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Abstract

In spite of recent enormous success of deep convolu-

tional networks in object detection, they require a large

amount of bounding box annotations, which are often time-

consuming and error-prone to obtain. To make better use

of given limited labels, we propose a novel object detec-

tion approach that takes advantage of both multi-task learn-

ing (MTL) and self-supervised learning (SSL). We propose

a set of auxiliary tasks that help improve the accuracy of

object detection. They create their own labels by recycling

the bounding box labels (i.e. annotations of the main task)

in an SSL manner, and are jointly trained with the object

detection model in an MTL way. Our approach is inte-

grable with any region proposal based detection models.

We empirically validate that our approach effectively im-

proves detection performance on various architectures and

datasets. We test two state-of-the-art region proposal object

detectors, including Faster R-CNN [39] and R-FCN [10],

with three CNN backbones of ResNet-101 [22], Inception-

ResNet-v2 [45], and MobileNet [23] on two benchmark

datasets of PASCAL VOC [14] and COCO [30].

1. Introduction

Recently, there has been significant progress in the field

of object detection [39, 10, 21], leveraging deep convolu-

tional networks that can learn hierarchical feature represen-

tation of input images. However, training a practical ob-

ject detection model requires a large amount of bounding

box annotations, which are often time-consuming and error-

prone to obtain.

To mitigate the label shortage problem for deep neural

networks, many studies have been conducted; in the context

of object detection, multi-task learning and self-supervised

learning may be two exemplary approaches for the problem.

Multi-task learning (MTL) aims at jointly training multiple

relevant tasks with less annotations to improve the perfor-

mance of each task [33, 13, 46]. Its effectiveness has been

well studied; for example, it leads the effect of regular-

ization by providing inductive bias to each other [5]. It is

also proven that as the number of tasks increases, the up-

per bound of the number of annotated data for better gen-

eralization decreases [3]. One of the most successful exam-

ples where MTL is helpful for object detection is Mask R-

CNN [21], which enhances the performance of object detec-

tion by jointly performing an instance segmentation task.

However, one of its practical limitations is that segmenta-

tion mask labels, which are more expensive than bounding

box annotations, must be provided.

Self-supervised learning (SSL) aims at training the

model from the annotations generated by itself with no

additional human effort [9, 42]. In object detection lit-

erature, SSL has been applied to replace ImageNet pre-

training [34, 53, 36, 25]. Its motivation is that creating

a large-scale database like ImageNet is highly challeng-

ing and requires a lot of human effort, so it tries to pre-

train the network from relevant tasks that do not require

human-annotated data such as Jigsaw puzzles [34] or col-

orization [53]. However, the performance of most SSL al-

gorithms is not as good as ImageNet pretraining, and thus it

mostly fail to deliver practical benefit to object detection.

In this work, we propose a novel object detection ap-

proach that takes advantage of both multi-task learning

and self-supervised learning. We start from a normal su-

pervised object detection setting, where a region proposal

based detector (e.g. Faster R-CNN [39] and R-FCN [10])

is given and bounding box annotations are available from

the dataset. The key to our approach is to propose a set

of auxiliary tasks that are relevant but not identical to ob-

ject detection. They create their own labels by recycling the

bounding box labels (i.e. annotations of the main task) in an

SSL manner while regarding the bounding box as metadata.

Then these auxiliary tasks are jointly trained with the object

detection model in an MTL way. Our focus here is to im-

prove the performance of the main task (object detection)

rather than all main and auxiliary tasks.
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Although auxiliary tasks are supposed to stimulate the

main task to achieve better accuracy, it is hard to define

appropriate and valid auxiliary tasks that actually help. In

many cases, auxiliary task might be ineffective or even in-

terfere with the main task. We empirically find three syn-

ergetic auxiliary tasks, including multiple-object, closeness

and foreground labeling tasks. Thorough experimental re-

sults show that the proposed auxiliary tasks are substantially

effective for accurate object detection.

