
Octree guided CNN with Spherical Kernels for 3D Point Clouds

Huan Lei Naveed Akhtar Ajmal Mian

Computer Science and Software Engineering

The University of Western Australia

huan.lei@research.uwa.edu.au, {naveed.akhtar, ajmal.mian}@uwa.edu.au

Abstract

We propose an octree guided neural network architec-

ture and spherical convolutional kernel for machine learn-

ing from arbitrary 3D point clouds. The network archi-

tecture capitalizes on the sparse nature of irregular point

clouds, and hierarchically coarsens the data representation

with space partitioning. At the same time, the proposed

spherical kernels systematically quantize point neighbor-

hoods to identify local geometric structures in the data,

while maintaining the properties of translation-invariance

and asymmetry. We specify spherical kernels with the help

of network neurons that in turn are associated with spa-

tial locations. We exploit this association to avert dynamic

kernel generation during network training that enables ef-

ficient learning with high resolution point clouds. The ef-

fectiveness of the proposed technique is established on the

benchmark tasks of 3D object classification and segmenta-

tion, achieving competetive performance on ShapeNet and

RueMonge2014 datasets.

1. Introduction

Convolutional Neural Networks (CNNs) [17] are known

to learn highly effective features from data. However, stan-

dard CNNs are only amenable to data defined over regular

grids, e.g. pixel arrays. This limits their ability in process-

ing 3D point clouds that are inherently irregular. Point cloud

processing has recently gained significant research interest

and large repositories for this data modality have started to

emerge [1, 4, 12, 39, 40]. Recent literature has also seen

many attempts to exploit the representation prowess of stan-

dard convolutional networks for point clouds by adaption

[23, 39]. However, these attempts have often led to exces-

sively large memory footprints that restrict the allowed in-

put data resolution [29, 33]. A more attractive choice is to

combine the power of convolution operation with graph rep-

resentations of irregular data. The resulting Graph Convo-

lutional Networks (GCNs) offer convolutions either in spec-

tral domain [3, 7, 15] or spatial domain [33].

In GCNs, the spectral domain methods require the Graph

Laplacian to be aligned, which is not straight forward to

achieve for point clouds. On the other hand, the only promi-

nent approach in spatial domain is the Edge Conditioned fil-

ters in CNNs for graphs (ECC) [33] that, in contrast to the

standard CNNs, must generate convolution kernels dynam-

ically entailing a significant computational overhead. Addi-

tionally, ECC relies on range searches for graph construc-

tion and coarsening, which can become prohibitively expen-

sive for large point clouds. One major challenge in applying

convolutional networks to irregular 3D data is in specify-

ing geometrically meaningful convolution kernels in the 3D

metric space. Naturally, such kernels are also required to

exhibit translation-invariance to identify similar local struc-

tures in the data. Moreover, they should be applied to point

pairs asymmetrically for a compact representation. Owing

to such intricate requirements, few existing techniques alto-

gether avoid the use of convolution kernels in computational

graphs to process unstructured data [16, 27, 28]. Although

still attractive, these methods do not contribute towards har-

nessing the potential of convolutional neural networks for

point clouds.

In this work, we introduce the notion of spherical con-

volutional kernel that systematically partitions a spherical

3D region into multiple volumetric bins, see Fig. 1. Each

bin of the kernel specifies a matrix of learnable parameters

that weights the points falling within that bin for convolu-

tion. We apply these kernels between the layers of a Neural

Network (Ψ-CNN) that we propose to construct by exploit-

ing octree partitioning [24] of the 3D space. The sparsity

guided octree structuring determines the locations to per-

form the convolutions in each layer of the network. The

network architecture itself is guided by the hierarchy of the

octree, having the same number of hidden layers as the tree

depth. By exploiting space partitioning, the network avoids

K-NN/range search and efficiently consumes high resolu-

tion point clouds. It also avoids dynamic generation of the

proposed kernels by associating them to its neurons. At the

same time, the kernels are able to share weights between

similar local structures in the data. We theoretically estab-

lish that the spherical kernels are applied asymmetrically to

points in our network just as the kernels in standard CNNs

19631

Figure 1. The proposed octree guided CNN, i.e. Ψ-CNN directly processes raw point clouds using octree partitioning information. The

