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Abstract

We propose a novel algorithm for monocular depth esti-

mation using relative depth maps. First, using a convolu-

tional neural network, we estimate relative depths between

pairs of regions, as well as ordinary depths, at various

scales. Second, we restore relative depth maps from selec-

tively estimated data based on the rank-1 property of pair-

wise comparison matrices. Third, we decompose ordinary

and relative depth maps into components and recombine

them optimally to reconstruct a final depth map. Experi-

mental results show that the proposed algorithm provides

the state-of-art depth estimation performance.

1. Introduction

Depth estimation is a fundamental problem of computer

vision to estimate depth information of a scene from one or

more images. Estimated depths give important geometric

clues in vision applications, such as image synthesis [8,44],

scene recognition [50, 56], pose estimation [60, 68], and

robotics [4, 34]. There are various techniques for infer-

ring depths from multi-view images [48, 55] or video se-

quences [30, 62], which provide promising results. How-

ever, when only a single image is available, the problem is

challenging since it is ill-posed [12].

Early methods for monocular depth estimation made

assumptions about scenes: a space composed of box

blocks [16], a scene consisting of planar regions [54], a typ-

ical indoor room with a floor and walls [9,32], and the dark

channel prior [17]. However, these methods become unreli-

able when the assumptions are invalid.

In recent years, monocular depth estimation methods

based on convolutional neural networks (CNNs) [6, 11–

13, 31, 33, 51] have been proposed, with the advance in

computing hardware and the availability of abundant train-

ing data [14, 57], improving the performance dramatically.

Some methods [20,36,39,65,66] combine CNNs with con-

ditional random field (CRF) models to yield more edge-

conforming depth maps. Also, attempts have been made

to estimate depths jointly with closely related data [27, 47,

61, 64, 69], such as surface normal and optical flow.

Input image

Optimal depth map

Ordinary depth map

𝐃3
Multi-resolution relative depth maps

𝐑3 𝐑4 𝐑5 𝐑6

Depth map decomposition

𝐃0 𝐅1 𝐅2 𝐅3 𝐅4 𝐅5 𝐅6
Figure 1. An overview of the proposed algorithm. First, one ordi-

nary depth map and four relative depth maps are obtained from an

image. Then, they are decomposed into depth components, which

are, in turn, combined to reconstruct an optimal depth map.

These CNN-based methods attempt to estimate absolute

depths directly. However, as noted in [12], monocular depth

estimation is ambiguous in scale: an object may appear the

same as another identically-shaped but smaller object in a

nearer distance. On the other hand, the ratio between depths

of two points, which is referred to as relative depth in this

work, is scale-invariant. It is easier even for a human be-

ing to choose the nearer one between two points than to

estimate the absolute depth of each point. In other words,

relative depths are easier to estimate than ordinary depths.

Based on these observations, we propose a novel monoc-

ular depth estimation algorithm using relative depth maps.

Figure 1 shows an overview of the proposed algorithm.

First, we develop a CNN in the encoder-decoder architec-

ture, which includes multiple decoder blocks for estimating

relative depths, as well as ordinary depths, at various scales.

Second, we form a pairwise comparison matrix, which is

sparsely populated by the estimated relative depths. By ex-

ploiting the rank-1 property of the matrix, we restore the

entire matrix using the alternating least squares (ALS) al-

gorithm [28], from which a relative depth map is obtained.

Third, each depth map is decomposed into components,

which are re-combined to reconstruct a final depth map

through a constrained optimization scheme. Experimental

results show that the proposed algorithm provides the state-

of-the-art depth estimation performance.

We highlight main contributions of this work as follows:

• We propose the notion of relative depth and develop an
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efficient estimator for relative depth maps based on the

rank-1 property of pairwise comparison matrices.

• We propose novel methods for depth map decomposi-

tion and depth component combination.

• We achieve the state-of-the art depth estimation perfor-

mance on the NYUv2 dataset [57].

2. Related Work

Prior to the extensive adoption of CNNs, hand-crafted

features were used for monocular depth estimation. Sax-

ena et al. [53] proposed a Markov random field (MRF)

model to estimate depths from multi-scale patches and

global-scale column patches. Also, Saxena et al. [54] pre-

dicted depths by inferring plane parameters, assuming that

a scene consists of planar regions. Liu et al. [38] exploited

the a priori knowledge of semantic segmentation classes to

predict depths. Karsch et al. [25] assumed that semanti-

cally similar images have similar depth distributions. They

estimated depth maps by searching similar images from a

database and warping them.