The contributions of this work are outlined as follows.

1. To the best of our knowledge, this work is a first at-

tempt to develop a multi-task self-supervised learning

approach for two-stage object detection models. Our

approach is orthogonal to any choice of region pro-

posal based detection models.

2. We design a set of three auxiliary tasks that help im-

prove the performance of object detection, while re-

using bounding box annotations without any additional

human effort. As far as we know, there has been no pre-

vious work to recycle bounding box annotations like

ours in the self-supervised learning literature.

3. We demonstrate the accuracy improvement of our ap-

proach in multiple architectural combinations. We test

two state-of-the-art region proposal detectors, includ-

ing Faster R-CNN [39] and R-FCN [10], with three

base CNN backbones of ResNet-101 [22], Inception-

ResNet-v2 [45] and MobileNet [23] on two benchmark

datasets of PASCAL VOC [14] and COCO [30].

2. Related Work

2.1. Multitask Learning (MTL)

The MTL trains related tasks together to overcome the

shortage of annotated data. It provides each task with in-

ductive bias [5] to trigger regularization effect between one

another, and decreases the upper-bound on the number of

annotated data for better generalization as the number of

tasks increases [3]. MTL has demonstrated its usefulness

in a number of computer vision tasks, including depth es-

timation and scene parsing [49], synthetic imagery gener-

ation [40, 50], attributes prediction [1], immediacy predic-

tion [8], person re-identification [43], and facial action unit

detection [2].

Parameter Sharing. MTL methods can be classified

into two groups according to how to share the parameters

between different task models. In the hard parameter shar-

ing, all task models share the exact same feature extrac-

tor and perform its own task through each branch head.

Therefore, the main issue here is to design appropriate tasks

and objective functions. Some examples in this category in-

clude TCDCN [55], HyperFace [38], Mask R-CNN [21],

ResNetCrowd [31], LASSO architecture [13]. In the soft

parameter sharing, each task has its own model with its

own parameters. Hence, the methods in this category fo-

cus on how to design weight sharing methodology, such as

what constraints and distance metrics are utilized between

the parameters. Examples include cross-stitch network [33],

DCNet [46], cross connection [15], partially shared struc-

ture [4], Sluice Networks [41] and NDDR-CNN [16].

2.2. Selfsupervised Learning (SSL)

While it takes a lot of human effort to create high-quality

annotations for supervised learning, SSL [9, 42] creates la-

bels by models themselves without additional human effort.

In computer vision research, different types of information

have been adopted as a signal for SSL, including coloriza-

tion [53, 54], inpainting [37], spatial patches [12, 34] or

temporal clues [29, 44, 47], text [6, 19, 26], sound [35], op-

tical flow [36] and tracking [27, 48].

Transfer Learning. One of the primary uses of SSL is

in transfer learning. In the field of object detection, many

self-supervision tasks have been applied to replace Ima-

geNet pretraining. Noroozi et al. [34] propose a pretext task

to solve Jigsaw puzzles, and transfer the networks learned

for Jigsaw puzzles to solve object classification and de-

tection. Pathak et al. [36] pretrain networks via motion-

based grouping cues on videos. Jenni and Favaro [25] in-

troduce a pretext task to differentiate between real and

artifact-containing images, and train the model in an adver-

sarial manner for transferring to object detection. Zhang et

al. [53] train a network for the colorization task and fine-

tune it for the detection task. There have been many other

attempts to pretrain the network from relevant tasks in self-

supervised or unsupervised manner, but most of them still

have not reached the performance of ImageNet pretraining.

Our work is distinguishable from this line of work in that

we do not try to replace the ImageNet pretraining but intro-

duce a set of complementary auxiliary tasks that are train-

able with no additional annotations and improve the perfor-

mance of object detection.

Annotation Reuse. Gong et al. [20] and Zhan et al. [51]

show that reusing labels of one task is not only helpful to

create new tasks and their labels but also capable of improv-

ing the performance of the main task through pretraining.

