perceptual metrics and it is also differentiable, so it can

be backpropagated [34]. The SSIM for pixel p is defined as

SSIM(p) =
2µXµY + C1

µ2
X + µ2

Y + C1
·

2σXY + C2

σ2
X + σ2

Y + C2
(6)

where µX is an average of X , σ2
X is a variance of X and

σXX∗ is a covariance of X and X∗. There are two variables

to stabilize the division such as C1 = (k1L)
2 and C2 =

(k2L)
2. L is a dynamic range of the pixel intensities. k1

and k2 are constants by default k1 = 0.01 and k2 = 0.03.

Since the SSIM is defined between 0 and 1, the loss function

for SSIM can be written by:

LSSIM(X,Y ) = − log





1

2|P |

∑

p∈P (X,Y )

(1 + SSIM(p))



 (7)

where P denotes the pixel location set and |P | is its cardi-

nality. The SSIM loss was applied as an additional multiple

cycle consistency loss as follows:

Lmcc−SSIM,κ =
∑

κ′ 6=κ

LSSIM

(

xκ′ , x̃κ′|κ

)

. (8)

3.3. Mask vector

To use the single generator, we need to add the target la-

bel as a form of mask vector to guide the generator. The

mask vector is a binary matrix which has same dimension

with the input images to be easily concatenated. The mask

vector has N class number of channel dimensions to repre-

sent the target domain as one-hot vector along the channel

dimension. This is the simplified version of mask vector

which was originally introduced in StarGAN [4].

4. Method

4.1. Datasets

MR contrast synthesis Total 280 axis brain images were

scanned by multi-dynamic multi-echo sequence and the ad-

ditional T2 FLAIR (FLuid-Attenuated Inversion Recovery)

sequence from 10 subjects. There are four types of MR con-

trast images in the dataset: T1-FLAIR (T1F), T2-weighted

(T2w), T2-FLAIR (T2F), and T2-FLAIR* (T2F*). The
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Figure 3: MR contrast imputation results. The generated images (right) were reconstructed from the other contrast inputs

(left). The yellow and green arrows point out the remarkable parts of the results. For CycleGAN and StarGAN, the T2-

FLAIR* contrast was used as an input for the T1-FLAIR/ T2-weighted/ T2-FLAIR contrast imputation, and the T1-FLAIR

contrast was used as an input for the T2-FLAIR* contrast imputation. The image to impute is marked as the question mark.

The average values of NMSE / SSIM for the testset are displayed on each result.

first three contrasts were acquired from MAGnetic reso-

nance image Compilation (MAGiC, GE Healthcare) and

T2-FLAIR* was acquired by the addtional scan with dif-

ferent MR scan parameter of the third contrast (T2F). The

details of MR acquisition parameters are available in Sup-

plementary material.

CMU Multi-PIE For the illumination translation task, the

subset of Carnegie Mellon Univesity Multi-Pose Illumina-

tion and Expression face database [12] was used. There

were 250 participants in the first session and the frontal

face of neutral expression were selected with the following

five illumination conditions: -90◦(right), -45◦, 0◦(front),

45◦and 90◦(left). The images were cropped by 240×240

where the faces are centered as shown in Fig. 4.

RaFD The Radboud Faces Database (RaFD) [20] contains

eight different facial expressions collected from the 67 par-

ticipants; neutral, angry, contemptuous, disgusted, fearful,

happy, sad, and surprised. Also, there are three different

gaze directions and therefore total 1,608 images were di-

vided by subjects for train, validation and test set. We crop

the images to 640×640 and resize them to 128×128.

4.2. Network Implementation

The proposed method consists of two networks, the gen-

erator and the discriminator (Fig. 2). To achieve the best

performance for each task, we redesigned the generators

and discriminator to fit for the property of each task, while

the general network architecture are similar.

Generators

The generators are based on the U-net [27] structure. U-

net consists of the encoder/decoder parts and the each

parts between encoder/decoder are connected by contract-

ing paths [27]. The instance normalization [31] and Leaky-

ReLU [13] was used instead of batch normalization and

ReLU, respectively. We also redesigned the architecture of

the networks to fit for each task as described in the follow-

ings.