representation is hierarchically coarsened at each network layer (three layers depicted) by applying spherical convolutional kernels. A

spherical kernel systematically splits the space around a point xi into multiple volumetric bins. For the j th neighboring point xj , a kernel

first determines its relevant bin and uses the weight matrix Wκ defined for that bin to compute the activation value. The proposed spherical

kernel preserves translation-invariance and asymmetry properties of standard 2D convolutional kernel in 3D point cloud domain.

are applied asymmetrically to image pixels. This ensures

compact representation learning by the proposed network in

the point cloud domain. We demonstrate the effectiveness

of our method for 3D object classification, part segmenta-

tion and large-scale semantic segmentation. The major con-

tributions of this work are summarized below:

• A novel concept of translation-invariant and asymmet-

ric convolutional kernel is proposed and analyzed for

point-wise feature learning from irregular point clouds.

• The resulting convolutional kernel is exploited with an

octree guided neural network that, in contrast to the

previous voxelization applications of octree to point

clouds [29], hierarchically coarsens the data and con-

structs point neighborhoods using space partitioning to

avoid time-consuming K-NN/range search.

• Efficacy of the proposed technique is established

by experiments with ModelNets [39] for 3D object

classification, ShapeNet [40] for part segmentation,

and RueMonge2014 [30] for semantic segmentation,

achieving competetive performance on the last two.

2. Related Work

PointNet [27] is one of the first instances of exploit-

ing neural networks to represent point clouds. It directly

uses x, y, z-coordinates of points as input features. The

network learns point-wise features with shared MLPs, and

extracts a global feature with max pooling. A major limi-

tation of PointNet is that it explores no geometric context

in point-wise feature learning. This was later addressed

by PointNet++ [28] with hierarchical application of max-

pooling to the local regions. The enhancement builds lo-

cal regions using K-NN search as well as range search.

Nevertheless, both PointNets [27, 28] aggregate the context

information with max pooling, and no convolution mod-

ules are explored in the networks. In regards to process-

ing point clouds with deep learning using tree structures,

Kd-network [16] is among the pioneering prominent con-

tributions. Kd-network also uses point coordinates as its in-

put, and computes feature of a parent node by concatenating

the features of its children in a balanced tree. However, its

performance depends heavily on the randomization of the

tree construction. This is in sharp contrast to our approach

that uses deterministic geometric relationships between the

points. Another technique, SO-Net [18] reorganizes the ir-

regular point cloud into an m×m 2D rectangular map, and

uses the PointNet architecture to learn node-wise features

for the map. Similarly, KCNet [32] also builds on PointNet

and introduces a point-set template to learn geometric corre-

lations of local points in the point cloud. PointCNN [19] ex-

tracts permutation-invariant features by reordering the local

points canonically with a learnable χ-transformation. All of

these methods relate to our work in terms of directly accept-

ing the spatial coordinates of points as input. However, they

do not contribute towards the use of convolutional networks

for processing 3D point clouds. Approaches advancing that

research direction can be divided into two broad categories,

discussed below.

A. Graph Convolutional Networks

Graph convolutional networks can be grouped into spec-

tral networks [3, 7, 15] and spatial networks [33]. The spec-

tral networks perform convolution in the spectral domain

relying on the graph Laplacian and adjacency matrices,

while the spatial networks perform convolution in the spa-

tial domain. A major limitation of spectral networks is that

they demand the graph structure to be fixed, which makes

their application to the data with varying graph structures

(e.g. point clouds) challenging. Yi et al. [41] attempted

to address this issue with Spectral Transformer Network

(SpecTN), similar to STN [14] in the spatial domain. How-

ever, the signal transformation from spatial to spectral do-

mains and vice-versa results in computational complexity

O(n2). ECC [33] is among the pioneering works for point

cloud analysis with graph convolution in the spatial domain.