They use pixel-wise segmentation masks as the annotation

to be reused in the context of human parsing and semantic

segmentation, respectively. On the other hand, our work fo-

cuses on recycling bounding box labels for object detection,

which has not been discussed yet.

3. Approach

We design a multi-task self-supervised learning model

for object detection. We assume that annotations are avail-

able only for the main task (i.e. bounding box labels for

object detection). We introduce a set of three auxiliary tasks
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Figure 1: Overall architecture of our multi-task self-supervised approach. It shows how the object detector (i.e. main task

model) such as Faster R-CNN [39] makes a prediction for a given proposal box (red) with assistance of three auxiliary tasks

(section 3.1) at inference. The auxiliary task models (shown in the bottom right) are almost identical to the main task predictor

except no box regressor (section 3.2). The refinement of detection prediction (shown in right) is also collectively done by

cooperation of the main and auxiliary task models (section 3.3). K is the number of categories.

that are jointly trained with the main task in a multi-task

learning manner. The auxiliary task models are free to recy-

cle bounding-box annotations for building their own ground

truth (GT) labels in a self-supervised way. Here our goal is

to improve the performance of the main task (object detec-

tion), instead of the averaged performance of all main and

auxiliary tasks. We discuss the details of the auxiliary tasks

and their models in section 3.1–3.2.

The proposed auxiliary tasks are beneficial in both fea-

ture extraction and prediction. First, the three auxiliary tasks

enhance the quality of the shared features through cooper-

ative feature learning. Second, the outputs of the auxiliary

tasks provide contextual information to refine the object de-

tection prediction, especially classification accuracy of re-

gion proposals. We refer to this process as refinement, which

will be discussed in section 3.3.

Figure 1 shows the overall architecture of our model,

where three auxiliary task models are integrated with a re-

gion proposal-based object detector (e.g. Faster R-CNN). It

shows how a single RoI is processed at inference time. We

will present the training of the whole model in section 3.4.

3.1. Auxiliary tasks

We below describe our three auxiliary tasks, including

multiple-object, closeness and foreground labeling tasks.

Multi-object labeling. The annotation for object detec-

tion normally consists of two types of information: i) the co-

ordinates of the smallest bounding box that encloses the tar-

get object and ii) one-hot encoding for a single correspond-

ing class. The first auxiliary task named as multi-object la-

beling relaxes these two labeling conditions. It randomly

samples a bounding box window in the image and assigns a

soft label to it rather than a hard one-hot encoding, to be in-

terpreted as a probability of several classes in a single win-

dow. The key benefit of this auxiliary task is to populate

many positive boxes even though their quality may not be

as good as that of GTs. Nonetheless, it can alleviate one im-

portant issue of the general object detection pipeline where

positive boxes are too few compared to negative boxes per

image. This has similar intention to mixup [52], which com-

bines pairs of images and their labels linearly.

Figure 2 shows some examples of windows for multi-

object labeling. We first sample Nt number of windows

(e.g. Nt = 64 in our experiments) by randomly picking

their top-left corners and width/height at the minimum size

of 32. We constrain that the windows should have nonzero

intersection with any GT boxes in the image. We then obtain

a soft label lm for each window, following Algorithm 1. The

label lm acts as a GT annotation for the multi-object label-

ing task. Simply, we assign a class probability to a window

W , according to its area portion with GT classes. The length

of lm is K+1, where K is the number of classes and l
m[0]

denotes the no object probability that is proportional to the

background area in W .

