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Abstract

Omni-directional cameras have many advantages over

conventional cameras in that they have a much wider field-

of-view (FOV). Accordingly, several approaches have been

proposed recently to apply convolutional neural networks

(CNNs) to omni-directional images for various visual tasks.

However, most of them use image representations defined in

the Euclidean space after transforming the omni-directional

views originally formed in the non-Euclidean space. This

transformation leads to shape distortion due to nonuniform

spatial resolving power and the loss of continuity. These

effects make existing convolution kernels experience diffi-

culties in extracting meaningful information.

This paper presents a novel method to resolve such prob-

lems of applying CNNs to omni-directional images. The

proposed method utilizes a spherical polyhedron to rep-

resent omni-directional views. This method minimizes the

variance of the spatial resolving power on the sphere sur-

face, and includes new convolution and pooling methods

for the proposed representation. The proposed method can

also be adopted by any existing CNN-based methods. The

feasibility of the proposed method is demonstrated through

classification, detection, and semantic segmentation tasks

with synthetic and real datasets.

1. Introduction

360◦ cameras have many advantages over traditional

cameras because they offer an omni-directional view of

a scene rather than a narrow field of view. This omni-

directional view of 360◦ cameras1 allows us to extract more

information from the scene at once. Therefore, 360◦ cam-

eras play an important role in systems requiring rich infor-

mation of surroundings, e.g. advanced driver assistance sys-

tems (ADAS) and autonomous robotics.

Meanwhile, convolutional neural networks (CNNs) have

∗These authors contributed equally
1‘360◦’ and ‘omni-directional’ are used interchangeably in the paper.

Figure 1. Spatial distortion due to nonuniform spatial resolving

power in an ERP image. Yellow squares on both sides represent

the same surface areas on the sphere.

been widely used for many visual tasks to preserve locality

information. They have shown great performance in classi-

fication, detection, and semantic segmentation problems as

in [9] [12] [13] [15] [16].

Following this trend, several approaches have been pro-

posed recently to apply CNNs to omni-directional images

to solve classification, detection, and semantic segmenta-

tion problems. Since the input data of neural networks are

usually represented in the Euclidean space, they need to rep-

resent the omni-directional images in the Euclidean space,

even though omni-directional images are originally repre-

sented in non-Euclidean polar coordinates. Despite omni-

directional images existing in a non-Euclidean space, equi-

rectangular projection (ERP) has been commonly used to

represent omni-directional images in regular grids.

However, there exists spatial distortion in ERP images

coming from the nonuniform spatial resolving power, which

is caused by the non-linearity of the transformation as

shown in Fig. 1. This effect is more severe near the poles.

In addition, a different kind of distortion is observable when

the omni-directional image is taken by a tilted 360◦ camera.

In this case, without compensating for the camera tilt angle,

ERP introduces a sinusoidal fluctuation of the horizon as

in Fig. 2. This also distorts the image, making the task of

visual perception much more difficult.

In conventional 2D images, the regular grids along verti-

cal and horizontal directions allow the convolution domain

to be uniform; the uniform domain enables the same shaped
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Figure 2. Problems of using ERP images. (left) When an omni-

directional image is taken by a tilted camera, a sinusoidal fluctu-

ation of the horizon occurs in the ERP image. The yellow dotted

line represents the fluctuating horizon [2]. (right) When the car is

split, the car is detected as cars with two different IDs. This image,

which is from the SUN360 dataset [23], demonstrate the effects of

edge discontinuity.

convolution kernels to be applied over the whole image.

However, in ERP images, the nonuniform spatial resolving

power, as shown in Fig. 1 and Fig. 2(left), causes the convo-

lution domain to vary over the ERP image, making the same

shaped kernels inadequate for the ERP image convolution.

Furthermore, during the transformation from the non-

Euclidean space to the Euclidean space, some important

properties could be lost. For example, the non-Euclidean

space in which omni-directional images are formed has

a cyclical property: the unidirectional translation along a

sphere surface (i.e. in an omni-directional image) is al-

ways continuous and returns to the starting point eventually.

However, during the transformation from the non-Euclidean

space to the Euclidean space through the ERP, the continu-

ity and cyclical properties are lost. This causes a discontinu-

ity along the borders of the ERP image. The discontinuity

can cause a single object to be misinterpreted in detection

problems as two different objects when the object is split by

the borders as shown in Fig. 2(right).

