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Abstract

We present a fully automatic approach to video coloriza-

tion with self-regularization and diversity. Our model con-

tains a colorization network for video frame colorization

and a refinement network for spatiotemporal color refine-

ment. Without any labeled data, both networks can be

trained with self-regularized losses defined in bilateral and

temporal space. The bilateral loss enforces color consis-

tency between neighboring pixels in a bilateral space and

the temporal loss imposes constraints between correspond-

ing pixels in two nearby frames. While video colorization

is a multi-modal problem, our method uses a perceptual

loss with diversity to differentiate various modes in the so-

lution space. Perceptual experiments demonstrate that our

approach outperforms state-of-the-art approaches on fully

automatic video colorization.

1. Introduction

There exist numerous classic films and videos in black-

and-white. It is desirable for people to watch a colorful

movie rather than a grayscale one. Gone with the Wind in

1939 is one of the first colorized films and is also the all-

time highest-grossing film adjusted for inflation [1]. Image

and video colorization can also assist other computer vision

applications such as visual understanding [17] and object

tracking [29].

Video colorization is highly challenging due to its multi-

modality in the solution space and the requirement of global

spatiotemporal consistency. First, it is not reasonable to re-

cover the ground-truth color in various cases. For example,

given a grayscale image of a balloon, we can not predict the

correct color of the balloon because it may be yellow, blue,

and so on. Instead of recovering the underlying color, we

aim to generate a set of colorized results that look natural.

Second, it often does not matter what color we assign to a

region (i.e. a balloon), but the whole region should be spa-

tially consistent. Third, video colorization is also inherently

more challenging than single image colorization since tem-

poral coherence should be also enforced. Image coloriza-

tion methods usually do not generalize to video coloriza-

tion. In Figure 1, we show some results of our approach and

two state-of-the-art image colorization methods on classic

film colorization.

Colorization of black-and-white images has been well

studied in the literature [18, 6, 32, 16]. Colorization meth-

ods in the early days are mostly user-guided approaches that

solve an objective function to propagate user input color

scribbles to other regions [18, 25]. These approaches re-

quire users to provide sufficient scribbles on the grayscale

image. On the other hand, researchers explore automatic

image colorization with deep learning models. Some deep

learning based approach for image colorization defines a

classification based loss function with hundreds of discrete

sampled points in chrominance space [32, 16]. However,

the colorized image often exhibits evident discretization ar-

tifacts. To tackle this challenge, we suggest using a percep-

tual loss function combined with diversity. Our approach

does not rely on sampling a discrete set of color in chromi-

nance space and thus avoids discretization artifacts in the

colorized video.

We may apply image colorization methods to colorize

video frames independently, but the overall colorized video

tends to be temporally inconsistent. Recently, Lai et al. [15]

proposed a framework to enhance temporal coherence of a

synthesized video where each frame is processed indepen-

dently by an image processing algorithm such as coloriza-

tion. However, this is a post-processing step and its perfor-

mance is dependant on an image colorization approach that

does not utilize multiple-frame information. Propagation-

based video colorization methods require some colorized

frames as reference to propagate the color of the given ref-

erence frames to the whole video [23, 29], but colorizing

some frames also requires non-trivial human effort. Also,

the quality of the colorized video frames decays quickly

when the future frames are different from the reference

frames. In this paper, we study the problem of automatic

video colorization without both labeled data and user guid-

ance.

We propose a self-regularized approach to automatic

video colorization with diversity. We regularize our model

with nearest neighbors in both bilateral and temporal

spaces, and train the model with a diversity loss to dif-
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Figure 1. Two colorized video frames by Zhang et al. [32], Iizuka et al. [12], and our approach on the classic film Behind the Screen in 1916

by Charlie Chaplin. State-of-the-art image colorization methods may not perform well on video colorization. The temporal inconsistency

between the colorized video frames by Zhang et al. [32] and Iizuka et al. [12] is obvious. More results of classic film colorization are

shown in the supplement.

ferentiate different modes in the solution space. The self-

regularization encourages information propagation between

pixels expected to have similar color. Specifically, we can

build a graph with explicit pairwise connections between

pixels by finding K nearest neighbors in some feature space

or following the optical flow. By enforcing pairwise simi-

larity between pixel pairs, we can preserve spatiotemporal

color consistency in a video. Our model is also capable of

generating multiple diverse colorized videos with a diver-

sity loss [19]. We further suggest a simple strategy to select

the most colorful video among all colorized videos.

We conduct experiments to compare our model with

state-of-the-art image and video colorization approaches.