Recently, various CNN-based techniques for monocu-

lar depth estimation have been proposed. Eigen et al. [12]

used the AlexNet structure [29] for global depth prediction

and an additional fine scale network for local depth refine-

ment. Eigen and Fergus [11] extended the method in [12]

to three levels and performed depth estimation, normal esti-

mation, and semantic segmentation jointly. Roy and Todor-

ovic [51] proposed a depth estimation model to incorporate

shallow CNNs into a regression forest. Laina et al. [31]

developed a depth estimation network based on the ResNet

structure [19] and also proposed an up-projection module

to increase depth map resolutions. Fu et al. [13] proposed

the deep ordinal regression network (DORN), which trans-

forms the depth regression task into a classification prob-

lem. Their algorithm yielded the state-of-the-art depth esti-

mation performance.

To generate sharper and more edge-conforming depth

maps, conditional random field (CRF) models are often

combined with CNNs. Li et al. [36] estimated depth in-

formation at the superpixel level using a CNN and refined it

at the pixel level based on a CRF model. Liu et al. [40] de-

veloped another superpixel-based algorithm. They trained

unary and pairwise terms of CRF within a CNN framework.

Xu et al. [65] extracted feature maps at several CNN layers,

performed CRF optimization at those layers to yield multi-

ple depth maps, and integrated them into a final depth map.

Heo et al. [20] predicted depths and also the corresponding

reliability levels. They exploited the reliability information

in the CRF optimization. Xu et al. [66] integrated multi-

scale CRF optimization into an encoder-decoder network,

enabling end-to-end training.

Extending the domain of training data tends to have pos-

itive impacts on the estimation performance of a deep net-

work. Therefore, some methods utilize additional annota-

tion data to train depth estimation networks. For instance,

Wang et al. [61] proposed a joint CNN structure for depth

map estimation and semantic segmentation. Moreover, they

improved depth estimation results via CRF optimization.

Qi et al. [47] utilized the geometric relationship between

surface normals and depths, improving the results of both

normal and depth estimation. Also, Yin and Shi [69] pro-

posed a joint estimation algorithm for depths, optical flow,

and camera motion.

The methods in [7, 70] are similar to the proposed algo-

rithm in that they also use pairwise depth comparison results

between pixels for monocular depth estimation. Zoran et

al. [70] predicted relative depths between sampled points

and propagated them to superpixels to reconstruct an en-

tire depth map. Chen et al. [7] categorized relative depths

between pixels into three classes: “closer,” “further,” and

“equal.” They obtained pixel-level predictions by training

their network with different loss functions according to pair-

wise labels. The proposed algorithm, however, is different

from [7, 70]. While [7, 70] use comparison results between

coarsely sampled points, the proposed algorithm estimates

dense pairwise information and combines it with ordinary

depth maps to reconstruct fine scale depth information.

3. Proposed Algorithm

3.1. Depth Map Decomposition

Let I ∈ R
r×c be an image of size r×c. The goal is to es-

timate the corresponding depth map D ∈ R
r×c. However,

this monocular depth estimation is ill-posed. Especially, it

is ambiguous in scale [12]. For instance, a building and its

small replica may produce an identical image, but have dif-

ferent depth maps. Even though we can predict the scale

of an image approximately by learning from many training

images, the ambiguity still remains. To address this issue, in

this work, we define and estimate a scale-invariant quantity,

called relative depth, which is the ratio between the depths

of two regions in an image.

If we know the relative depths of all pixel pairs in an

image, we can reconstruct the depth map with a normalized

scale. Before proving this, let us denote the geometric mean

of a depth map D by

g(D) =

r∏

i=1

c∏

j=1

D(i, j)
1

rc (1)

where D(i, j) is the (i, j)th depth in D.

Proposition 1. If the relative depths of all pixel pairs in I

is known, then a scaled depth map D/g(D) can be recon-

structed.
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Proof. By assumption, for any pixel (i, j), we know all rel-

ative depths in D/D(i, j). By averaging these depths ge-

ometrically, we obtain g(D)/D(i, j). Therefore, we know

its reciprocal D(i, j)/g(D). Then, we have D/g(D).

In fact, D/g(D) has the normalized scale as follows.