Recently, there has been an attempt to keep the continu-

ity of the omni-directional image by projecting the image

onto a cube map [14]. Projecting an omni-directional im-

age onto a cube map also has the benefit that the spatial re-

solving power in an image varies much less compared with

ERP images. Furthermore, the cube map representation is

affected less by rotation than the ERP representation. How-

ever, even though a cube map representation reduces the

variance of spatial resolving power, there still exists vari-

ance from centers of the cube faces to their edges. In addi-

tion, the ambiguity of kernel orientation exists when a cube

map representation is applied to CNNs. Because the top

and bottom faces of cube map are orthogonal to the other

faces, it is ambiguous to define kernel orientation to extract

uniform locality information on top and bottom faces. The

effects of these flaws are shown in Sec.4.

In this paper, we propose a new representation of 360◦

images followed by new convolution and pooling methods

to apply CNNs to 360◦ images based on the proposed rep-

resentation. In an attempt to reduce the variance of spatial

resolving power in representing 360◦ images, we come up

with a spherical polyhedron-based representation of images

(SpherePHD). Utilizing the properties of the SpherePHD

constructed by an icosahedral geodesic polyhedron, we

present a geometry on which a 360◦ image can be pro-

jected. The proposed projection results in less variance of

the spatial resolving power and distortion than others. Fur-

thermore, the rotational symmetry of the spherical geom-

etry allows the image processing algorithms to be rotation

invariant. Lastly, the spherical polyhedron provides a con-

tinuity property; there is no border where the image be-

comes discontinuous. This particular representation aims

to resolve the issues found in using ERP and cube map

representations. The contributions of this paper also in-

clude designing a convolution kernel and using a specific

method of applying convolution and pooling kernels for use

in CNNs on the proposed spherical polyhedron representa-

tion of images. To demonstrate that the proposed method is

superior to ERP and cube map representations, we compare

classification, detection, and semantic segmentation accu-

racies for the different representations. To conduct com-

parison experiments, we also created a spherical MNIST

dataset [7], spherical SYNTHIA dataset [17], and spheri-

cal Stanford2D3D dataset [1] through the spherical polyhe-

dron projection of the original datasets. The source codes

for our method are available at https://github.com/

KAIST-vilab/SpherPHD_public.

2. Related works

In this section, we discuss relevant studies that have been

done for CNNs on omni-directional images.

2.1. ERP­based methods

As mentioned earlier, an ERP image has some flaws:

the nonuniform spatial resolving power brings about distor-

tion effects, rotational constraints, and discontinuity at the

borders. Yang et al. [22] compared the results of different

detection algorithms that take ERP images directly as in-

puts, showing that not solving the distortion problem still

produces relevant accuracy. Other papers proposed to rem-

edy the flaws of ERP-based methods. To tackle the issue

of nonuniform resolving power, Coors et al. [6] proposed

sampling pixels from the ERP image, in a rate dependent

on latitude, to preserve the uniform spatial resolving power

and to keep the convolution domain consistent in each ker-

nel. Hu et al. [8] and Su and Grauman [19] partitioned an

omni-directional image into subimages and produced nor-

mal field of view (NFoV) images; during the partitioning

stages, they also reduced the distortion effects in the ERP

image. Lai et al. [10] and Su et al. [20] generated saliency

maps from omni-directional images and extracted specific

NFoV images from areas of high saliency. The use of NFoV

image sampling increased accuracy by solving the distor-

tion problem, but extracting NFoV images from an omni-
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Figure 3. Cube padding [4]. Cube padding allows the receptive

field of each face to extend across the adjacent faces.

directional image is not as beneficial as utilizing the whole

omni-directional view for visual processing. In an attempt

to use the whole omni-directional image and also resolve

the distortion problem, Su and Grauman [18] and Tateno et

al. [21] used distortion-aware kernels at each latitude of the

omni-directional image to take into account the resolving

power variation. To tackle the distortion problem from tilt-

ing the camera, Bourke [2] proposed a way to post-process

the ERP image, but this requires knowledge of the camera

orientation. Our method replaces the ERP-based represen-

tation as a way to tackle the distortion problems raised from

ERP images.