The results demonstrate that our model can synthesize more

natural colorized videos than other approaches do. We eval-

uate the performance on PSNR and LPIPS [33], and con-

duct perceptual comparison by a user study. Furthermore,

controlled experiments show that our self-regularization

and diversity are critical components in our model.

2. Related Work

In this section, we briefly review the related work in im-

age and video colorization.

User-guided Image Colorization. The most classical ap-

proaches on image colorization are based on optimization

that requires user input on part of the image to propagate

the provided colors on certain regions to the whole image

[18, 25, 22, 5, 31]. Levin et al. [18] propose optimization

based interactive image colorization by solving a quadratic

cost function under the assumption that similar pixels in

space-time should have similar colors. Zhang et al. [34]

present a deep learning based model for interactive image

colorization.

Instead of requiring user scribbles, exemplar-based col-

orization approaches take a reference image as additional

input [30, 13, 21, 3, 7, 10]. The reference image should be

semantically similar to the input grayscale image to transfer

the color from the reference image to the input image. A
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Figure 2. The overall architecture of our model. The colorization network f is designed to colorize each grayscale video frame, and

produces multiple colorization candidate images. Taking i-th colorized candidate images from Frame t and Frame t + 1 as well as two

confidence maps, the refinement network g will output a refined video frame for Frame t.

recent approach by He et al. [11] combines deep learning

and exemplars in image colorization and achieves the state-

of-the-art performance. In this work, we are interested in

fully automatic colorization approach that requires neither

user input nor reference images.

Automatic Image Colorization. The most prominent

work on fully automatic image colorization is deep learn-

ing based approaches that do not require any user guidance

[6, 12, 32, 16, 9]. Cheng et al. [6] propose the first deep

neural network model for fully automatic image coloriza-

tion. Some deep learning approaches use a classification

network that classifies each pixel into a set of hundreds

of chrominance samples in a LAB or HSV color space to

tackle to the multi-modal nature of the colorization prob-

lem [32, 16]. However, it is difficult to sample densely in

the two-dimensional chrominance with hundreds of points.

Thus we propose to use a perceptual loss with diversity [19]

to avoid the discretization problem.

Video Colorization. Most contemporaneous work on video

colorization is designed to propagate the color information

from a color reference frame or sparse user scribbles to the

whole video [31, 29, 23, 20, 14]. On the other hand, Lai et

al. [15] propose an approach to enforce stronger temporal

consistency of a video generated frame by frame by an im-

age processing algorithm such as colorization. To the best

of our knowledge, there are no deep learning models ded-

icated to fully automatic video colorization. We can defi-

nitely apply an image colorization method to colorize each

frame in a video, but the resulted video is usually temporally

incoherent. In this paper, we present a dedicated deep learn-

ing model for automatic video colorization that encourages

spatiotemporal context propagation and is capable of gener-

ating a set of different colorized videos.

3. Overview

Consider a sequence of grayscale video frames X =
{

X1, . . . , Xn
}

. Our objective is to train a model that auto-

matically colorizes X such that the colorized video is real-

istic. In our framework, neither user guidance neither color

reference frames are needed. Before we describe our ap-

proach, we characterize two desirable properties of our fully

automatic video colorization approach.

• Spatiotemporal color consistency. Within a video

frame, multiple pixels can share a similar color. For

example, all the pixels on a wall should have the

same color, and all the grass should be green. Estab-

lishing nonlocal pixel neighbors (i.e. two pixels on

the same wall) for color consistency can improve the

global color consistency of a colorized video. Note

that colorizing video frames independently can result

in a temporally inconsistent video, and thus we can es-

tablish temporal neighbors between two frames to en-

force temporal coherence.
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• Diverse colorization. Most existing work on image

or video colorization only generates one colorization

result. It is desirable for our model to output a set of

diverse set of colorized videos, as colorization is a one-

to-many problem. In our model, we use a perceptual

loss with diversity to differentiate different modes in

the solution space.

Figure 2 illustrates the overall structure of our model.

Our proposed framework contains two networks that are

trained to work in synergy. The first one is the coloriza-

tion network f(Xt; θf ) that outputs a colorized video frame

given a grayscale video frame Xt. The network f is

self-regularized with color similarity constraints defined on

K nearest neighbors in the bilateral space (r, g, b, λx, λy)
where (r, g, b) represents the pixel color, (x, y) indicates

the pixel location, and λ is a weight that balances the pixel

color and location. We use K = 5 in our experiments.

The second one is the refinement network g(Cs, Ct; θg) de-

signed to refine the current colorized video C by enforcing

stronger temporal consistency. The network g propagates

information between two nearby frames Cs and Ct. At the

test time, g can be applied multiple times to the colorized

video to achieve long-term consistency.