Proposition 2. The geometric mean of D/g(D) is 1.

Proof. g(D/g(D)) = g(D)/g(D) = 1.

According to Propositions 1 and 2, if we know all rela-

tive depths between pixel pairs, we can reconstruct the rel-

ative depth map

R = D/g(D), (2)

which is referred to as the relative depth map. Then, the

relationship between the original depth map D and the rel-

ative depth map R can be rewritten as D = g(D)R.

Next, we reduce the depth map D to several sizes. Let

Dn denote the depth map of size 2n × 2n. A lower resolu-

tion depth map Dn−1 is obtained from Dn via

Dn−1(i, j) =

1∏

k=0

1∏

l=0

Dn(2i− k, 2j − l)
1

4 . (3)

In other words, a depth in Dn−1 is the geometric mean of

the four corresponding depths in Dn. Note that the lowest

resolution map D0 consists of a single depth, which equals

the overall geometric mean g(D).

In a typical depth map, low frequency components are

more dominant [33]. Thus, their estimation affects depth re-

construction more strongly than the estimation of high fre-

quency components. We regard Dn−1 as low frequency in-

formation, which is obtained by eliminating high frequency

(or fine detail) information in Dn. Let Fn denote the fine

detail map. First, we define the upsampling operation U to

double the size of a depth map horizontally and vertically. It

repeats each input depth four times to fill in the correspond-

ing four pixels in the output depth map. Then, Fn is given

by

Fn = Dn ⊘ U(Dn−1) (4)

where ⊘ denotes the Hadamard division, i.e. element-wise

division, of two matrices. Equivalently,

Dn = U(Dn−1)⊗ Fn (5)

where ⊗ is the Hadamard product.

Proposition 3.
∏1

k=0

∏1
l=0 Fn(2i − k, 2j − l)

1

4 = 1 for

each (i, j), and g(Fn) = 1.

Proof. It comes from (3) and (4).

Table 1. Decomposition results of depths maps Dn and Rn for

3 ≤ n ≤ 7.

D0 F1 F2 F3 F4 F5 F6 F7

D3

√ √ √ √
- - - -

D4

√ √ √ √ √
- - -

D5

√ √ √ √ √ √
- -

D6

√ √ √ √ √ √ √
-

D7

√ √ √ √ √ √ √ √
R3 -

√ √ √
- - - -

R4 -
√ √ √ √

- - -

R5 -
√ √ √ √ √

- -

R6 -
√ √ √ √ √ √

-

R7 -
√ √ √ √ √ √ √

In a logarithmic scale, Dn can be decomposed through

the recursive application of (5),

logDn = logUn(D0) +
n∑

i=1

logUn−i(Fi) (6)

where log is an element-wise logarithmic function. In other

words, logDn is decomposed into the mean depth map

logUn(D0) and the residual depth maps logUn−i(Fi) for

1 ≤ i ≤ n. Note that, by Proposition 3, the arithmetic

mean of each residual map logUn−i(Fi) is zero. Similarly,

the relative depth map Rn can be decomposed as

logRn =

n∑

i=1

logUn−i(Fi). (7)

In this work, given an image I, we estimate Dn and Rn

for 3 ≤ n ≤ 7. Then, we decompose each Dn or Rn via (6)

or (7), respectively. Table 1 lists the decomposition results

of these depth maps. Note that each component has multi-

ple candidates. For example, F1 has 10 candidates in total,

while F6 has 4. We combine the candidates to yield the

optimal depth component, as described in Section 3.4 and

in a supplemental document. Finally, we use the optimal

components to generate the optimal depth map D7 via (6).

3.2. Depth Estimation Network

We use the encoder-decoder architecture [2, 67] to esti-

mate depth maps, as shown in Figure 2. In the encoder part,

deep features are extracted from an image. In the decoder

part, up to ten decoders use these features to reconstruct or-

dinary depth maps Dn and relative depth maps Rn.

Encoder part: The encoder processes an image to yield

low-resolution, high-level features. DenseNet-BC [23], ex-

cluding the last dense block, is used as the encoder, which

consists of one convolution layer, one max pooling layer,

and three pairs of dense block and transition layer, as shown

in Figure 2. Note that the last dense block in DenseNet-BC

is employed in the ten decoders in the decoder part.