2.2. Other representations for 360◦ images

As a way to represent spherical geometry, a few meth-

ods have been proposed to project an omni-directional im-

age onto a cube to generate a cube map. The method in [14]

utilized a cube map to generate a saliency map of the omni-

directional image. As an extension to [14], Cheng et al. [4]

proposed padding each face with pixels from tangent faces

to consider information from all tangent faces and to con-

volve across the edges. Figure 3 shows an example of such

a cube padding method. Utilizing the cube map projection

of omni-directional images resolves many of the issues that

ERP-based methods face. However, in the cube map rep-

resentation, there still exists noticeable variance of spatial

resolving power between the centers and edges of the cube

faces. To address this variance of spatial resolving power,

Brown [3] proposed the equi-angular cube (EAC) projec-

tion, changing the method in which omni-directional views

are sampled onto a cube. Cohen et al. [5] suggested trans-

forming the domain space from Euclidean S2 space to a

SO(3) 3D rotation group to reduce the negative effects of

the ERP representation. Compared with the aforementioned

approaches, our method further minimizes the variance of

the spatial resolving power, while not having to transform

into non-spatial domain.

2.3. Representations in geography

Projection of an omni-directional image is also a well

known problem in geographical map projection. Through-

out history there have been countless map projection meth-

ods proposed. Some of the representations mentioned above

are examples of these different map projection methods: the

work done by Yang et al. [22] is similar to the Mercator

method, work done by Coors et al. [6] is similar to the Ham-

mer method. The method we propose in this paper is similar

to the Dymaxion map projection method.

3. Proposed method

To obtain a new representation of an omni-directional

image, we project an omni-directional image onto an icosa-

hedral spherical polyhedron. After the projection, we apply

the transformed image to a CNN structure. The advantage

of using our representation over using ERP or any other rep-

resentations is that ours has far less irregularity on an input

image.

3.1. Definition of irregularity

To discuss the irregularity of omni-directional image rep-

resentations, we need to define a quantitative measure of

irregularity. To do so, we first define an effective area of

a pixel for a given representation (i.e., ERP, cube map) as

the corresponding area when the pixel is projected onto a

unit sphere. The irregularity of the omni-directional image

representation can then be measured by the variation of the

pixels’ effective areas. To compare the irregularity for dif-

ferent representations, we define the average effective area

of all the pixels in the given representation to be the geo-

metric mean of them as shown in Eq. (1), where N is the

total number of pixels and Ai is the effective area of the ith

pixel.

Amean = N

√

√

√

√

N
∏

i=1

(Ai) (1)

Then, we define the irregularity for the ith pixel, di, as the

log scaled ratio of individual pixel’s area to their average,

shown in Eq. (2).

di = log(
Ai

Amean

) (2)

Having defined the mean area to be the geometric mean,

the log scaled ratios of irregularity always sum up to zero

(
∑

N

i=1
di = 0). This is a desired behavior of irregularity

values because it is a measure of how much each individual

pixel’s effective area deviates from the average of pixels’

effective areas. We then define an overall irregularity score

for each representation as the root-mean-square of the irreg-

ularity values as

Irregularity score =

√

√

√

√

1

N

N
∑

i=1

d2
i
. (3)
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Figure 4. Pixel areas on the 3rd subdivision regular convex polyhe-

drons: tetrahedron, cube, octahedron, and icosahedron. The vari-

ance of pixel areas decreases with more equi-faced regions.

3.2. Spherical polyhedron

Spherical polyhedrons are divisions of a sphere by arcs

into bounded regions, and there are many different ways to

construct such spherical polyhedrons. The aforementioned

cube map representation can be regarded as an example of

an omni-directional image projected onto a spherical poly-

hedron. The cube map representation splits the sphere into

6 equi-faced regions, creating a cubic spherical polyhedron;

each of these 6 regions represents the face of a cube. Sim-

ilarly, we can apply such representation to other regular

polyhedrons to create a spherical polyhedron that is divided

into more equi-faced regions.

In the cube map representation, the squares of a cube are

subdivided into smaller squares to represent pixels in a cube

map. The irregularity of the cube map representation occurs

when we create the cubic spherical polyhedron from a cube

map: pixels in a cube map correspond to different areas on

the cubic spherical polyhedron depending on pixels’ loca-

tions in the cube map. Here, the irregularity score of the

cubic spherical polyhedron converges at an early stage of

subdivision2 when the squares on the cube are further sub-

divided into even smaller squares. It means that the irregu-

larity score of a spherical polyhedron is much more depen-

dent on the intrinsic geometry used to make the spherical

polyhedron than the number of regular convex polyhedron

face subdivisions. This suggests that a regular convex poly-

hedron with a greater number of faces can have much lower

irregularity when it is subdivided and turned into a spher-

ical polyhedron: so we use a regular polyhedron with the

most faces, an icosahedron. We can visually compare the

variances in Fig. 4.