Closeness labeling. The distribution of objects in an im-

age is not random. For example, in the PASCAL VOC im-

ages, there is likely to be chairs near a dining table and

cars near a bus. In the skip-gram model of natural language

processing [32], the model learns the meaning of a specific

word from those of surrounding words in a sentence. Like-

wise, if an auxiliary task enforces the model to learn to pre-

dict both the class and its surrounding classes using the fea-
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Figure 2: An example of how to generate labels of auxiliary

tasks via recycling of GT bounding boxes. The multi-object

soft label assigns the area portions occupied by each class’s

GT boxes within a window. The closeness label scores the

distances from the center of the GT box to those of other

GT boxes. The foreground label is a binary mask between

foreground and background.

tures of a region proposal, the learned features are likely to

encode the context information of the image region. This

may enable the model to predict the class of the box bet-

ter. We coin this auxiliary task as closeness labeling. Figure

2 and Algorithm 2 show how the closeness auxiliary task

recycles the GT boxes to obtain its own labels. Note that

the closeness label lc is only defined for GT boxes, whereas

the previous multi-object label lm is for a randomly sam-

pled window. Therefore, the closeness auxiliary task pre-

dicts possible objects around the box, while the multi-object

labeling task predicts the possible objects within the win-

dow. The closeness label lc for each GT box b assigns a

higher value to the object whose GT box is closer to b. lc[0]
is 1 if there is no GT box nearby.

Foreground labeling. The final auxiliary task, named as

foreground labeling, aims at predicting the foreground and

background regions in the entire image. This task can aid

the feature learning to be more accurate for the coordinate

regression of region proposals. As shown in Figure 2, it is

simple to generate a label lf for this task; we simply assign

1 to the GT box regions and 0 to the other regions.

3.2. Auxiliary Task Models

As shown in Figure 2, the three auxiliary tasks eventually

predict class probability labels (i.e. lm, lc, lf ), even though

Algorithm 1: OBTAINING A MULTI-OBJECT LABEL

Input: Image I , GT boxes {Bi}
K
i=1

, Window W
Output: The multi-object soft label lm for W
l
m ← An array of length (K + 1)

l
m[0]←

√

area(W )− area((∪i∈K{Bi}))
for i← 1 to K do

l
m[i]←

√

area(W ∩ {Bi})

return l
m/sum(lm)

Algorithm 2: OBTAINING CLOSENESS LABEL

Input: Image I , GT boxes {Bi}
K
i=1

, A GT box b
Output: The closeness soft label lc for b
l
c ← An array of zeros with a length (K + 1)
D ← The diagonal distance of I
if {B} − b = ∅ then

l
c[0]← 1

else

for i← 1 to K do

l
c[i]← D − min

b
′∈{Bi}

‖center(b)− center(b
′

)‖2

return l
c/sum(lc)

the purpose of each task is different one another. Hence, we

design the models for auxiliary tasks to have the same archi-

tecture with the head of the main task model. For instance,

the lower part of Figure 1 shows the auxiliary task model for

Faster R-CNN [39] with ResNet-101 [22]. Only difference

between the main and auxiliary predictor is the existence of

box regression, which is unnecessary for auxiliary tasks.

Such architecture sharing is advantageous in several as-

pects. First, it makes our multi-task approach easily inte-

grable with object detection models, because the implemen-

tation of auxiliary tasks is straightforward. Second, it makes

it easy to initialize weights for auxiliary models by simply

duplicating those of the pretrained detector. Such replicate

initialization empirically leads to better performance than

training the heads of auxiliary tasks from scratch.

3.3. Detection Refinement

The auxiliary tasks are beneficial in both feature extrac-

tion and prediction. In the region proposal stage, the aux-

iliary tasks are jointly trained with the main task to learn

shared features that help object detection prior to RoI pool-

ing. In the prediction stage, the outputs of auxiliary tasks

can directly refine the detection prediction, especially clas-

sification of region proposals. In this section, we discuss the

detection refinement in the second stage.