Each dense block in DenseNet-BC is defined by hyper-

parameters: the number n of composite functions and the

growth rate k. The settings of the dense blocks, includ-

ing the hyper-parameters, are described in the supplemental

9731



D
en

se E
2

T
ran

s E
2

D
en

se E
3

T
ran

s E
3

D
en

se E
4

T
ran

s E
4

C
o
n
v
 E

1

P
o
o
l E

1

Dense D1

OR D1

𝐃3

Dense D2

WSM D2-1

OR D2

𝐃4

Dense D3

WSM D3-1

WSM D3-2

OR D3

𝐃5

Dense D4

WSM D4-1

WSM D4-2

WSM D4-3

OR D4

𝐃6

Dense D5

WSM D5-1

WSM D5-2

WSM D5-3

WSM D5-4

OR D5

𝐃7

OR D10

WSM D10-4

WSM D10-3

WSM D10-2

WSM D10-1

Dense D10

𝐑7
ALS D10

OR D6

Dense D6

𝐑3
ALS D6

OR D7

WSM D7-1

Dense D7

𝐑4
ALS D7

OR D8

WSM D8-2

WSM D8-1

Dense D8

𝐑5
ALS D8

OR D9

WSM D9-3

WSM D9-2

WSM D9-1

Dense D9

𝐑6
ALS D9

Input

Image𝐈

Encoder part

Decoder part

Ordinal regression

Dense block

Whole strip masking block

Transition layer

Alternating least squares algorithm

Dense D1

OR D1

Dense D2

WSM D2-1

OR D2

Dense D3

WSM D3-1

WSM D3-2

OR D3

Dense D4

WSM D4-1

WSM D4-2

WSM D4-3

OR D4

Dense D5

WSM D5-1

WSM D5-2

WSM D5-3

WSM D5-4

OR D5

Figure 2. The structure of the proposed depth estimation network. As shown above, up to ten decoders can be used. In the default setting,

the five decoders for (D3, R3, R4, R5, R6) are employed. WSM represents a whole strip masking block [20], OR an ordinal regression

layer, and ALS an alternating least squares layer.

document. Overall, given an 224×224 RGB image, the en-

coder generates an 8× 8 feature map with 1,056 channels.

Decoder part: The ten decoders are used to expand the

low-resolution features to higher-resolution depth maps Dn

and Rn. Each decoder has one dense block and a variable

number (0 to 4) of whole strip masking (WSM) blocks [20].

WSM is an up-sampling block in the inception structure

[58, 59]. It increases the receptive field greatly, by applying

kernels whose horizontal or vertical sizes equal those of an

entire input signal. It has five inception paths, which use

convolution kernels of sizes 1× 1, 3× 3, 5× 5, W × 3, and

3 ×H , respectively. Here, W and H denote the width and

height of an input signal.

The resolution of a target depth map determines the num-

ber of WSM blocks. For example, the decoders for estimat-

ing D3 and R3 include no WSM block, since D3 and R3

have 8 × 8 resolution that is equal to the resolution of the

encoder feature map. On the other hand, the decoders for

D7 and R7 use 4 WSM blocks, respectively, to extend the

feature map to 128× 128 resolution.

Ordinal regression: Each decoder performs ordinal regres-

sion [37] to reconstruct depths. An ordinal regression task

can be carried out using multiple binary classifiers, which

determine if a value is greater than different thresholds, re-

spectively. Various ordinal regression methods have been

proposed to solve regression problems [13, 24, 46]. In par-

ticular, Fu et al. [13] proposed a regression network, called

DORN, for monocular depth estimation. For ordinal regres-

sion, they quantized a depth into a number of reconstruction

levels using the space-increasing discretization scheme. We

adopt their reconstruction levels and ordinal loss function in

the decoders for ordinary depth maps Dn.

However, in the decoders for relative depth maps Rn, it

is necessary to use a different set of reconstruction levels.

Note that a relative depth is a ratio of two depths. Thus,

for any relative depth r, there is always a reciprocal one

1/r. In other words, in a logarithmic scale, the distribu-

tion of relative depths is symmetric with respect to zero.