Furthermore, our approach can produce a diverse set of

colorized videos, regularized by the diversity loss intro-

duced by Li et al. [19]. We find that our diversity loss also

stabilizes the temporal consistency of the colorized video.

Combining the self-regularization and the diversity loss, we

obtain the overall loss function to train our model:

Lself + Ldiversity, (1)

where Lself represents the loss to regularize color similarity

between pixel neighbors in a bilateral space and a temporal

domain, and Ldiversity is a perceptual loss function with

diversity.

4. Self-Regularization

4.1. Selfregularization for colorization network

Consider colorizing a textureless balloon. Although it is

nearly impossible to infer the underlying color of the bal-

loon from a grayscale video frame, we somehow believe

that all the pixels on the balloon are similar. We can find out

pixel pairs expected to be similar, and enforce color similar-

ity on these pixel pairs when training our model.

To establish pixel pairs with similar color in a video

frame, we perform the K nearest neighbor (KNN) search in

a bilateral space (r, g, b, λx, λy) on the ground-truth frame

during training. We expect that two pixels with similar color

and spatial locations imply that our colorized video should

also have a similar color for these two pixels. A similar

KNN strategy is also presented in KNN matting [4]. Sup-

pose X = {X1, . . . , Xn} is the input grayscale video and

Y = {Y 1, . . . , Y n} is the ground-truth color video, our

bilateral loss for self-regularization is

Lbilateral(θf ) =
n
∑

i=1

∑

(p,q)∈N
Y t

‖fp(X
t; θf )− fq(X

t; θf )‖1,

(2)

where NY t is the KNN graph build on the ground-truth

color frame Yi, and fp(X
t; θf ) indicates the color of pixel

p on the colorized video frame f(Xt; θf ).

A simple temporal regularization term L
f
temporal(θf )

can be defined on f :

n−1
∑

t=1

‖
(

f(Xt; θf )− ωt+1→t(f(X
t+1; θf ))

)

⊙Mt+1→t‖1,

(3)

where ωi+1→i is an warping operator that warps an image

from Frame t + 1 to Frame t according to the optical flow

from Xt+1 to Xt. Given the optical flow ft+1−>t from

frame t+ 1 to frame t, we use backward warping to obtain

a binary mask Mt+1−>t that indicates non-occluded pixels

(invisible in Frame t+ 1).

4.2. Confidencebased refinement network

In our model, a confidence-based refinement network

g is used to enforce stronger temporal consistency. Tem-

poral inconsistency appears when corresponding pixels in

two frames do not share similar colors. We use confidence

maps to indicate whether the color of a pixel is inconsis-

tent or inaccurate. Given a current colorized video C =
{C1, . . . , Cn}, the temporal inconsistency when warping

Frame t to Frame s can be translated into a confidence map

with weights in the range of [0, 1]:

Wt→s(C
t, Cs) = max(1−α|Cs−ωt→s(C

t)|⊙Mt→s,0),
(4)

where α is a hyper-parameter that controls the sensitivity of

temporal inconsistency and we use α = 15.

Thus, for each colorized frame Cs, the refinement net-

work g can use another nearby frame Ct along with the

computed confidence maps to refine Cs. The input to g in-

cludes Cs, ωt→s(C
t), Wt→s(C

t, Cs), and Wt→s(X
t, Xs)

that is the confidence map defined on the input grayscale

image pairs. g outputs a refined video frame for Cs.

Training. To train the refinement network g, we sample

two neighboring frames s and t such that |s− t| ≤ λ where

λ specifies the window size for temporal refinement. We

find λ = 1 is enough in our model. Then we optimize the

following temporal regularization loss for θg:
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Figure 3. Four frames of three different videos colorized by our approach with diversity. Our approach is able to colorize videos in different

ways. In general, different videos exhibit different global styles.

L
g
temporal(θg) =
∑

1≤|s−t|≤λ

‖g(f(Xs; θf ), f(X
t; θf ); θg)− Y s‖1. (5)

In summary, our self-regularization loss Lself is defined

as

Lbilateral(θf ) + L
f
temporal(θf ) + L

g
temporal(θg). (6)

Inference. During the inference, we can apply g to refine

each frame using the left λ frames and the right λ frames. If

we perform this temporal refinement multiple times, we in-

directly use the information from non-local frames to refine

each frame.

5. Diverse Colorization

Video colorization is essentially a one-to-many task as

there are multiple feasible colorized videos given the same

grayscale input. Generating a diverse set of solutions can

be an effective way to tackle this multi-modality challenge.

