
Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation

Chen-Yu Lee Tanmay Batra Mohammad Haris Baig Daniel Ulbricht

Apple Inc

Abstract

In this work, we connect two distinct concepts for un-

supervised domain adaptation: feature distribution align-

ment between domains by utilizing the task-specific decision

boundary [57] and the Wasserstein metric [72]. Our pro-

posed sliced Wasserstein discrepancy (SWD) is designed to

capture the natural notion of dissimilarity between the out-

puts of task-specific classifiers. It provides a geometrically

meaningful guidance to detect target samples that are far

from the support of the source and enables efficient distri-

bution alignment in an end-to-end trainable fashion. In the

experiments, we validate the effectiveness and genericness

of our method on digit and sign recognition, image classifi-

cation, semantic segmentation, and object detection.

1. Introduction

Deep convolutional neural networks [30] is a milestone

technique in the development of modern machine percep-

tion systems solving various tasks such as classification,

semantic segmentation, object detection, etc. However, in

spite of the exceptional learning capacity and the improved

generalizability, deep learning models still suffer from the

challenge of domain shift – a shift in the relationship be-

tween data collected in two different domains [3, 2] (e.g.

synthetic and real). Models trained on data collected in

one domain can perform poorly on other domains. Domain

shift can exist in multiple forms: covariate shift (distribu-

tion shift in attributes), prior probability shift (shift in la-

bels), and concept shift (shift in the relationship between

attributes and labels) [61, 66, 44].

In this paper, we focus on the covariate shift problem

for the case where we have access to labeled data from one

domain (source) and unlabeled data from another domain

(target). This setup is commonly called unsupervised do-

main adaptation. Most of the work done in this field has fo-

cused on establishing a direct alignment between the feature

distribution of source and target domains. Such alignment

involves minimizing some distance measure of the feature

distribution learned by the models [56, 17, 38]. More so-

phisticated methods use adversarial training [19] to fur-

ther improve the quality of alignment between distributions

by adapting representations at feature-level [24, 18], pixel-

level [36, 70, 5], or output-level [69] across domains.

A recent advance that moves beyond the direction of

plain distribution matching was presented by Saito et

al. in [57]. They propose a within-network adversarial

learning-based method containing a feature generator and

two (task-specific) classifiers, which uses the task-specific

decision boundary for aligning source and target samples.

Their method defines a new standard in developing generic

domain adaptation frameworks. However, the system does

have some limitations. For instance, their discrepancy loss

(L1 in this case) is only helpful when the two output proba-

bility measures from the classifiers overlap.

Inspired by the framework in [57], we focus our ef-

forts on improving the discrepancy measure which plays

a central role in such within-network adversarial learning-

based approach. Our method aims to minimize the cost of

moving the marginal distributions between the task-specific

classifiers by utilizing the Wasserstein metric [43, 27, 1],

which provides a more meaningful notion of dissimilarity

for probability distributions. We make several key contri-

butions in this work: (1) a novel and principled method

for aligning feature distributions between domains via op-

timal transport theory (i.e.,Wasserstein distance) and the

task-specific decision boundary. (2) enable efficient end-to-

end training using sliced Wasserstein discrepancy (a vari-

ational formulation of Wasserstein metric). (3) effectively

harness the geometry of the underlying manifold created by

optimizing the sliced Wasserstein discrepancy in an adver-

sarial manner. (4) the method advances the state-of-the-art

across several tasks and can be readily applied to any do-

main adaptation problem such as image classification, se-

mantic segmentation, and object detection.

2. Related Work

A rich body of approaches to unsupervised domain adap-

tation aim to reduce the gap between the source and tar-

get domains by learning domain-invariant feature represen-

tations, through various statistical moment matching tech-

niques. Some methods utilize maximum mean discrepancy

(MMD) [38, 39] to match the hidden representations of cer-
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tain layers in a deep neural network. Other approaches

uses Central moment discrepancy (CMD) method [75] to

explicitly match each order and each hidden coordinate of

higher order moments. Adaptive batch normalization (Ad-

aBN) [33] has also been proposed to modulate the statis-

tics in all batch normalization layers across the network be-

tween domains.