To determine reconstruction levels for R3, we compute the

depth ratios for all pixel pairs from training data. We ap-

ply the Lloyd algorithm [42] to quantize them. To exploit

the symmetry, we perform the algorithm only for the ratios

greater than or equal to 1. Then, we fix 1 as one reconstruc-

tion level to conform to the symmetry, and determine 20

more reconstruction levels by alternating the nearest neigh-

bor partitioning and the centroid computation [15]. Their

reciprocals also become reconstruction levels. In total, there

are 41 reconstruction levels. Also, reconstruction levels for

Rn for 4 ≤ n ≤ 7 are set to half the level interval of Rn−1.

Relative depths can be estimated for all pairs of pixels.

This, however, demands excessive complexity, since (2n ×
2n)×(2n×2n) = 24n pairs should be considered in Dn. To

reduce the complexity, for each pixel in Dn, we estimate the

depth ratios with respect to the neighboring 3×3 pixels only,

reducing the number of pairs to 32×22n. Furthermore, these

neighboring 3 × 3 pixels are selected from Dn−1, instead

of Dn, as shown in Figure 3. This is advantageous, since

each depth in Dn is compared with a larger region for a

fixed number of comparisons. Unestimated relative depths

are reconstructed using the ALS algorithm, as detailed in

Section 3.3.
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Figure 3. To estimate relative depths, each depth in Dn, depicted

by a dot, is compared with the depths of the 3×3 nearest pixels in

Dn−1, which are depicted by purple squares. For the illustration,

Dn is overlaid with Dn−1.

3.3. Relative Depth Map Reconstruction

In Figure 2, the bottom decoders 6 ∼ 10 estimate relative

depth maps Rn, 3 ≤ n ≤ 7, respectively. To reduce the

complexity, they estimate relative depths selectively. The

remaining relative depths are reconstructed as follows.

First, in decoder 6, the relative depths for all pixel pairs

in the lowest-resolution depth map D3 are estimated. In-

evitably, there are estimation errors. Let us consider three

pixels i, j, and k. The decoder estimates relative depths
D3(i)
D3(j)

,
D3(j)
D3(k)

, and
D3(i)
D3(k)

. However, due to estimation er-

rors, the results may be inconsistent, i.e. it is possible that
D3(i)
D3(j)

×
D3(j)
D3(k)

6= D3(i)
D3(k)

. We should process the estimated

relative depth to yield consistent and reliable results.

To this end, we construct the pairwise comparison ma-

trix P3, which contains the relative depths between all pixel

pairs in D3. Since the number of pixels in D3 is 8× 8, the

size of P3 is 64 × 64. The (i, j)th element P3 is given by

the estimate of dj/di, where di denotes the ith depth in the

reshaped vector of D3.

Proposition 4. If there is no estimation error, P3 is a rank-

1 matrix.

Proof. In the ideal case with no error, we have P3 =
[d1, d2, · · · , d64]

T [ 1
d1

, 1
d2

, · · · , 1
d64

].

If there are errors, Saaty [52] showed that the principal

eigenvector corresponding to the largest eigenvalue of P3

is a good approximation of [d1, d2, · · · , d64]
T up to a scale

factor. Note that, by the Perron-Frobenius theorem [21],

since P3 is positive, the largest eigenvector is algebraically

simple and positive and all elements in the principal eigen-

vector are also positive. Thus, by normalizing the principal

eigenvector so that the geometric mean of elements is 1, we

reconstruct the relative depth map R3.

To reconstruct Rn for 4 ≤ n ≤ 7, we should redefine the

comparison matrix, since depths in Dn are compared with

those in Dn−1 as shown in Figure 3. Similar to P3 in the

𝐏4,3
Densely

restored

ALS

Reshaping

and

normalize𝐩

Sparsely

estimated ෩𝐏4,3 Relative

depth map𝐑4

Figure 4. A sparse comparison matrix P4,3 is restored to a dense

matrix P̃4,3 by the ALS algorithm. Then, P̃4,3 is reshaped and

normalized to a relative depth map R4.

proof of Proposition 4, in the ideal case, the comparison

matrix is given by

Pn,n−1 = [dn1 , d
n
2 , · · · , d

n
22n ]

T [
1

dn−1
1

,
1

dn−1
2

, · · · ,
1

dn−1
22n−2

]

(8)

where dni denotes the ith depth in the reshaped vector of

Dn. Without estimation errors, the rank of Pn,n−1 is also 1.