The multi-object labeling model can predict soft class

memberships for a given proposal and boxes surrounding
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Figure 3: Detection refinement. The main detection head

computes x as a classification result for a proposal box. It

is updated into x′ using a single FC layer on the prediction

outputs of the two auxiliary models, c and m1, · · · ,mr.

it. The closeness labeling model can predict the possible

co-occurrence of nearby objects even if they do not actu-

ally exist. The key idea of our detection refinement is to

let the main task head (i.e. object detector) take advantage

of the predictions of the two auxiliary tasks, because they

can provide useful contextual information for the detector to

make better decision for classification. That is, for a given

proposal box that the object detector needs to predict, the

multi-object model provides soft label prediction for the lo-

cal and global context around the box, while the closeness

model delivers predicted proximity to the surrounding ob-

jects. We here do not use the foreground labeling task’s out-

put because it has no additional information beyond the two

auxiliary tasks.

Figure 3 shows the process of refinement. In a normal

object detector (e.g. Faster R-CNN [39]), the detection head

computes a classification result x ∈ R
K×1 for a given pro-

posal box, and passes it through a softmax layer to generate

a class probability y. Our refinement updates x into x′ using

the auxiliary models’ outputs as follows.

First, in order to leverage the prediction by the learned

multi-object labeling model, we create Nr number of win-

dows (e.g. Nr = 5 in our experiments) surrounding the

proposal with various sizes. We set the sizes by dividing

the space between the whole image and the proposal box in

Nr−1 uniform intervals. We then obtain multi-object labels

of Nr windows, denoted by m1, · · · ,mNr
. Second, we ob-

tain the closeness labels for all proposals in the image, and

average them into a single vector denoted c. It is used as a

context summary of the image, which is empirically better

than using individual outputs for each proposal box. Finally,

we obtain

x′ = refine(x|c,m1, . . . ,mNr
) (1)

= Wr[x, c,m1, . . . ,mNr
] + x,

where Wr is a projection matrix. In summary, we con-

catenate x, c and m1, · · · ,mr, and feed it into a fully-

connected layer with a residual connection. The presented

refinement model is designed after thorough validation; for

example, we tried multiple FC layers instead of Eq.(1), but

they were not as good as the single-layer version.

3.4. Training

Loss functions. We define the loss for each auxiliary

task as a cross-entropy loss, since they basically perform

prediction of class labels:

L∗ = −
1

N∗

N∗
∑

j=1

y∗j
T log

(

softmax(a∗j )
)

. (2)

For the loss of multi-object labeling Lm, we set N∗ = Nt,

y∗j = ymj and a∗j = amj where Nt is the number of win-

dows, ymj is the GT soft label vector for the j-th window

and softmax(amj ) is its predicted class probability by the

auxiliary head in section 3.2. For the loss of closeness label-

ing task Lc, we use Np as the number of positive proposal

boxes matched with GT boxes, ycj and softmax(acj) are GT

and predicted soft label vectors for the surrounding area of

the j-th box. Finally, for the foreground labeling task Lf ,

we use Nf as the number of pixels on the foreground mask,

yfj and softmax(afj ) as the GT and predicted foreground la-

bel of the j-th pixel.

The overall auxiliary loss is the weighted sum of all task

losses:

Laux = λmLm + λcLc + λfLf . (3)

As the loss for the refinement, we use the same crossover

entropy loss as in the main task for classification. We also

apply stop gradient operation, which ensures that the re-

finement loss does not affect the predictor of each task and

the feature extractor. That is, since the main task and each

auxiliary task have their own losses, the refinement loss up-

dates only the weights of the refinement layers.

Finally, the overall loss Ltotal is the sum of the object

detection loss Lmain of the base detector, the auxiliary loss

Laux and the refinement loss Lref . We set λm = λf =
λr = 1 and λc = 0.3 in our experiments.

Ltotal = Lmain + Laux + λrLref . (4)

Training. We initialize the backbone CNN by ImageNet

pretraining [11, 18]. We then simultaneously train the whole

network using the GTs of both main and auxiliary tasks.
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We freeze conv1 and conv2 x layers in ResNet-101 [22]

for fast convergence. For MobileNet [23] and Inception-

ResNet-v2 [45], we do not freeze any layer.