9632

Inspired by the dynamic filter networks [6], it adapts MLPs

to generate convolution filters between the connected ver-

tices dynamically. The dynamic generation of filters comes

with computational overhead. Additionally, the neighbor-

hood construction and graph coarsening in ECC must rely

on range searches, which is not efficient. We achieve coars-

ening and neighborhood construction directly from the oc-

tree partitioning, thereby avoiding expensive range search-

ing. Moreover, our spherical convolutional kernel effec-

tively explores the geometric context of each point without

requiring dynamic filter generation.

B. 3D Convolutional Neural Networks
3D-CNNs are applied to volumetric representations of

3D data. In the earlier attempts in this direction, only

low input resolution could be processed, e.g. 30×30×30

[39], 32×32×32 [23]. This issue transcended to subsequent

works as well [13, 31, 42, 43]. The limitation of low input

resolution was a natural consequence of the cubic growth

of memory and computational requirements associated with

the volumetric input data. Later methods [8, 20] mainly aim

at addressing these issues. Most recently, Riegler et al. [29]

proposed OctNet, that represents point clouds with a hybrid

of shallow grid octrees (depth=3). Compared to its dense

peers, OctNet reduces the computational and memory costs

to a large degree, and is applicable to high-resolution in-

puts up to 256×256×256. Whereas OctNet also exploits

octrees, there are major differences between OctNet and

our method. Firstly, OctNet must process point clouds as

regular 3D volumes due to its 3D-CNN kernels. No such

constraint is applicable to our technique due to the proposed

spherical kernels. Secondly, we are able to learn point cloud

representation with a single deep octree instead of using hy-

brid of shallow trees.

3. Spherical Convolutional Kernel
Our network derives its main strength from spherical

convolutional kernels. Thus, it is imperative to first under-

stand the proposed kernel before delving into the network

details. This section explains our convolutional kernel for

3D point cloud processing.

For images, hand-crafted features have traditionally been

computed over more primitive constituents, i.e. patches. In

effect, the same principle transcended to automatic feature

extraction with the standard CNNs that compute feature

maps using the activations of well-defined rectangular re-

gions. Whereas rectangular regions are a common choice

to process data of 2D nature, spherical regions are more

suited to process unstructured 3D data such as point clouds.

Spherical regions are inherently amenable to computing ge-

ometrically meaningful features for such data [9, 34, 35].

Inspired by this natural kinship, we introduce the concept

of spherical convolutional kernel1 that uses a 3D sphere as

1Note that the term spherical in Spherical CNN [5] is used for spherical

the basic geometric shape to perform the convolution.

Given an arbitrary point cloud P = {xi ∈ R
3}mi=1,

where m is the number of points; we define the convolu-

tion kernel with the help of a sphere of radius ρ ∈ R
+.

For a target point xi, we consider its neighborhood N (xi)
to comprise the points within the sphere centered at xi,

i.e. N (xi) = {x : d(x,xi) ≤ ρ}, where d(., .) is a

distance metric - ℓ2 distance in this work. We divide the

sphere into n × p × q ‘bins’ (see Fig. 1) by partitioning

the occupied space uniformly along the azimuth (θ) and el-

evation (φ) dimensions. We allow the partitions along the

radial dimension to be non-uniform because cubic volume

growth for large radius values can become undesirable. Our

quantization of the spherical region is mainly inspired by

3DSC [9]. We also define an additional bin correspond-

ing to the origin of the sphere to allow the case of self-

convolution of points. For each bin, we define a weight

matrix Wκ∈{0,1,...,n×p×q} ∈ R
s×t of learnable parameters,

where s-t are the number of output-input channels and W0

relates to self-convolution. Together, the n×p×q+1 weight

matrices specify a single spherical convolutional kernel.