MR contrast translation There are various MR contrasts

such as T1 weight contrast, T2 weight contrast, etc. The

specific MR contrast scan is determined by the MRI scan

parameters such as repetition time (TR), echo time (TE)

and so on. The pixel intensities of the MR contrast im-

age are decided based on the physical property of the tis-

sues called MR parameters of the tissues, such as T1, T2,

proton density, etc. The MR parameter is the voxel-wise

property. This means that for the convolutional neural net-

work, the pixel-by-pixel processing is just as important as

processing with the information from neighborhood and/or

a large FOV. Thus, instead of using single convolution, the

generator uses two convolution branches with 1x1 and 3x3
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Figure 4: Illumination imputation results at (-90◦, -45◦, 45◦and 90◦). The imputed images (right) were reconstructed from

the inputs with multiple illuminations (left). The yellow arrows shows remarkable parts. The frontal illumination (0◦) image

was given as the input of CycleGAN and StarGAN. The image to impute is marked as the question mark. The average values

of NMSE / SSIM for the testset are displayed on each result.

filters to handle the multi-scale feature information. The

two branches of the convolutions are concatenated similar

to the inception network [29].

Illumination translation For the illumination translation

task, the original U-net structure with instance normaliza-

tion [31] was used instead of batch normalization.

Facial expression translation For the facial expression

translation task, the inputs are multiple facial images with

various facial expressions. Since there exists the head

movements of the subjects between the facial expressions,

the images are not strictly aligned pixel-wise manner. If we

use the original U-net for the facial expresion images-to-

image task, the generator show poor performance because

the informations from the multiple facial expressions are

mixed up in the very early stage of the network. From the

intuition, the features from the facial expressions should

be mixed up in the middle stage of the generator where

the features are calculated from the large FOV or already

downsampled by pooling layers. Thus, the generators are

redesigned with eight branches of encoders for each eight

facial expressions and they are concatenated after the en-

coding process at the middle stage of the generator. The

structure of the decoder is similar to decoder parts of U-net

except for the use of the residual blocks [14] to add more

convolutional layers. The more details about the generator

are available in Supplementary material.

Discriminator

The discriminators commonly composed of a series of con-

volution layer and Leaky-ReLU [13]. As shown in Fig. 2,

the discriminator has two output headers: one is the classi-

fication header for real or fake and the other is classification

header for the domain. PatchGAN [17, 35] was utilized to

classify whether local image patches are real or fake. The

dropout [15, 28] was very effective to prevent the overfit-

ting of the discriminator. Exceptionally, the discriminator

of MR contrast translation has branches for multi-scale pro-

cessing. The details of the specific discriminator architec-

ture is available in Supplementary Material.

4.3. Network Training

All the models were optimized using Adam [19] with a

learning rate of 0.00001, β1 = 0.9 and β2 = 0.999. As

mentioned before, the performance of the classfier should

be associated only to real labels which means it should be

trained only using the real data. Thus, we first trained the

classifier on real images with its corresponding labels for

the first 10 epochs, and then we trained the generator and

the discriminator simultaneously. Training takes about six

hours, half a day, and one day for the MR contrast trans-

lation task, illumination translation, and facial expression

translation task, respectively, using a single NVIDIA GTX

1080 GPU.

For the illumination translation task, YCbCr color cod-

ing was used instead of RGB color coding. YCbCr coding

consists of the Y-luminance and CbCr-color space. There

are five different illumination images. They almost share

the CbCr codings and the only difference is Y-luminance

channel. Thus, the only Y-luminance channels were pro-
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Figure 5: Four facial expression imputation results. The generated images (right) were reconstructed from the inputs with the

multiple facial expressions (left). The image of neutral facial expression was used as an input in CycleGAN and StarGAN.

The average values of NMSE / SSIM are displayed on each result. The results for the rest of domains are included in

Supplementary material.

cessed for the illumination translation tasks and then the

reconstructed images coverted to RGB coded images. We

used RGB channels for facial expression translation task,

and the MR contrast dataset consists of single-channel im-

ages.

5. Experimental Results
For all three image imputation tasks, each datasets were

divided into the train, validation and test sets by the sub-

jects. Thus, all our experiments were performed using the

unseen images during the training phase. We compared the

performance of the proposed method with CycleGAN [35]

and StarGAN [4] which are the representative models for

image translation tasks.

5.1. Results of MR contrast imputation

First, we trained the models on MR contrast dataset to

learn the task of synthesizing the other contrasts. In fact,

this was the original motivation of this study that was in-

spired by the clinical needs. There are four different MR

contrasts in the dataset and the generator learns the map-

ping from one contrast to the other contrast.

As shown in Fig. 3, the proposed method reconstructed

the four different MR contrasts, which are very similar to

the targets, while StarGAN shows poor results. For the

quantitative evaluation, a normalized mean squared error

(NMSE) and SSIM were calculated between the reconstruc-

tion and the target. Compared to the results of CycleGAN

and StarGAN, the four contrast MR images were recon-

structed with minimum errors using the proposed method.