Inspired by the ranked diversity loss proposed by Li et al.

[19], we propose to generate multiple colorized videos to

differentiate different solution modes. Besides, the diver-

sity loss also contributes a lot to the temporal coherence be-

cause it reduces the ambiguity of colorization by generating

several modes.

Suppose we generate d different solutions in our model.

The network f should be modified to generate d images as

output. The diversity loss imposed on f is,

Ldiversity(θf ) =

n
∑

t=1

min
i
{‖φ(Ct(i))− φ(Y t)‖1}

+

n
∑

t=1

d
∑

i=1

βi‖φ(C
t(i))− φ(Y t)‖1, (7)

where Ct(i) is the i-th colorized image of f(Xt; θf ) and

{βi} is a decreasing sequence. We use d = 4 in our experi-

ments.

The index of the best colorized video is not always the

same. In most cases, we could empirically get a good index

simply by choosing the one with the highest average per-

pixel saturation where the saturation of a pixel is just the S

channel in the HSV color space. Our method could also be

an interactive method for users to pick the results they want.

In Figure 3, we show three colorized videos by our ap-

proach given the same grayscale input. In general, each

video has its only style, and all the videos are different in

both global color contrast and chrominance.

6. Implementation

We augment the input to the network f by adding hyper-

column features extracted from the VGG-19 network [27].

The hypercolumn features are expected to capture both low-

level and high-level information of an image. In particular,

we extract ’conv1 2’, ’conv2 2’, ’conv3 2’, ’conv4 2’ and

’conv5 2’ from the VGG-19 network and upsample the lay-

ers by bilinear upsampling to match the resolution of the

input image. The total number of channels of the hypercol-

umn feature is 1472. We adopt U-Net [26] as our network
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Preference rate

Comparison DAVIS Videvo

Ours > Zhang et al.[32] + BTC [15] 80.0% 88.8%

Ours > Iizuka et al. [12]+ BTC [15] 72.8% 63.3%

Table 1. The results of perceptual user study. Both baselines are

enhanced with temporal consistency by BTC [15]. Our model con-

sistently outperforms both state-of-the-art colorization methods by

Zhang et al. [32] and Iizuka et al. [12].

structure for both networks f and g, and modify the archi-

tecture to fit our purpose. We add a 1 × 1 convolutional

layer at the beginning of each network to reduce the dimen-

sionality of the input augmented with hypercolumn features

[19]. To compute the optical flow, we use the state-of-the-

art method PWC-Net [28].

For model training, we first train the network f and then

train g and f jointly. During each epoch for training f ,

we randomly sample 5,000 images in the ImageNet dataset

[8] to train with loss of Lbilateral + Ldiversity and sample

1,000 pairs of neighboring frames in the DAVIS training set

[24] by adding the temporal regularization for f , L
f
temporal.

We train f for 200 epochs in total. Then for training the

refinement network g, we randomly sample 1,000 pairs of

frames from the DAVIS dataset in each epoch with the loss

L
g
temporal. While there are d pairs of output from f with

diversity, we train g on each pair of output. We also train

our model in a coarse-to-fine fashion. We train both net-

works on the 256p videos and images. Then we fine-tune

our model on the 480p videos and images.

7. Experiments

7.1. Experimental procedure

Datasets. We conduct our experiments mainly on the

DAVIS dataset [24] and the Videvo dataset [2, 15]. The

test set of the DAVIS dataset consists of 30 video clips of

various scenes. There are about 30 to 100 frames in each

video clip. The test set of the Videvo dataset contains 20

videos and each one has about 300 video frames. In totally,

we evaluate our models and baselines on 50 test videos. All

the videos are resized to 480p in both datasets.

Baselines. We compare our method with two state-of-the-

art fully automatic image colorization approaches: the col-

orful image colorization (CIC) by Zhang et al. [32] and

Iizuka et al. [12]. While these approaches are designed for

image colorization, we apply their method to colorize video

frame by frame. In addition, we apply the blind temporal

consistency (BTC) method proposed by Lai et al. [15] im-

prove the overall temporal consistency. Lai et al. [15] pro-

Preference rate

Comparison DAVIS

Ours > Ours without self-reg. 67.9%

Ours > Ours without diversity 61.5%

Table 2. The results of the ablation study of comparisons between

our full model and ablated models. The evaluation is performed

by perceptual user study with 15 participants. The results indicate

that self-regularization and diversity are key components in our

model to achieve state-of-the-art performance in fully automatic

video colorization.

vided the results with temporal consistency for Zhang et al.