Another family of strategies tackles the domain adapta-

tion problem by leveraging the adversarial learning behav-

ior of GANs [19]. Such technique was first used at feature-

level where a domain discriminator is trained to correctly

classify the domain of each input feature and the feature

generator is trained to deceive the domain discriminator so

that the resulting feature distribution is made domain in-

variant [71, 24, 18]. Later the technique was applied at

pixel-level to perform distribution alignment in raw input

space, translating source domain to the “style” of target do-

main and obtaining models trained on transformed source

data [36, 70, 5, 62, 23, 59, 45]. Recently the technique was

used at output-level by assuming that the output space con-

tains similar spatial structure for some specific tasks such as

semantic segmentation. The method in [69] thereby aligns

pixel-level ground truth through adversarial learning in the

output space. Other hybrid approaches have also been pro-

posed in [60, 25].

In contrast, Saito et al. in [57] proposed to align distri-

butions by explicitly utilizing task-specific classifiers as a

discriminator. The framework maximizes the discrepancy

between two classifiers’ output to detect target samples that

are outside the support of the source and then minimizes the

discrepancy to generate feature representations that are in-

side the support of the source with respect to the decision

boundary. Instead of aligning manifold in feature, input,

or output space by heuristic assumptions, this approach fo-

cuses on directly reshaping the target data regions that in-

deed need to be reshaped.

Wasserstein metric, the natural geometry for probability

measures induced by the optimal transport theory, has been

investigated in several fields such as image retrieval [55],

color-based style transfer [51], and image warping [21].

The Wasserstein distance has also recently raised interest

in stabilizing generative modeling [1, 14, 73], learning in-

trospective neural networks [32], and obtaining Gaussian

mixture models [29] thanks to its geometrically meaningful

distance measure even when the supports of the distribu-

tions do not overlap.

As for domain adaptation, Courty et al. in [10] first learn

a transportation plan matching source and target samples

with class regularity. JDOT method [9] learns to map input

space from source to target by jointly considering the class

regularity and feature distribution. DeepJDOT method [12]

further improves upon JDOT by jointly matching feature

and label space distributions with more discriminative fea-

ture representations in a deep neural network layer. How-

ever, the fact that these approaches explicitly enforce an

one-to-one mapping between source samples and target

samples in label space could largely restrict the practical

usages when balanced source-target pairs are unavailable.

It is also unclear how to extend these approaches to more

generic tasks when one data sample has structured output

space such as pixel-wise semantic segmentation.

In this work, we propose a principled framework to

marry the two powerful concepts: distribution alignment

by task-specific decision boundary [57] and the Wasserstein

distance [72]. The Wasserstein metric serves as a reliable

discrepancy measure between the task-specific classifiers,

which directly measures the support of target samples from

source samples instead of producing explicit one-to-one

mapping in label space. A variational version of the Wasser-

stein discrepancy further provides straightforward and geo-

matrically meaningful gradients to jointly train the feature

generator and classifiers in the framework efficiently.

3. Method

We first introduce unsupervised domain adaptation set-

ting in Section 3.1. Second, we briefly review the concept

of optimal transport in Section 3.2. Finally, we detail how

to train the proposed method with the sliced Wasserstein

discrepancy in Section 3.3.

3.1. Framework Setup

Given input data xs and the corresponding ground truth

ys drawn from the source set {Xs, Ys}, and input data xt

drawn from the target set Xt, the goal of unsupervised do-

main adaptation is to establish knowledge transfer from the

labeled source set to the unlabeled target set as mentioned

in [47]. When the two data distributions Xs and Xt are

close enough, one can simply focus on minimizing an em-

pirical risk of the joint probability distribution P(Xs, Ys).
However, when that the two distributions are substantially

different, optimizing a model solely over the source infor-

mation results in poor generalizability.

Following the Maximum Classifier Discrepancy (MCD)

framework [57], we train a feature generator network G and

the classifier networks C1 and C2, which take feature re-

sponses generated from G and produce the corresponding

logits p1(y|x), p2(y|x) respectively (as shown in Figure 1).

The optimization procedure consists of three steps:

(1) train both generator G and classifiers (C1, C2) on the

source domain {Xs, Ys} to classify or regress the source

samples correctly,

min
G,C1,C2

Ls(Xs, Ys), (1)

where Ls can be any loss functions of interest such as cross

entropy loss or mean squared error loss.
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Figure 1: An illustration of the proposed sliced Wasserstein discrepancy (SWD) computation. The SWD is designed to capture the

dissimilarity of probability measures p1 and p2 in R
d between the task-specific classifiers C1 and C2, which take input from feature

generator G. The SWD enables end-to-end training directly through a variational formulation of Wasserstein metric using radial projections

on the uniform measures on the unit sphere Sd−1, providing a geometrically meaningful guidance to detect target samples that are far from

the support of the source. Please refer to Section 3.3 for details.