Since there are so many variables that affect the pixel inten-

sity of MR images, it is necessary to use the pixels from at

least three different contrast to accurately estimate the in-

tensity of the other contrast. Thus, there exists a limitation

on CycleGAN or StarGAN, since they uses a single input

contrast.

For example, consider the reconstruction of T2 weighted

image from the T2 FLAIR* input in Fig. 3. The cere-

brospinal fluid (CSF) in the T2-weighted image should be

bright, while in the T2-FLAIR* it should be dark (yellow

and green arrows in Fig. 3). When StarGAN tries to gener-

ate the T2 weighted image from the T2 FLAIR*, this should

be difficult because the input pixels are close to zero. Star-

GAN somehow reconstructed the CSF pixels near the gray

matter (yellow arrow in Fig. 3) with the help of the neigh-

borhood, but the larger CSF area (green arrow in Fig. 3)

cannot be reconstructed because the help of neighborhood

pixels is limited. The proposed method, however, utilized

the combination of the inputs to accurately reconstruct ev-

ery pixel.

5.2. Results of illumination imputation

We trained CycleGAN, StarGAN and the proposed

method using CMU Multi-PIE dataset for the illumination

imputation task. Given five different illumination direc-

tions, the input domain for CycleGAN and StarGAN was

fixed as the frontal illumination (0◦).

As shown in Fig. 4, the proposed method clearly gen-

erates the natural illuminations while properly maintaining

the color, brightness balance, and textures of the facial im-

ages. Compared to the results of CycleGAN and StarGAN,

CollaGAN produces the natural illuminations with mini-

mum errors (NMSE/SSIM in Fig. 4). The CycleGAN and

StarGAN also generate the four different illumination im-

ages from the frontal illumination input. In the result of Cy-

cleGAN, however, we can see the emphasis of the red chan-

nel and the image looks reddish overall. Also the resulting
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Figure 6: Comparison of incomplete and complete input data set for image imputation results by CollaGAN. For the incom-

plete input cases, the generated images (right) were reconstructed from the inputs with multiple facial expressions (left) with

one substituted facial expression from another person (red box). The image to impute is marked as the question mark.

image looks like a graphic model or a drawing, rather than a

photo. The resulting image of StarGAN was only adjusted

to the left and right of the illumination smoothly, but did

not reflect detailed illumination such as the structure of the

face. And unnatural lighting changes were observed on the

result of StarGAN.

The proposed method shows the most natural lighting

images among the three algorithms. While CycleGAN and

StarGAN had simply adjusted the brightness of the left and

right sides of the images, the shadow caused by the shape

of the nose, the cheek and the jaw is expressed naturally in

the proposed method (Fig. 4 yellow arrows).

5.3. Results of facial expression imputation

The eight facial expressions in RaFD were used to train

the proposed model for facial expression imputation. The

input domain for CycleGAN and StarGAN was defined as

a neutral expression among the eight different facial ex-

pressions. Different facial expressions were reconstructed

naturally using the proposed method as shown in Fig. 5.

The CollaGAN produces the most natural images with min-

imum NMSE and best SSIM scores compared to the Cycle-

GAN and StarGAN as you can see in Fig. 5. Compared with

the results of StarGAN, which uses only the single input, the

proposed method utilizes as much information as possible

from the combinations of facial expressions. As shown in

the generated results of CycleGAN and StarGAN (Fig. 5),

the generated results of ‘sad’ were very similar to the gener-

ated image of ‘neutral’ which was the input of them, while

the proposed method expressed the ‘sad’ very well. With

a help of multiple cycle consistency, the proposed method

clearly generates the natural facial expressions while pre-

serving the identity correctly.

5.4. Effect of incomplete input set

In order to investigate the robustness of the proposed

method, we demonstrated CollaGAN results from incom-

plete input set. If there are two missing facial expressions

(eg. ‘happy’ and ‘neutral’) and one is interested in recon-

struct the missing image (eg. ‘happy’), one can substitute

one image (eg.‘neutral’) from the other subject as one of

the input for the CollaGAN. As shown in Fig. 6, the gen-

erated image from incomplete input set with the substitute

data from others shows similar results compared to the com-

plete input set. CollaGAN utilized the other subject’s facial

information (eg. ‘neutral’) to impute the missing facial ex-

pression (eg. ‘happy’).

6. Conclusion
In this paper, we presented a novel CollaGAN architec-

ture for missing image data imputation by synergistically

combining the information from the available data with the

help of a single generator and discriminator. We showed

that the proposed method produces images of higher visual

quality compared to the existing methods. Therefore, we

believe that CollaGAN is a promising algorithm for miss-

ing image data imputation in many real world applications.
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