3.3. SpherePHD: Icosahedral spherical polyhedron
representation

When creating a spherical polyhedron using an icosahe-

dron, each subdivision subdivides each triangular face into

4 smaller triangles with the same area. Each of these sub-

2The irregularity table is included in the supplementary materials

divisions of triangles will be referred to as the nth sub-

division where n refers to the number of times the trian-

gles have been subdivided. After creating the subdivided

icosahedron, we extrude the newly created vertices from the

subdivision onto a sphere, creating a geodesic icosahedron

(Note that the original vertices of the icosahedron already

lie on a sphere). We can then create a spherical polyhe-

dron through tessellation of this geodesic icosahedron onto

a sphere. A spherical polyhedron3 constructed from a regu-

lar convex icosahedron has a smaller irregularity score than

the cubical spherical polyhedron2.

Ultimately, we use this SpherePHD to represent omni-

directional images. To do so, we take an omni-directional

image and project it onto the SpherePHD representation. In

this projection, the omni-directional images are represented

by the individual triangles tessellated on the SpherePHD.

Our SpherePHD representation results in much less vari-

ance of effective pixel areas compared with the cube map

representation. The minimal variance of effective pixel ar-

eas would mean that our representation has less variance in

resolving power than the cube representation, which has a

lower irregularity score.

Because the SpherePHD is made from a rotationally

symmetric icosahedron, the resulting SpherePHD also has

rotationally symmetric properties. In addition, as the pro-

jection is a linear transformation, our method does not have

any sinusoidal fluctuation effects like those seen in the ERP

representation, making our representation more robust to

rotation.

3.4. SpherePHD convolution and pooling

The conventional CNNs compute a feature map through

each layer based on a convolution kernel across an image.

In order to apply CNNs to SpherePHD, it is necessary to

design special convolution and pooling kernels that meet

certain criteria as follows:

1. The convolution kernel should be applicable to all pixels

represented in the SpherePHD.

2. The convolution kernel should have the pixel of interest

at the center. The output of convolution should maintain

the locality information of each pixel and its neighbors

without bias.

3. The convolution kernel should take into account that ad-

jacent triangles are in different orientations.

4. The pooling kernel should reduce the image from

a higher subdivision to a lower subdivision of the

SpherePHD.

To meet the first condition, our kernel needs to be a col-

lection of triangles as our SpherePHD has triangular pixels.

3The mentioning of spherical polyhedron throughout this paper will

refer specifically to the icosahedral spherical polyhedron (SpherePHD)

constructed through a geodesic icosahedron, unless specified otherwise.
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Figure 5. From left to right: proposed pooling kernel shape, the

same pooling kernel applied onto the adjacent triangle, proposed

convolution kernel shape, the same convolution kernel applied

onto the adjacent triangle, and the convolution kernel on 12 origi-

nal vertices of icosahedron (for better understanding, see the yel-

low kernel in Fig. 6).

Our kernel must also be applicable to the 12 vertices that

are connected to 5 triangles while still being applicable to

all the other vertex points connected to 6 triangles. For this

reason, the vertices of the kernel should not be connected

to more than 5 triangles; if the vertices are connected to

more than 5 triangles, those vertices would not be able to

convolve at the triangles connected to the 12 original icosa-

hedron’s vertices.

To satisfy the second condition, the triangular pixel that

is being convolved should be at the center of the kernel. If

not, the output of the convolution on pixel of interest would

be assigned to its neighboring pixel causing a shift for the

given pixel. On the spherical surface, when such assign-

ment happens, the direction of shifting varies for all of the

convolution output and results in a disoriented convolution

output.

Concerning the third condition, because triangular pixels

adjacent to each other in our SpherePHD are oriented dif-

ferently, we must design a kernel that can be applied to each

of the triangles in their respective orientations.