[32] and Iizuka et al. [12]. We use publicly available pre-

trained models and results of the baselines for evaluation.

Their pre-trained models are trained on the DAVIS dataset

[24] and the Videvo dataset [2, 15].

7.2. Results

Perceptual experiments. To evaluate the realism of the

colorized video by each method, we conduct a perceptual

experiment by user study. We compare our method with

Zhang et al.[32] and Iizuka et al. [12] with enhanced tem-

poral consistency by the blind temporal consistency (BTC)

[15]. While our approach generates multiple videos, we

choose the video with high saturation for evaluation.

In the user study, there are video comparisons between

our approach and a baseline. In each comparison, a user is

presented with a pair of colorized 480p videos side by side.

The user can play both videos multiple times. We set the

order of video pairs randomly and let the user choose the

one that is more realistic and temporally coherent. Totally

10 users participated in this user study.

Table 1 summarizes the results of our perceptual experi-

ment. Our method is consistently more rated preferable by

most users. When our approach is compared with Zhang

et al. [32], our approach is preferred in 80.0% of the com-

parisons on the DAVIS dataset and 88.8% of the compar-

isons on the Videvo dataset [2]. The perceptual user study

is the key experiment to evaluate the performance of differ-

ent methods.

Ablation study. Table 2 summarizes the ablation study by

conducting perceptual user study on the DAVIS dataset. Ac-

cording to Table 2, our model without self-regularization or

the diversity loss does not perform as well as our complete

model. In summary, users rated our full model more realis-

tic in 67.9% of the comparisons between our full model and

the model without self-regularization and in 61.5% of the

comparisons between our full model and the model without

diversity.

3758



W
it

h
d

iv
er

si
ty

W
it

h
o

u
t

d
iv

er
si

ty

Frame 1 Frame 2 Frame 3 Frame 4

Figure 4. The visualization of the effect with and without the diversity loss. The first row shows four frames colorized by our full model,

and the second shows four frames generated by our model without diversity. The diversity loss helps our model produce more temporally

coherent and realistic results.
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Figure 5. The visualization of the effect with and without the self-

regularization. The self-regularization can help preserve global

color consistency.

Qualitative results. Figure 4 and Figure 5 visualize the

results of our full model and the ablated models without

self-regularization or diversity.

In Figure 6 and Figure 7, we show the result videos col-

orized by our method and prior work. Our method pro-

duces more temporally consistent and more realistic col-

orized videos than state-of-the-art approaches do.

Image similarity metrics. We can use the image similar-

ity metrics as a proxy to measure the similarity between the

colorized video and the ground-truth video. Table 3 sum-

marizes the results on image similarity metrics. Note that

these metrics do not directly reflect the degree of realism of

colorized videos. For example, a car may be colorized as

blue or red. Both colors are plausible choices, but choosing

a color different from the ground-truth video can results in

huge errors on these image similirity metrics.

DAVIS Videvo

Method LPIPS PSNR LILPS PSNR

Input 0.227 23.80 0.228 25.30

Zhang et al. [32] 0.218 29.25 0.201 29.52

Iizuka et al. [12] 0.189 29.91 0.190 30.23

Zhang et al. + BTC [15] 0.243 29.07 0.249 29.04

Iizuka et al + BTC [15] 0.218 29.25 0.241 28.90

Ours 0.191 30.35 0.194 30.50

Table 3. The results on two image similarity metrics, PSNR and

LPIPS [33]. The blind temporal consistency (BTC) does not im-

prove the results on these metrics. Image similarity metrics can

not accurately measure the realism and temporal coherence of the

colorized videos.

8. Discussion

We have presented our fully automatic video colorization

model with self-regularization and diversity. Our colorized

videos preserve global color consistency in both bilateral

space and temporal space. By utilizing a diversity loss, our

model is able to generate a diverse set of colorized videos

that differentiate different modes in the solution space. We

also find that our diversity loss stabilizes the training and

process. Our work is an attempt to improve fully automatic

video colorization but the results are still far from perfect.

We hope our ideas of self-regularization and diversity can

inspire more future work in fully automatic video coloriza-

tion and other video processing tasks.
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Figure 6. Qualitative results on the DAVIS dataset [24]. Here IZK refers to Iizuka et al. [12], CIC refers to the colorful image colorization

method [32], and BTC refers to the blind temporal consistency method [15]. More results shown in the supplement.
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Figure 7. Qualitative results on the Videvo dataset [2]. Here IZK refers to Iizuka et al. [12], CIC refers to the colorful image colorization

method [32], and BTC refers to the blind temporal consistency method [15]. More results shown in the supplement.
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