(2) freeze the parameters of the generator G and update the

classifiers (C1, C2) to maximize the discrepancy between

the outputs of the two classifiers on the target set Xt, identi-

fying the target samples that are outside the support of task-

specific decision boundaries,

min
C1,C2

Ls(Xs, Ys)− LDIS(Xt) (2)

where LDIS(Xt) is the discrepancy loss (L1 in [57]).

Ls(Xs, Ys) is also added to this step to retain information

from the source domain, and

(3) freeze the parameters of the two classifiers and update

the generator G to minimize the discrepancy between the

outputs of the two classifiers on the target set Xt,

min
G

LDIS(Xt) (3)

This step brings the target feature manifold closer to the

source.

3.2. Optimal Transport and Wasserstein Distance

The effectiveness of domain adaptation in the aforemen-

tioned MCD framework depends entirely on the reliability

of the discrepancy loss. Learning without the discrepancy

loss, essentially dropping step 2 and step 3 in the training

procedure, is simply supervised learning on the source do-

main.

The Wasserstein distance has recently received great at-

tention in designing loss functions for its superiority over

other probability measures [73, 41]. In comparison to other

popular probability measures such as total variation dis-

tance, Kullback-Leibler divergence, and Jensen-Shannon

divergence that compare point-wise histogram embeddings

alone, Wasserstein distance takes into account the proper-

ties of the underlying geometry of probability space and it is

even able to compare distribution measures that do not share

support [1]. Motivated by the advantages of the Wasserstein

distance, we now describe how we leverage this metric for

measuring the discrepancy in our method.

Let Ω be a probability space and µ, ν be two probability

measures in P(Ω), the Monge problem [43] seeks a trans-

port map T : Ω → Ω that minimizes the cost

inf
T#µ=ν

∫

Ω

c(z, T (z))dµ(z), (4)

where T#µ = ν denotes a one-to-one push-forward from

µ toward ν ∀ Borel subset A ⊂ Ω and c : Ω × Ω → R
+

is a geodesic metric that can be either linear or quadratic.

However, the solution T ∗ may not always exist due to the

assumption of no splitting of the probability measures, for

example when pushing a Dirac measure toward a non-Dirac

measure.

Kantorovitch [27] proposed a relaxed version of Eq 4,

which seeks a transportation plan of a joint probability dis-

tribution γ ∈ P(Ω× Ω) such that

inf
γ∈Π(µ,ν)

∫

Ω×Ω

c(z1, z2)dγ(z1, z2), (5)

where Π(µ, ν) = {γ ∈ P(Ω× Ω)|π1#γ = µ, π2#γ = ν}
and π1 and π2 denote the two marginal projections of Ω×Ω
to Ω. The solutions γ∗ are called optimal transport plans or

optimal couplings [72].

For q ≥ 1, the q-Wasserstein distance between µ and ν

in P(Ω) is defined as

Wq(µ, ν) =

(

inf
γ∈Π(µ,ν)

∫

Ω×Ω

c(z1, z2)
q
dγ(z1, z2)

)1/q

, (6)

which is the minimum cost induced by the optimal trans-

portation plan. In our method, we use the 1-Wasserstein

distance, also called the earth mover’s distance (EMD).

3.3. Learning with Sliced Wasserstein Discrepancy

In this work, we propose to apply 1-Wasserstein dis-

tance to the domain adaptation framework described in

Section 3.1. We utilize the geometrically meaningful 1-

Wasserstein distance as the discrepancy measure in step 2
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Algorithm 1 Sliced Wasserstein Discrepancy for Unsupervised Domain

Adaptation

Require: Labeled source set {Xs, Ys}, unlabeled target set Xt, number

of random projections M , and randomly initialized feature generator G

and classifiers C1, C2.

while G, C1, and C2 have not converged do

Step 1: Train G, C1, and C2 on labeled source set:

min
G,C1,C2

Ls(Xs, Ys)

Step 2: Train C1 and C2 to maximize sliced Wasserstein discrepancy
on unlabeled target set:

Obtain classifiers’ output p1 and p2 on target samples

Sample {θ1, ..., θM} from Sd−1 in R
d

Sort Rθmp1 such that Rθmp1(j) ≤ Rθmp1(j+1)
Sort Rθmp2 such that Rθmp2(j) ≤ Rθmp2(j+1)

min
C1,C2

Ls(Xs, Ys)− LDIS(Xt)

where LDIS(Xt) =
∑

m

∑

j
c(Rθmp1(j),Rθmp2(j))

Step 3: Train G to minimize the same sliced Wasserstein discrepancy
on unlabeled target set:

min
G

LDIS(Xt)

end while

and step 3 in the aforementioned framework. In practice, we

consider the discrete version of classifiers’ logits p1(y|x)
and p2(y|x). Computing W1(p1, p2) requires obtaining the

optimal transport coupling γ
∗ by solving a linear program-

ming problem [27], which is not efficient. Although var-

ious optimization approaches have been proposed in the

past [11, 16], it is unclear how we can directly optimize

W1(p1, p2) in an end-to-end trainable fashion efficiently.