For the last condition, the pooling kernel can be shaped

so that the nth subdivision polyhedron can be downsampled

into the (n − 1)th subdivision polyhedron. To design such

a pooling kernel, we reverse the method in which the subdi-

visions are formed. In the pooling stage, the pooling kernel

is dependent on how the triangles are subdivided in the con-

struction process. For example, if we subdivide a triangle

into n2 smaller triangles, we can use a pooling kernel that

takes the same n2 smaller triangles to form one larger trian-

gle. However, for simplicity we subdivide a triangle into 4

(22) smaller triangles.

Our convolution kernel and pooling kernel that meet the

above criteria are given in Fig. 5. These kernels are applied

in the same manner to every pixel of the SpherePHD repre-

sentation. Figure 6 shows how to apply the proposed kernel

to the SpherePHD representation.

3.5. Kernel weight assignment

Unlike rectangular images, omni-directional images

have no clear reference direction, so the direction of the

kernel becomes ambiguous. To overcome this ambiguity,

we set 2 of the 12 vertices of SpherePHD as the north and

Figure 6. The visualization of how the kernel is applied to

SpherePHD representation. Yellow kernel shows the case when

the kernel is located at the vertex of the icosahedron. Purple ker-

nel shows the case when the kernel is located at the pole.

south poles and use the poles to define the orientation of all

pixels to be either upward or downward. We use two kernel

shapes which share the same weights for the upward and

downward pixels. Furthermore, the order of kernel weight

is configured so that the two kernels are 180◦ rotations of

each other. The proposed kernel is expected to learn 180◦

rotation-invariant properties, making the kernels more ro-

bust to rotating environments. We show the feasibility of

our kernel design in Sec. 4.1, as we compare the perfor-

mance of our kernel weight assignment, as opposed to other

non-rotated kernel assignments.

3.6. CNN Implementation

Utilizing our SpherePHD representation from Sec. 3.3

and our kernels from Sec. 3.4, we propose a CNN for omni-

directional images. We implement our method using con-

ventional CNN implementations that already exist in open

deep learning libraries.

Thanks to the SpherePHD representation and our ker-

nels, a convolution layer maintains the image size with-

out padding. Also, a pooled layer has one less subdivision

than the previous layer. In other words, the nth subdivision

SpherePHD turns into the (n−1)th subdivision SpherePHD

after a pooling layer. Depending on the dimension of the

desired output, we can adjust the number of subdivision.

Convolution layer To implement the convolution layer

in SpherePHD using a conventional 2-dimensional convolu-

tion method, we first make the location indices representing

the locations of pixels for each subdivision. Using the in-

dices for a given subdivision, we represent the SpherePHD

images as 2-D tensors (as opposed to 3-D tensors for con-

ventional images). We then stack the indices of n neighbor-

ing pixels in another dimension, and map the correspond-

ing pixel values to the stacked indices (to get an insight

about our stacking method, refer to the “im2col” function

in MATLAB). This makes 3-D tensors where one dimen-

sion is filled with n neighboring pixel values of the image.

With this representation, we can use conventional 2-D con-

volution using a kernel of size 1× n. This effectively mim-

ics the convolution on the spherical surface with a kernel of

size n. The output of the convolution is the 2-D tensors of
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Figure 7. Tensor-wise implementation of our proposed convolu-

tion and pooling methods.

SpherePHD images with the same subdivision as before.

Pooling layer Implementation of pooling layer is very

similar to that of the convolution layer in that we use the

same method to stack the neighboring pixels. For images of

the nth subdivision, we take the indices of pixels where the

pooled values would be positioned in the resulting (n−1)th

subdivision images. Then we stack the indices of neighbor-

ing pixels to be pooled with, and we map the corresponding

pixel values to the indices. After that, the desired pooling

operation (e.g. max, min, average) is applied to the stacked

values. The output of pooling is the 2-D tensors of (n−1)th

subdivision SpherePHD images.

Figure 7 shows a graphical representation of the convo-

lution (upper) and the pooling (lower).

4. Experiments

We tested the feasibility of our method on three tasks:

classification, object detection, and semantic segmentation.

We compared the classification performance with MNIST

[7] images which are projected onto the SpherePHD, cube

map, and ERP representations with random positions and

random orientations. We also assessed the object detection

and semantic segmentation performances on the SYNTHIA

sequence dataset [17] transformed to aforementioned rep-

resentations with random tilting. Additionally, we evalu-

ated the semantic segmentation performance on the Stan-

ford2D3D dataset to check the feasibility on real data.