When there are estimation errors, the eigenvalue decompo-

sition method for reconstructing R3 cannot be used in this

case because Pn,n−1 is not a square matrix. Instead, we

may use singular value decomposition (SVD). It is known

that

P̂n,n−1 = σ1u1v
T
1 (9)

is the best rank-1 approximation of Pn,n−1 [5], where σ1

is the largest singular value, and u1 and v1 are the corre-

sponding singular vectors. Therefore, Rn can be obtained

by normalizing the left singular vector u1.

However, as shown in Figure 3, only a portion of rela-

tive depths, dni /d
n−1
j , are estimated and Pn,n−1 is incom-

plete. The missing entries of Pn,n−1 should be filled in

appropriately before the rank-1 approximation. Various al-

gorithms [26, 49] have been proposed to solve this matrix

completion problem. We employ the ALS algorithm [28]

as follows. Let S denote the set of positions (r, c) in

Pn,n−1, where the relative depths are estimated by the de-

coder. Also, let p and q be vectors of size 22n and 22n−2,

respectively. Then, we repeat the following two steps alter-

nately.

q← argmin
q

∑

(r,c)∈S
(p(r)q(c)−Pn,n−1(r, c))

2
(10)

p← argmin
p

∑

(r,c)∈S
(p(r)q(c)−Pn,n−1(r, c))

2
(11)

In each step, the convex condition is satisfied and the closed

form solution for q or p is easily derived. Thus, the algo-

rithm yields convergent solutions p̃ and q̃, and the approxi-

mation

P̃n,n−1 = p̃q̃T (12)
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is obtained. Notice that this is already a rank-1 approxi-

mation of Pn,n−1. Therefore, we reconstruct the relative

depth map Rn by normalizing and reshaping the left vector

p̃. Figure 4 shows this process of filling a sparse Pn,n−1

and restoring a relative depth map Rn.

3.4. Depth Component Combination

In general, an ordinary depth map reconstructs the over-

all depth distribution robustly, while relative depth maps

are better for estimating fine details. Also, depending on

the resolution, each relative depth map estimates depth in-

formation at a certain scale reliably. Thus, by combining

all these maps at multiple resolutions, we obtain a faithful

depth map that takes advantages of those component maps.

We estimate up to ten depth maps, Dn and Rn for 3 ≤
n ≤ 7, each of which is decomposed into components, as

listed in Table 1. Since there are multiple candidates for

each component, we obtain an optimal estimate by linearly

combining them in a logarithmic domain. For the optimal

combination, we minimize the mean squared error, subject

to constraints on weighting parameters (e.g. nonnegativity

of weights), using the interior point method [1]. Then, we

use these optimal components to generate a final depth map

via (6). The optimal combination method is described in

more detail in the supplemental document.

4. Experimental Results

4.1. Dataset and Evaluation Protocol

We assess the performance of the proposed algorithm

on the NYUv2 dataset [57]. It includes indoor video se-

quences, composed of RGB images of spatial resolution

480× 640 and the corresponding depth maps captured with

Microsoft Kinect devices. A captured depth map has miss-

ing regions, and the method in [35] is used to fill in those

regions. We use all training sequences to train the pro-

posed algorithm and employ the 654 test RGBD images for

evaluation. Also, we valid-crop the test images to spatial

resolution 427 × 561, as done in [6, 33, 41]. For quanti-

tative assessment of depth maps, we use seven metrics in

Table 2 [10, 12, 31]. Among them, the Spearman’s ρ is

the correlation coefficient between the ranks of estimated

depths and ground-truth depths [10]. It measures how well

an estimated depth map preserves the ordering (or ranks) of

pixel depths in the ground-truth depth map.

KITTI [14] is another dataset widely used for evaluating

monocular depth estimation algorithms. We show that the

proposed algorithm provides competitive performances also

on KITTI in the supplemental document.

4.2. Network Training

We initialize the network parameters as done in [18] and

optimize them using the Nestrov method [45]. We set the

Table 2. Evaluation metrics for estimated depth maps: d̂i and di
denote estimated and ground-truth depths of pixel i, respectively,

and N is the number of pixels in a depth map.

Metric Definition

RMSE (lin) ( 1

N
Σi(d̂i − di)

2)
1

2

RMSE (log) ( 1

N
Σi(log d̂i − log di)

2)
1

2

RMSE (s.inv) RMSE (log) for relative depth maps

ARD 1

N
Σi|d̂i − di|/di

SRD 1

N
Σi|d̂i − di|2/di

δ < t Percentage of di such that max{ d̂i

di
,
di

d̂i

} < t

Spearman’s ρ Correlation coefficient ∈ [−1, 1] between

the ranks of {d̂i} and {di}

initial learning rate, momentum, and weight decay to 10−5,

0.9, and 10−4, respectively. Also, we adjust the learning

rate based on the repetitive shifted cosine function [22, 43].