Implementation. We resize images so that their mini-

mum size is 600. We use the TensorFlow object detection

API [24] for training. The crop and resize [7] method is

employed instead of ROI pooling operation [17]. We use

the momentum optimizer with a rate of 0.9 and a weight

decay of 0.0001. We use only random horizontal flips for

data augmentation.

4. Experiments

Our approach is applicable to any two-stage object de-

tection models with region proposal. To show the general-

ity of our approach, we evaluate with various architectures

and datasets (section 4.1–4.2). We carry out ablation experi-

ments about the effect of multi-task learning and refinement

(section 4.3) and show some qualitative results (section 4.4).

We present more results in the supplementary file.

4.1. Experimental Settings

Datasets. We test various configurations of datasets, fol-

lowing previous literature on object detection. We use three

training settings: VOC07 trainval, VOC07+12 trainval, and

COCO17 train, and four test settings: VOC07 test, VOC12

test, COCO17 val, COCO17 test-dev. More exact train-

ing/test splits are described in each table.

Object detection architecture. Our model is integrable

with any two-stage object detection model. We choose

Faster R-CNN [39] as one of the state-of-the-art detec-

tors, and R-FCN [10] as another fully convolutional region

proposal-based detection model.

Backbone CNNs. ResNet-101 [22] is one of the most

popular backbones on object detection. MobileNet [23] is a

lightweight efficient architecture for mobile and embedded

applications. Inception-ResNet-v2 [45] is another state-of-

the-art network that has a bigger size than ResNet-101 and

attains better results in our experiments.

Evaluation metrics. We report the standard metrics

for each dataset: the mean Average Precision (mAP)

for VOC [14], and mAP over IoU from 0.5 to 0.95

(mAP@[.5:.95]) for COCO [30].

4.2. Detection Results

Table 1 shows the detection improvement of our ap-

proach over the baseline on the two datasets. We use Faster

R-CNN with ResNet-101 as the baseline. More specifically,

we present the detailed performance for VOC07+12 train-

val and VOC12 test in Table 2 and for COCO17 train and

COCO17 test-dev in Table 3. That is, we present the detailed

detection accuracies over all 20 object classes of VOC in

Table 2, and multiple mAP over IoU values, performance

Dataset VOC COCO

Training 07 07+12 17 train

Test 07 07 12 17 val 17 test-dev

Baseline 77.0 81.7 75.3 32.7 32.8

+ Task1 78.9 83.8 77.4 34.1 34.2

+ Task2 77.3 83.0 76.0 33.3 33.5

+ Task3 77.0 82.0 75.1 32.9 32.8

+ Task1,2 78.5 83.7 77.3 34.5 34.6

+ Task1,2,3 78.7 83.7 77.5 34.6 34.7

Table 1: Detection accuracies (mAP (%)) on VOC and

COCO. Baseline is Faster R-CNN [39] with ResNet-

101 [22]. Task1,2,3 indicate multi-object, closeness and

foreground labeling auxiliary task, respectively.

variation according to object sizes and additional average

recall scores in Table 3. All the results assure that our aux-

iliary tasks consistently enhance the detection performance

in various dataset splits. Table 1 shows that mAP values in-

crease on average by about 2.0%p in VOC and about 1.9%p

in COCO. Encouragingly, our approach leads to better per-

formance in all 20 categories of VOC as in Table 2 and does

too in all metrics of precision and recall regardless of object

sizes in COCO as in Table 3.

Table 4 summarizes the performance variation according

to backbone networks. Fixing Faster R-CNN as the detec-

tion architecture, we test MobileNet and Inception-ResNet-

v2, in addition to ResNet-101 in Table 1. The performance

gains by our method are more significant in the order of Mo-

bileNet, ResNet-101 and Inception-ResNet-v2. Given that

it is the reverse order of the backbone’s detection accu-

racy, the benefit of our approach could be larger when the

network capability is inferior. Importantly, no matter what

backbone CNN is used, our approach consistently improves

the detection accuracy with substantial margins.