4.1. MNIST classification

Dataset We made three types of spherical MNIST

datasets by projecting 70k original MNIST images onto

SpherePHD, cube map, and ERP representations with ran-

dom positions and random orientations as shown in Fig. 8.

Figure 8. From left to right: ERP, cube map, SpherePHD repre-

sentations of MNIST image. These are the three different types of

input images. All images represent MNIST digit 5.

By randomly changing the position and the orientation of

projection, the number of training and test images were aug-

mented from 60k and 10k to 1200k and 700k, respectively.

We determined the image size of SpherPHD to be 3 times

subdivided size, which is 1× 1280(= 20× 43), to maintain

similar resolution with 28× 28 original MNIST images. To

maintain the resolution of all datasets consistent, the sizes

of cube map and ERP representations were adjusted based

on the number of pixels on the equator of the SpherPHD im-

age. The number of pixels along the equator of all datasets

became equal by configuring the size of cube map image as

6× 20× 20 pixels and the size of ERP image as 40× 80.

Implementation details We designed a single neu-

ral network as fully convolutional structure for all three

datasets. In other words, we used the same structure but

changed the convolution and pooling methods according to

the type of input representation. To compare the perfor-

mance of the networks with the same structure and the same

parameter scale, we used a global average pooling layer

instead of using a fully connected layer for the classifica-

tion task, inspired by NiN [11]. Due to the fully convolu-

tional network structure, the parameter scale of the network

is only dependent on the kernel size, being independent on

the input image size. We also minimized the difference be-

tween kernel sizes by using 10×1 kernels shown in Fig. 5 on

our method and 3×3 kernels on the other methods. The net-

works used in the experiment have two pairs of convolution

and max pooling layers followed by a pair of convolution

and global average pooling layers.

Result To understand the effect of irregularity that we

defined on each image representation, we measured the

performance of the representations according to the po-

sitions of MNIST digits in terms of latitude and longi-

tude, as shown in Fig. 9. In the result along the latitude,

we can see that our method gives relatively uniform accu-

racy, although the accuracies near -90◦ and 90◦ are slightly

dropped. This result is consistent with the variation of ir-

regularity of SpherPHD which has relatively small varia-

tion of irregularity, as shown in Fig. 10. Results for cube

map and ERP representations also follow the variation of

irregularity. The regions where the variation of irregular-

ity is large (e.g. edge and vertex) match with the regions

where accuracy decreases. In the result along the longitude,

we can also see the same tendency but the result from the

ERP representation shows additional accuracy drop due to
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Figure 9. MNIST classification accuracy for 700k test images

along latitude and longitude. The number of samples along lati-

tude and longitude follows uniform distribution. These results are

highly related with the distribution of the irregularity values along

latitude and longitude shown in Fig. 10.

Figure 10. Distribution of irregularity values defined in Sec. 3.1

on the sphere surface. The red cross mark represents the point at

( latitude, longitude)=(0, 0) on the sphere surface. The colors for

each representation indicate relative scales of irregularity.

Table 1. MNIST classification results of the three methods

correct predictions test set size accuracy (%)

SpherePHD 616,920 700,000 88.13

ERP 528,577 700,000 75.51

Cube padding 521,937 700,000 74.56

Figure 11. MNIST classification results with different kernels

the discontinuity on image boundaries. Table 1 shows the

overall average accuracies of all representations. In addi-

tion, Fig. 11 shows the comparison of the performance of

our kernel weight assignment to other non-rotated kernel

assignments, which shows the effectiveness of our kernel

design described in Sec. 3.5.

4.2. SYNTHIA vehicle detection

Dataset The SYNTHIA dataset is a vitrual road driving

image dataset [17]. Each sequence consists of front, right,

left, and back NFoV images of a driving vehicle, along with

the ground truth labels for each object in each scene. Since

the camera centers for the four directions are the same at

a given moment, we can make a 360◦ image for the scene.

We projected the scenes onto SpherePHD, cube map, and

ERP representations. We conducted two different experi-

ments for the detection task. One is a no-rotation version in

which the SYNTHIA images are projected without rotation.

The other one is a rotation version created by rotating 360◦

SYNTHIA images in random orientations.

Implementation details We performed the vehicle de-

tection test using SpherePHD, cube map and ERP represen-

tations. To compare the detection accuracies of the repre-

sentations fairly, we used similar CNN architectures of the

same parameter scale (based on YOLO architecture [15]),

having the same number of layers. To detect objects in vari-

ous orientations of 360◦ images, we used a bounding circle

instead of a bounding box.