We set the cycle of the cosine function to 1/4 epoch.

We train the network in two steps. First, we train the en-

coder with a single decoder, which is the decoder for gen-

erating D3 in Figure 2. Second, after fixing the encoder

parameters, we train each of the ten decoders. We set the

batch size to 4, except for the decoder for R7, for which the

batch size is 2 due to the limited GPU memory.

4.3. Comparison with the StateoftheArts

Table 3 compares the proposed algorithm with conven-

tional algorithms [3,6,7,11–13,31,33,36,39,41,63,66,70]

on the NYUv2 dataset. Some algorithms use different meth-

ods for depth map cropping and performance measurement.

Therefore, for a fair comparison, we adopted the evaluation

scheme of [6, 33, 41] as the common method and attempted

to follow it as closely as possible. Specifically, for the algo-

rithms in [6, 11–13, 31, 33, 39], the result depth maps, pro-

vided by the respective authors or generated by the source

codes by the authors, are evaluated by the common method.

For the other algorithms, the performance scores are ex-

cerpted directly from the papers.

It can be observed from Table 3 that, in terms of 6 (out of

8) metrics, the proposed algorithm outperforms all the con-

ventional algorithms using only the NYUv2 RGBD train-

ing data. In the other two metrics, ARD and (δ < 1.25),

the proposed algorithm yields the third best and the second

best performances, respectively. Especially, the proposed

algorithm provides a significantly higher ρ than the conven-

tional algorithms. This means that the proposed algorithm

predicts the depth orders of pixels more accurately by es-

timating relative depth maps, containing order information,

as well as ordinary depth maps.

Figure 5 shows qualitative comparison results. As com-

pared with the conventional algorithms [13, 31], the pro-

posed algorithm provides more accurate depth maps with

less errors. Even though Fu et al. [13] yield smaller er-

rors than Laina et al. [31], their errors have disorderly pat-

terns and thus their depth maps look noisier. In contrast,
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Table 3. Performance comparison on the NYUv2 test data. The best results are boldfaced, and the second best ones are underlined. Note

that we reevaluate some algorithms [6, 11–13, 31, 33, 39] by using the evaluation scheme of [6, 33, 41].

The lower, the better The higher, the better

RMSE (lin) RMSE (log) RMSE (s.inv) ARD SRD δ < 1.25 δ < 1.252 δ < 1.253 ρ
Zoran et al. [70] 1.200 0.420 - 0.400 0.540 - - - -

Chen et al. [7] 1.110 0.380 0.450 0.350 0.430 - - - -

Liu et al. [41] 1.080 - - 0.327 - - - - -

Baig et al. [3] 0.802 - - 0.241 - 61.0% - - -

Li et al. [36] 0.821 - - 0.232 - 62.1% 88.6% 96.8% -

Eigen et al. [12] 0.874 0.284 0.219 0.218 0.207 61.6% 88.9% 97.1% 0.800

Liu et al. [39] 0.756 0.261 0.214 0.209 0.180 66.2% 91.3% 97.9% 0.786

Eigen and Fergus [11] 0.639 0.215 0.171 0.158 0.121 77.1% 95.0% 98.8% 0.886

Xian et al. [63] 0.660 - - 0.155 - 78.1% 95.0% 98.7% -

Xu et al. [66] 0.593 - - 0.125 - 80.6% 95.2% 98.6% -

Chakrabarti et al. [6] 0.620 0.205 0.166 0.149 0.118 80.6% 95.8% 98.7% 0.902

Laina et al. [31] 0.584 0.198 0.164 0.136 0.101 82.2% 95.6% 98.9% 0.887

Lee et al. [33] 0.572 0.193 0.156 0.139 0.096 81.5% 96.3% 99.1% 0.899

Fu et al. [13] 0.547 0.188 0.158 0.116 0.089 85.6% 96.1% 98.6% 0.899

Proposed 0.538 0.180 0.148 0.131 0.087 83.7% 97.1% 99.4% 0.914

Table 4. Ablation study using various combinations of depth maps. We use five maps (D3, R3, R4, R5, R6) in the default mode.