To take advantage of the best of both worlds – to align

distributions of source and target by utilizing the task-

specific decision boundaries and to incorporate the Wasser-

stein discrepancy, which has well-behaved energy land-

scape for stochastic gradient descent training, we propose to

integrate W1(p1, p2) into our framework by using the sliced

Wasserstein discrepancy, a 1-D variational formulation of

the 1-Wasserstein distance between the outputs p1 and p2
of the classifiers along the radial projections.

Motivated by [52] which defines a sliced barycenter of

discrete measures, we define the sliced 1-Wasserstein dis-

crepancy (SWD) as

SWD(µ, ν) =

∫

Sd−1

W1(Rθµ,Rθν)dθ, (7)

where Rθ denotes a one-dimensional linear projection op-

eration on the probability measure µ or ν, and θ is a uniform

measure on the unit sphere Sd−1 in R
d such that

∫

Sd−1 dθ =
1. In this manner, computing the sliced Wasserstein dis-

crepancy is equivalent to solving several one-dimensional

optimal transport problems which have closed-form solu-

tions [52].

Specifically, let α and β be the permutations that or-

der the N one-dimensional linear projections of N sam-

ples such that ∀ 0 ≤ i < N − 1,Rθµα(i) ≤ Rθµα(i+1)

and Rθνβ(i) ≤ Rθνβ(i+1), then the optimal coupling γ
∗

that minimizes such one-dimensional Wasserstein distance

is simply assign Rθµα(i) to Rθνβ(i) using a sorting algo-

rithm. For discrete probability measures, our SWD can be

written as:

SWD(µ, ν) =

M
∑

m=1

N
∑

i=1

c(Rθmµα(i),Rθmνβ(i)) (8)

for M randomly sampled θ and quadratic loss for c unless

otherwise mentioned. Our proposed SWD is essentially a

variational version of original Wasserstein distance but at

a fraction of its computational cost [4]. More importantly,

the SWD is differentiable due to the close-form characteris-

tic, so we can focus on using optimal transport as a reliable

fidelity measure to guide the optimization of feature gener-

ator and classifiers. We summarize our framework in Algo-

rithm 1 and illustrate the SWD computation in Figure 1.

4. Experiments

In principle, our method can be applied to any domain

adaptation tasks and does not require any similarity assump-

tions in input or output space. We perform extensive evalu-

ation of the proposed method on digit and sign recognition,

image classification, semantic segmentation, and object de-

tection tasks.

4.1. Digit and Sign Recognition

In this experiment, we evaluate our method using five

standard benchmark datasets: Street View House Numbers

(SVHN) [46], MNIST [31], USPS [26], Synthetic Traffic

Signs (SYNSIG) [42], and German Traffic Sign Recogni-

tion Benchmark (GTSRB) [65] datasets. For each domain

shift pair, we use the exact CNN architecture provided by

Saito et al. [57]. We use Adam [28] solver with mini-

batch size of 128 in all experiments. Gradient reversal layer

(GRL) [17] is used for training the networks so we do not

need to control the update frequency between the genera-

tor and classifiers. The hyper-parameter particular to our

method is the number of radial projections M . We varied

the value of M in our experiment and detailed the sensitiv-

ity to the hyper-parameter in Figure 2(a) and 2(b).

SVHN → MNIST We first examine the adaptation from

real-world house numbers obtained from Google Street

View images [46] to handwritten digits [31]. The two

domains demonstrate distinct distributions because images

from SVHN dataset contain cluttered background from

streets and cropped digits near the image boundaries. We

use the standard training set as training samples, and testing

set as test samples both for source and target domains. The

feature generator contains three 5×5 conv layers with stride

two 3×3 max pooling placed after the first two conv layers.