Table 5 reports the results for another object detection

architecture, R-FCN, which turns out to be slightly worse

than Faster R-CNN in Table 1. Still, we can see the same

pattern that our approach nontrivially increases the detec-

tion accuracy in all experiments of PASCAL VOC.

Our experiments show the following trends of results

about our approach. First, it is highly promising that our

approach is constantly effective, regardless of base detec-

tors, backbone CNNs and datasets. These results could suf-

ficiently validate the generality of our MTL SSL approach.

Second, the auxiliary tasks are individually more helpful

for object detection in the order of task 1 (multi-object),

2 (closeness), and 3 (foreground). The task 1 is the most

useful because it can generate many windows as needed,

compared to the other tasks that create only a fixed handful

number of labels; the labels of task 2 per image are bounded

by the number of GT boxes and the label of task 3 is always
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Method mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Baseline 75.3 86.2 83.0 78.0 62.8 59.9 78.0 81.2 90.7 56.4 79.5 56.1 88.2 83.3 83.8 84.9 53.9 81.9 66.7 83.5 68.9

+ Task1 77.4 88.0 84.3 79.9 63.6 60.7 79.8 82.6 93.2 58.0 84.5 59.4 91.5 86.3 86.5 86.0 56.7 84.8 67.3 84.8 71.0

+ Task2 76.0 86.1 84.4 77.8 63.2 58.9 78.5 81.8 91.2 57.3 81.5 57.7 89.1 84.9 84.7 85.7 54.2 81.7 67.5 83.6 70.0

+ Task3 75.1 86.2 82.3 76.8 61.6 59.5 78.5 81.4 90.3 56.1 79.3 57.4 88.4 83.9 83.3 85.2 54.1 80.8 65.2 82.9 68.6

+ Task1,2 77.3 87.7 84.3 79.6 62.9 59.9 80.1 82.5 92.8 57.6 83.5 58.5 91.3 86.8 85.9 85.4 57.8 85.1 70.1 84.9 70.2

+ Task1,2,3 77.5 87.6 84.4 80.4 63.4 61.2 79.1 82.6 92.6 57.7 84.3 59.3 91.4 87.1 86.0 86.0 57.9 84.1 68.7 85.7 70.3

Table 2: Detailed performance on VOC 2012 test. The mAP values over 20 object classes of PASCAL VOC are also reported.

Method
Average Precision Average Recall

IoU=.50:.95 IoU=.50 IoU=.75 small medium large max=1 max=10 max=100 small medium large

Baseline 32.8 52.7 34.7 13.3 36.1 47.1 29.5 46.3 48.7 24.1 53.3 69.3

+Task1 34.2 55.2 36.1 14.1 37.7 49.7 29.7 46.6 49.1 23.9 53.9 70.6

+Task2 33.5 54.1 35.4 14.0 36.7 48.0 29.5 46.3 48.7 24.2 53.4 69.2

+Task3 32.8 52.6 34.6 13.2 35.9 46.8 29.5 46.3 48.6 24.1 53.0 69.3

+Task1,2 34.6 55.6 36.6 14.4 38.1 50.0 29.7 46.6 49.2 24.1 53.9 70.2

+Task1,2,3 34.7 55.8 36.6 14.5 38.1 50.0 29.9 46.7 49.2 24.5 53.9 70.3

Table 3: Detailed performance on COCO 2017 test-dev. The mAP metrics over multiple IoU values are reported. The results

are also separately shown for the subset of small (area ≤ 32 × 32), medium (32 × 32 < area ≤ 96 × 96) and large

(area > 96× 96) objects. The average recall values are measured given {1, 10, 100} detections at maximum per image.