Used ordinary depth map Used relative depth map The lower, the better The higher, the better

D3 D4 D5 D6 D7 R3 R4 R5 R6 R7 RMSE (lin) ARD δ < 1.25 δ < 1.252 δ < 1.253 ρ√
- - - - - - - - - 0.583 0.143 81.2% 96.3% 99.2% 0.885

-
√

- - - - - - - - 0.556 0.135 82.8% 96.9% 99.3% 0.901

- -
√

- - - - - - - 0.553 0.134 83.1% 96.9% 99.3% 0.903

- - -
√

- - - - - - 0.552 0.133 83.1% 96.9% 99.3% 0.904

- - - -
√

- - - - - 0.552 0.133 83.1% 97.0% 99.3% 0.904√ √
- - - - - - - - 0.555 0.135 82.8% 96.9% 99.3% 0.901√ √ √

- - - - - - - 0.551 0.134 83.1% 96.9% 99.3% 0.903√ √ √ √
- - - - - - 0.550 0.133 83.2% 97.0% 99.3% 0.904√ √ √ √ √

- - - - - 0.550 0.133 83.0% 97.0% 99.3% 0.905√
- - - -

√
- - - - 0.580 0.142 81.3% 96.4% 99.2% 0.889√

- - - -
√ √

- - - 0.549 0.134 83.1% 97.0% 99.4% 0.907√
- - - -

√ √ √
- - 0.540 0.132 83.6% 97.1% 99.4% 0.912√

- - - -
√ √ √ √

- 0.538 0.131 83.7% 97.1% 99.4% 0.914√
- - - -

√ √ √ √ √
0.538 0.131 83.7% 97.2% 99.4% 0.914√ √ √ √ √ √ √ √ √ √
0.539 0.130 83.8% 97.1% 99.4% 0.912

the proposed algorithm provides cleaner depth maps and

outperforms the conventional algorithms both quantitatively

and qualitatively. Also, figure 6 compares the 3D visual-

ization results of depth maps. Again, the proposed algo-

rithm shows more reliable results than the conventional al-

gorithms [13, 31].

4.4. Ablation Study

The proposed algorithm uses up to ten decoders in Fig-

ure 2 to generate ordinary depth maps Dn and relative depth

maps Rn. Table 4 summarizes the depth estimation results

according to different combinations of ordinary and relative

maps. The following observations can be made:

• When only a single ordinary depth map is used, a

higher resolution one provides better results.

• Relative depths maps should be combined with at least

one ordinary map to reconstruct depths, since they do

not contain scale information (i.e. the mean depth).

However, relative maps are more effective than ordi-

nary ones. For example, when all relative maps are

combined with the lowest resolution D3, the RMSE

(lin) score is 0.538, which is better than that (= 0.550)

of combining all ordinary maps.

• Combining D3 with four relative maps R3, R4, R5,

R6 provides comparable or even better performances

than using all ten depth maps. For example, the former

yields ρ = 0.914, while the latter ρ = 0.912. This in-

dicates that the additional ordinary maps rather distort

the ground-truth depth ordering of a scene. Thus, we

use only the five depth maps (D3, R3, R4, R5, R6) in

the default mode.

• Adding R7 to the default mode improves the perfor-

mances only slightly.

More ablation studies and more experimental results are

available in the supplemental document.

5. Conclusions

We proposed a novel approach to monocular depth es-

timation, which uses relative depth maps. First, we de-

veloped the encoder-decoder network that has multiple de-

coder blocks for estimating relative depths, as well as or-

dinary ones, at various scales. To reduce complexity, we

restored an entire relative depth map from selectively es-

timated data using the ALS algorithm. Finally, we recon-

structed an optimal depth map through the depth map de-

composition and the depth component combination. Ex-

periments demonstrated that the proposed algorithm pro-

vides the state-of-the-art performance, and an ablation study

showed that relative depth maps are more effective than or-

dinary ones in preserving the depth ordering of a scene.
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Figure 5. Qualitative comparison of Laina et al. [31], Fu et al. [13], and the proposed algoirhtm. Predicted depth maps (Pred), and error

maps (Err) of relative depths are provided for easier comparison.
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Figure 6. Qualitative comparison of depth map 3D visualization results of Laina et al. [31], Fu et al. [13], and the proposed algoirhtm.
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