For classifiers, we use 3-layered fully-connected networks.
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(a) SVHN to MNIST (b) SYNSIG to GTSRB (c) Source only (d) SWD adapted (ours)

Figure 2: The effect of number of radial projections M to accuracy on (a) SVHN to MNIST adaptation, and (b) SYNSIG to GTSRB

adaptation. M = 128 is sufficient for stable optimization and good accuracies. T-SNE [40] visualization of features obtained from SVHN

to MNIST experiment by (c) source domain only, and (d) SWD adaptation. Blue and red points denote the source and target samples,

respectively. Our method generates much more discriminative feature representation compared to source only setting.

SYNSIG → GTSRB In this setting, we evaluate the adap-

tation ability from synthetic images SYNSIG to real images

GTSRB. We randomly selected 31367 samples for target

training and evaluated the accuracy on the rest. The feature

generator contains three 5×5 conv layers with stride two

2×2 max pooling placed after each conv layer. For classi-

fiers, we use 2-layered fully-connected networks. The per-

formance is evaluated for 43 common classes between the

two domains.

MNIST ↔ USPS For the two-way domain shift experiment

we also follow the protocols provided by [57] that we use

the standard training set as training samples, and testing set

as test samples both for source and target domains. The

feature generator contains two 5×5 conv layers with stride

two 2×2 max pooling placed after the each conv layer. For

classifiers, we use 3-layered fully-connected networks.

Results Table 1 lists the accuracies for the target samples

by four different domain shifts. We observed that our SWD

method outperforms competing approaches in all settings.

The proposed method also outperforms the direct compara-

ble method MCD [57] by a large margin – absolute accu-

racy improvement of 2.8% on average across the four set-

tings. Figure 2(a) and 2(b) show the ablation study on the

sensitivity to the number of radial projections M . In our ex-

periment we empirically found that M = 128 works well in

all cases. We also visualized learned features in Figure 2(c)

and 2(d). Our method generates much more discriminative

feature representation compared to source only setting.

It is interesting to see that the task-specific discrepancy-

aware methods such as MCD [57], DeepJDOT [12], and the

proposed SWD are the current leading approaches for the

tasks being addressed here. This demonstrates the impor-

tance of utilizing the task-specific decision boundaries (dis-

crepancy) to guide the process of transfer learning instead

of simply matching the distributions between the source and

target domains in pixel, feature, or output space in most of

the other distribution matching approaches. In particular,

SVHN SYNSIG MNIST USPS

Method ↓ ↓ ↓ ↓
MNIST GTSRB USPS MNIST

Source only 67.1 85.1 79.4 63.4

MMD [38] 71.1 91.1 81.1 -

DANN [17] 71.1 88.7 85.1 73.0 ± 0.2

DSN [6] 82.7 93.1 - -

ADDA [70] 76.0 ± 1.8 - - 90.1 ± 0.8

CoGAN [36] - - - 89.1 ± 0.8

PixelDA [5] - - 95.9 -

ASSC [20] 95.7 ± 1.5 82.8 ± 1.3 - -

UNIT [35] 90.5 - 96.0 93.6

CyCADA [23] 90.4 ± 0.4 - 95.6 ± 0.2 96.5 ± 0.1

I2I Adapt [45] 92.1 - 95.1 92.2

GenToAdapt [59] 92.4 ± 0.9 - 95.3 ± 0.7 90.8 ± 1.3

MCD [57] 96.2 ± 0.4 94.4 ± 0.3 96.5 ± 0.3 94.1 ± 0.3

DeepJDOT [12] 96.7 - 95.7 96.4

SWD (ours) 98.9 ± 0.1 98.6 ± 0.3 98.1 ± 0.1 97.1 ± 0.1

Table 1: Results of unsupervised domain adaptation across digit

and traffic sign datasets. We repeat each experiment 5 times and

report the mean and the standard deviation of the accuracy. Our

method significantly outperforms the direct comparable method

MCD [57] and other methods as well.

the adversarial training based methods require a separate

generator and multiple discriminators that are oftentimes

larger than the main task network itself. For example, the

method in [23] uses a 10-layer generator, a 6-layer image

level discriminator, and a 3-layer feature level discriminator

while the main task network is a 4-layer network. Besides,

the auxiliary discriminators are discarded after the training

is completed.