Backbone MobileNet [23] Inception-ResNet-v2 [45]

Training 07 07+12 07 07+12

Test 07 07 12 07 07 12

Baseline 61.2 68.6 62.0 80.7 84.3 78.2

+ Task1 63.4 71.3 64.5 81.7 85.9 80.5

+ Task2 62.5 69.3 62.6 81.0 84.8 79.0

+ Task3 61.3 68.8 61.7 80.6 84.2 78.3

+ Task1,2 63.9 70.9 64.5 81.8 86.1 80.1

+ Task1,2,3 63.8 70.8 64.4 81.8 86.0 80.0

Table 4: Detection accuracies (mAP) with various backbone

networks on VOC. Baseline is Faster R-CNN [39].

one per image. The task 3 is the worst among the auxiliary

tasks since it is the simplest and may deliver the least infor-

mation. Third, when using all three tasks jointly, the results

are the best or closest to the best.

4.3. Ablation Experiments on Refinement

We perform an ablation study about the effect of refine-

ment. In normal MTL, the outputs of auxiliary tasks do not

directly refine the results of the main task. On the other

hand, our auxiliary tasks can improve the classification of

the main task, because they provide contextual information

about the surroundings of RoIs. Table 6 shows how much

detection accuracies are improved by the refinement. The

mAP values increase by an average of 0.7, thanks to the ef-

fect of refinement when compared to using MTL only.

To further investigate the effect of refinement alone, we

apply the stop gradient to prevent the losses of auxiliary

tasks from affecting the learning of the shared features. Its

result is shown in the row (+Refinement) of Table 6. The

Training 07 07+12

Test 07 07 12

Baseline 73.4 78.6 72.1

+ Task1 74.3 80.1 74.0

+ Task2 73.5 78.7 72.2

+ Task3 73.3 78.4 71.9

+ Task1,2 75.0 80.4 74.2

+ Task1,2,3 74.7 80.6 73.9

Table 5: Detection accuracies (mAP) on VOC. Baseline is

R-FCN [10] with ResNet-101 [22] backbone.

Training 07 07+12

Test 07 07 12

Baseline 77.0 81.7 75.3

+ MTL 78.0 (+1.0) 83.0 (+1.3) 76.7 (+1.4)

+ Refinement 78.3 (+1.3) 82.7 (+1.0) 76.4 (+1.1)

+ Both 78.7 (+1.7) 83.7 (+2.0) 77.5 (+2.2)

Table 6: Ablation results of multi-task learning and refine-

ment on VOC. Baseline is Faster R-CNN with ResNet-101.

mAP increases by 1.2 on average compared to the base-

line, although the best performance is achieved with the fea-

ture learning together. These results assure that both feature

learning by MTL and inference refinement are profitable.

4.4. Qualitative Results

Figure 4 shows some qualitative examples of detection

improvement of our approach on VOC and COCO. In each

set, we show the result of the baseline (upper) and our ap-
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Figure 4: Comparison of detection between baseline (upper) and our approach (lower). Our approach improves the baseline’s

detection by correcting several false negatives and false positives such as background, similar object and redundant detection.

proach (lower). Our method is often able to correct several

false negatives and false positives such as background, sim-

ilar objects and redundant detection.

5. Conclusion

We proposed a novel multi-task self-supervised learn-

ing approach for object detection, where three auxiliary

tasks were designed to improve the performance of object

detection. They created their own labels by recycling the

bounding box labels, and were jointly trained with the ob-

ject detection model. Our experiments validate that our ap-

proach improves detection accuracies with various archi-

tectures and backbones. Our approach was helpful for de-

tection regardless of the dataset size, as it achieved con-

sistent improvement from small (VOC07, 25K objects) to

large (COCO, 850K objects) datasets in our experiments.

There are several possible directions beyond this work.

First, we could design auxiliary tasks that help box re-

gression while this work dealt with only classification-

enhancing tasks. Second, auxiliary tasks can be extended

to recycle other labels such as segmentation masks for de-

tection improvement. Lastly, we may verify our method in

an extremely large dataset like OpenImages [28].
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