Result As shown in Table 2, when 360◦ images (18k

train and 4.5k test) are not tilted, where the vehicles are

mainly located near the equator, the ERP representation

yields higher accuracy than ours. The reason is that, in

this case, the shape distortion of target objects near the

equator could be negligible. However, when 360◦ images

(180k, train and 45k test) are tilted, SpherePHD works bet-

ter while the performance of ERP representation is severely

degraded. Even though data augmentation generally in-

creases the performance of network, the detection accuracy

of ERP representation decreases on the contrary. Also, the

detection accuracy of the cube map representation is lower

than ours because the cube map has the discontinuity of ker-

nel orientation at the top and bottom faces of the cube map.

Some detection results are shown in Fig. 12.

4.3. Semantic Segmentation

Dataset We used the Stanford2D3D real-world indoor

scene dataset [1] provided in ERP images as well as SYN-

THIA driving sequence dataset [17]. SYNTHIA and Stan-

ford2D3D datasets, which have 16 and 39 classes of seman-

tic labels respectively, are transformed to SpherPHD, cube

map, ERP representations. As in Sec. 4.2, we also aug-

mented the size of the datasets by tilting the camera ran-

domly.

Implementation details We designed a neural network

as a CNN-based autoencoder structure for all two datasets.

We kept the parameter scales of all 360◦ image representa-

tions consistent. Among many kinds of unpooling methods,

We chose a max unpooling method for the decoder. A max

unpooling layer of SpherePHD reutilizes the indices used in

our pooling layer to get a higher subdivision SpherPHD.

Results The evaluation metrics used for semantic seg-

mentation are the average of class accuracies and the over-

all pixel accuracy. We evaluate on both metrics because the

overall pixel accuracy does not necessarily reflect the ac-

curacy of classes that only have few pixels; when classes

like the wall and floor, which take up a large portion of

the pixels, have high accuracies the overall accuracy can

be skewed. Thus we also evaluated on the average of class

accuracies. Table 3 shows the quantitative results of the
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Figure 12. Vehicle detection results of the SYNTHIA dataset.

From top to bottom, results from SpherePHD, cube map, and ERP

representations. Red circles are the predicted bounding circles and

blue circles are the ground truths. These images are test samples

from the rotation-augmented set.

Table 2. Detection average precision (AP) of three different image

representations (%)

SpherePHD ERP cube map

SYNTHIA 43.00 56.04 30.13

SYNTHIA

(rotation-augmented)
64.52 39.87 26.03

semantic segmentation experiment. For both datasets, our

SpherPHD method outperforms other methods. Even if the

accuracies from the Stanford2D3D dataset are much lower

than the accuracies from SYNTHIA due to the much higher

number of classes and the noise in real-world data, our

method still maintains higher accuracies than other methods

with large gaps. Figure 13 shows the semantic segmentation

results for different representations.

5. Conclusion

Despite the advantages of 360◦ images, CNNs have not

been successfully applied to 360◦ images because of the

Figure 13. Semantic segmentation results of the Stanford2D3D

dataset. From top to bottom: results from SpherePHD, cube map,

and ERP representations. From left to right: input image, network

output, and ground truth.

Table 3. The average of class accuracies and the overall pixel ac-

curacy of three different image representations (%)

SpherePHD ERP cube map

per class overall per class overall per class overall

SYNTHIA 70.08 97.20 62.69 95.07 36.07 66.04

Stanford2D3D

(real dataset)
26.40 51.40 17.97 35.02 17.42 32.38

shape distortion due to nonuniform resolving power and

the discontinuity at image borders of the different repre-

sentation methods. To resolve these problems, we pro-

posed a new representation for 360◦ images, SpherePHD.

The proposed representation is based on a spherical poly-

hedron derived from an icosahedron, and it has less irreg-

ularity than ERP and cube map representations. We also

proposed our own convolution and pooling methods to ap-

ply CNNs on the SpherePHD representation and provided

the details of these implementations, which allow to ap-

ply the SpherePHD representation to existing CNN-based

networks. Finally, we demonstrated the feasibility of the

proposed methods through classification, detection, and se-

mantic segmentation tasks using the MNIST, SYNTHIA,

and Stanford2D3D datasets.
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