Furthermore, the main distinction between the proposed

method and the DeepJDOT [12] approach is that the Deep-

JDOT requires a multi-staged training process – it trains a

CNN and solves a linear programming task iteratively. The

DeepJDOT also assumes the true optimal transport cou-

pling between every pair of samples in a mini-batch con-

verges when propagating pseudo labels from the source do-

main to target domain, which is often not the case in prac-
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Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck mean

Source only 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

MMD [38] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1

DANN [17] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

MCD [57] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

SWD (ours) 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4

Table 2: Results of unsupervised domain adaptation on VisDA 2017 [49] image classification track. Accuracies are obtained by fine-tuning

ResNet-101 model pre-trained on ImageNet. This task evaluates the adaptation capability from synthetic CAD model images to real-world

MSCOCO images. Our method outperforms the direct comparable method MCD [57] and other methods as well.

tice. This emphasizes the importance of choosing a geo-

metrically meaningful discrepancy measure that makes no

assumptions on the optimal transport coupling in the label

space and is end-to-end trainable, optimizing over one dis-

crepancy loss instead of solving multiple losses indepen-

dently.

We note that the method in [63] obtained 99.4% on

SVHN to MNIST adaptation task with various engineering

efforts such as using instance normalization, adding Gaus-

sian noise, and leveraging a much deeper 18-layer network.

This clustering assumption-based approach achieves per-

formance on-par with ours, and we leave this architectural

search for future exploration.

4.2. VisDA Image Classification

Next, we evaluate the proposed method on image classi-

fication task. We use the VisDA dataset [49], which is de-

signed to assess the domain adaptation capability from syn-

thetic to real images across 12 object classes. The source

domain contains 152,397 synthetic images generated by

rendering 3D CAD models from different angles and un-

der different lighting conditions. For target domain we use

the validation set collected from MSCOCO [34] and it con-

sists of 55,388 real images. Following the protocol in [57],

we evaluate our method by fine-tuning ImageNet [13] pre-

trained ResNet-101 [22] model. The ResNet model except

the last fully-connected layer was used as our feature gener-

ator and randomly initialized three-layered fully-connected

networks were used as our classifiers. We used Adam solver

with mini-batch size of 32 in the experiment. The num-

ber of radial projections M is set to 128. We apply hori-

zontal flipping of input images during training as the only

data augmentation. Learning rate was set to value of 10−6

throughout the training. GRL [17] is used for training the

network so we do not need to control the update frequency

between the generator and classifiers.

Results Table 2 lists the results that are based on the

same evaluation protocol1. We can see that the task-

specific discrepancy-aware methods MCD [57] and our

1Method in [15] involves various data augmentation including scaling,

cropping, flipping, rotation, brightness and color space perturbation, etc.

The authors reported mean accuracy of 74.2% in the minimal augmenta-

tion setting using a much deeper ResNet-152 backbone.

SWD method perform better than the source only model

in all object classes, while pure distribution matching based

methods perform worse than the source only model in some

categories. Our method also outperforms the direct compa-

rable method MCD [57] by a large margin. We emphasize

that the main difference between MCD and our method is

the choice of discrepancy loss. This validated the effective-

ness of the proposed sliced Wasserstein discrepancy in this

challenging synthetic to real image adaption task.

4.3. Semantic Segmentation

Unlike image classification task, obtaining ground truth

label for each pixel in an image requires a lot more amount

of human labor. Here we extend our framework to perform

domain adaptation for the semantic segmentation task.

Datasets In this experiment we used three benchmark

datasets: GTA5 [53], Synthia [54], and Cityscapes [8]. All

three datasets contain dense pixel-level semantic annota-

tions that are compatible with one another. GTA5 contains

24966 vehicle-egocentric images synthesized from a pho-

torealistic open-world computer game Grand Theft Auto

V. Synthia consists of 9400 images generated by render-

ing a virtual city created with the Unity engine. Frames in

Synthia are acquired from multiple camera viewpoints – up

to eight views per location that are not necessary vehicle-

egocentric. Cityscapes has 2975 training images, 500 vali-

dation images, and 1525 test images with dense pixel-level

annotation of urban street scenes in Germany and neigh-

boring countries. During training, the synthetic GTA5 or

Synthia is used as source domain and the real Cityscapes is

used as target domain. We used the standard training split

for training and validation split for evaluation purpose.

Implementation details In an effort to demonstrate the ef-

fectiveness of the proposed method and to decouple the per-

formance gain due to architectural search, we adopted the

commonly used VGG-16 [64] and ResNet-101 [22] models

for our feature generator. For classifiers we used the de-

coder in PSPNet [77] for its simplicity of implementation.

Based on this straightforward design choice, our segmenta-

tion model achieves mean intersection-over-union (mIoU)

of 60.5% for VGG-16 backbone and 64.1% for ResNet-101

backbone when trained on the Cityscapes training set and
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Source only (VGG16) 25.9 10.9 50.5 3.3 12.2 25.4 28.6 13.0 78.3 7.3 63.9 52.1 7.9 66.3 5.2 7.8 0.9 13.7 0.7 24.9

FCN Wld [24] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1

MCD [57] 86.4 8.5 76.1 18.6 9.7 14.9 7.8 0.6 82.8 32.7 71.4 25.2 1.1 76.3 16.1 17.1 1.4 0.2 0.0 28.8

CDA [76] 74.9 22.0 71.7 6.0 11.9 8.4 16.3 11.1 75.7 13.3 66.5 38.0 9.3 55.2 18.8 18.9 0.0 16.8 14.6 28.9

AdaSegNet [69] 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0

CyCADA [23] 85.2 37.2 76.5 21.8 15.0 23.8 22.9 21.5 80.5 31.3 60.7 50.5 9.0 76.9 17.1 28.2 4.5 9.8 0.0 35.4

CBST [78] 90.4 50.8 72.0 18.3 9.5 27.2 28.6 14.1 82.4 25.1 70.8 42.6 14.5 76.9 5.9 12.5 1.2 14.0 28.6 36.1

DCAN [74] 82.3 26.7 77.4 23.7 20.5 20.4 30.3 15.9 80.9 25.4 69.5 52.6 11.1 79.6 24.9 21.2 1.30 17.0 6.70 36.2

SWD (ours) 91.0 35.7 78.0 21.6 21.7 31.8 30.2 25.2 80.2 23.9 74.1 53.1 15.8 79.3 22.1 26.5 1.5 17.2 30.4 39.9

Source only (ResNet101) 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6

AdaSegNet [69] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

SWD (ours) 92.0 46.4 82.4 24.8 24.0 35.1 33.4 34.2 83.6 30.4 80.9 56.9 21.9 82.0 24.4 28.7 6.1 25.0 33.6 44.5

Table 3: Adaptation results from GTA5 to Cityscapes. We compare our results with other state-of-the-art approaches that are based on the

standard VGG-16 or ResNet-101 backbone.
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Source only (VGG16) 6.4 17.7 29.7 0.0 7.2 30.3 66.8 51.1 1.5 47.3 3.9 0.1 0.0 20.2

FCN Wld [24] 11.5 19.6 30.8 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 22.9

Cross-city [7] 62.7 25.6 78.3 1.2 5.4 81.3 81.0 37.4 6.4 63.5 16.1 1.2 4.6 35.7

CBST [78] 69.6 28.7 69.5 11.9 13.6 82.0 81.9 49.1 14.5 66.0 6.6 3.7 32.4 36.1

AdaSegNet [69] 78.9 29.2 75.5 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 37.6

SWD (ours) 83.3 35.4 82.1 12.2 12.6 83.8 76.5 47.4 12.0 71.5 17.9 1.6 29.7 43.5

Source only (ResNet101) 55.6 23.8 74.6 6.1 12.1 74.8 79.0 55.3 19.1 39.6 23.3 13.7 25.0 38.6

AdaSegNet [69] 79.2 37.2 78.8 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 45.9

SWD (ours) 82.4 33.2 82.5 22.6 19.7 83.7 78.8 44.0 17.9 75.4 30.2 14.4 39.9 48.1

Table 4: Adaptation results from Synthia to Cityscapes. We compare our results with other state-of-the-art approaches that are based on

the standard VGG-16 or ResNet-101 backbone.

evaluated on the Cityscapes validation set for 19 compatible

classes, which match the same oracle performance reported

in the recent literature [69, 74].

We used Momentum SGD solver with a fixed momen-

tum of 0.9 and weight decay of 0.0001 in all experiments.

Learning rate was set to value of 0.0001 for GTA5 to

Cityscapes setting and 0.001 for Synthia to Cityscapes set-

ting. During training, we randomly sampled a single image

from both source and target domains for each mini-batch

optimization. All images are resized to 1024×512 resolu-

tion. No data augmentation is used (such as flipping, crop-

ping, scaling, and multi-scale ensemble) to minimize the

performance gain due to the engineering efforts and to en-

sure the reproducibility. Since the sliced Wasserstein dis-

crepancy is computed at every pixel of an image in a mini-

batch fashion, we empirically found that the number of ra-

dial projections M = 8 is sufficient to produce good results.

Results We use the evaluation protocol released along

with VisDA challenge [49] to calculate the PASCAL VOC

intersection-over-union (IoU). We show quantitative and

qualitative results of adapting GTA5 to Cityscapes in Ta-

ble 3 and Figure 3, respectively. We can see clear improve-

ment from models trained on source domain only to models

trained with the proposed SWD method for both VGG-16

and ResNet-101 backbones. Also, our method consistently

outperforms other recent approaches that utilize generative

adversarial networks [69, 23] and the style transfer based

technique [74].

Table 4 shows the results of adapting Synthia to

Cityscapes. The domain shift is even more significant be-

tween these two datasets because images from Synthia are

not only generated by a rendering engine but also con-

tain multiple viewpoints that are not necessary vehicle-

egocentric. Our method shows consistent improvement

over other approaches and generalizes well with such dra-

matic viewpoint shift.

Note that most of the competing approaches are specif-

ically designed only for semantic segmentation tasks and

they often require the assumption of input space similar-

ity, output space similarity, or geometric constrains. For

instance, the method in [78] incorporated spatial priors by

assuming sky is likely to appear at the top and road is likely

to appear at the bottom of an image, etc. The frequen-

cies of ground truth labels per pixel are computed from

GTA5 dataset and are then multiplied with the softmax out-

put of the segmentation network. However, it is unclear

how to generalize this prior when large viewpoint differ-

ences present between the source and target domains, such

as adaptation from Synthia to Cityscapes. Our method does

not require any prior assumptions of the characteristics of

the task of interest and nevertheless achieves better perfor-

mance.
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Figure 3: Qualitative semantic segmentation results on adaptation from GTA5 to Cityscapes. From left to right: input, source only model,

our method, and ground truth. Our method produces cleaner predictions and less confusion between challenging classes such as road, car,

sidewalk, and vegetation.

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck mAP

Source only 0.5 0.4 9.4 9.4 7.2 0.1 1.3 4.6 0.5 0.3 1.5 0.9 3.0

MCD [57] 11.8 1.3 10.3 3.3 10.2 0.1 8.0 2.4 0.6 1.5 5.8 1.1 4.7

SWD (ours) 11.9 2.0 15.5 5.4 13.1 0.1 4.7 9.8 0.9 1.0 6.2 0.7 5.9

Table 5: Results of unsupervised domain adaptation on VisDA 2018 [50] object detection track. This task evaluates the adaptation capability

from synthetic CAD model images to real-world MSCOCO images (COCO17-val). We report mean average precision (mAP) at 0.5 IoU

using SSD with Inception-V2 backbone. Our method outperforms the direct comparable method MCD [57] by 25% relatively.

4.4. Object Detection

To demonstrate if our method generalizes to other tasks

as well, we extend it to object detection task. We use the

recent released VisDA 2018 dataset [50], which contains

source images generated by rendering 3D CAD models and

target images collected from MSCOCO [34]. This dataset

is especially challenging due to uncalibrated object scales

and positions between the synthetic and real images.

We use a standard off-the-shelf Single Shot Detector

(SSD) [37] with Inception-V2 [68] backbone without any

architectural modifications or heuristic assumptions. The

model predicts class labels, locations and size shifts for a

total of 1.9k possible anchor boxes. The feature generator

in this case is the backbone network pre-trained on Ima-

geNet and the classifiers comprise of all the additional lay-

ers which are present after the backbone network. We em-

ploy the proposed sliced Wasserstein discrepancy to both

classification and bounding box regression outputs to the

existing loss functions in SSD. No other modifications are

made to the network. We also implement MCD [57] method

with the exact network architecture for baseline compar-

ison. All networks are optimized with Momentum SGD

solver with a fixed momentum of 0.9, mini-batch size of 16,

and weight decay of 0.0001. Learning rate is set to value

of 0.0001. The number of radial projections M is set to

128. We apply random cropping and flipping to all network

training.

Results We report mean average precision (mAP) at 0.5 IoU

in Table 5. These results show that even with large domain

shift in image realism, object scales, and relative object po-

sitions, our method is able to improve the performance by a

large margin compared to models trained on source image

only. Our method also outperforms the direct comparable

method MCD [57] by a significant 25% relatively.

5. Conclusion

In this paper, we have developed a new unsupervised

domain adaptation approach, which aligns distributions by

measuring sliced Wasserstein discrepancy between task-

specific classifiers. The connection to Wasserstein metric

paves the way to make better use of its geometrically mean-

ingful embeddings in an efficient fashion, which in the past

has primarily been restricted to obtaining one-to-one map-

ping in label space. Our method is generic and achieves

superior results across digit and sign recognition, image

classification, semantic segmentation, and object detection

tasks. Future work includes extension of our approach to

domain randomization [67], open set adaptation [58], and

zero-shot domain adaptation [48].
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