To compute the activation value for a target point xi, we

must identify the relevant weight matrices of the kernel for

each of its neighboring points xj ∈ N (xi). It is straightfor-

ward to associate xi with W0 for self-convolution. For the

non-trivial cases, we first represent the neighboring points

in terms of their spherical coordinates that are referenced

using xi as the origin. That is, for each xj we compute

T (∆ji) → ψji, where T (.) defines the transformation

from Cartesian to Spherical coordinates and ∆ji = xj−xi.

Assuming that the bins of the quantized sphere are in-

dexed by kθ, kφ and kr along the azimuth, elevation and

radial dimensions respectively, the weight matrices asso-

ciated with the spherical kernel bins can be indexed as

κ = kθ + (kφ − 1) × n + (kr − 1) × n × p, where

kθ ∈ {1, . . . , n}, kφ ∈ {1, . . . , p}, kr ∈ {1, . . . , q}. Using

this indexing, we assign each ψji; and hence xj to its rele-

vant weight matrix. In the lth network layer, the activation

for the ith point can then be computed as:

z
l
i =

1

|N (xi)|

|N (xi)|
∑

j=1

W
l
κa

l−1
j + b

l, (1)

a
l
i = f(zli), (2)

where a
l−1
j is the activation value of a neighboring point

from layer l − 1, W
l
κ is the weight matrix, b

l is the

bias vector, and f(·) is the non-linear activation function

- ReLU [25] in our experiments.

To elaborate on the characteristics of the proposed spher-

ical convolutional kernel, let us denote the edges of the ker-

surfaces (i.e. 360◦ images) not the ambient 3D space. Our concept of

spherical kernel widely differs from [5], and it is used in different context.

9633

nel bins along θ, φ and r dimensions respectively as:

Θ = [Θ1, . . . ,Θn+1], Θk < Θk+1,Θk ∈ [−π, π],
Φ = [Φ1, . . . ,Φp+1]

]

, Φk < Φk+1,Φk ∈
[

− π

2
,
π

2
],

R = [R1, . . . , Rq+1], Rk < Rk+1, Rk ∈ (0, ρ].

Due to the constraint of uniform splitting along the azimuth

and elevation, we can write Θk+1 −Θk = 2π
n

and Φk+1 −
Φk = π

p
.

Lemma 2.1: If Θk ·Θk+1 ≥ 0, Φk · Φk+1 ≥ 0 and n > 2,

then for any two points xa 6= xb within the spherical con-

volutional kernel, the weight matrices Wκ, ∀κ > 0, are

applied asymmetrically.

Proof: Let ∆ab = xa − xb = [δx, δy, δz]
⊺, then ∆ba =

[−δx,−δy,−δz]⊺. Under the Cartesian to Spherical co-

ordinate transformation, we have T (∆ab) = ψab =
[θab, φab, r]

⊺, and T (∆ba) = ψba = [θba, φba, r]
⊺. We as-

sert that ψab and ψba fall in the same bin indexed by κ ←
(kθ, kφ, kr), i.e. Wκ is applied symmetrically to the points

xa and xb. In that case, under the inverse transformation

T −1(.), we have δz = r sinφab and (−δz) = r sinφba. The

condition Φkφ
·Φkφ+1 ≥ 0 entails that −δ2z = δz · (−δz) =

(r sinφab)·(r sinφba) = r2(sinφab sinφba) ≥ 0 =⇒ δz =
0. Similarly, Θkθ

·Θkθ+1 ≥ 0 =⇒ δy = 0. Since xa 6= xb,

for δx 6= 0 we have cos θab = − cos θba =⇒ |θab − θba| =
π. However, if θab, θba fall into the same bin, we have

|θab − θba| = 2π
n

< π, which entails δx = 0. Thus, the

assertion can not hold, and Wκ can not be applied to any

two points symmetrically unless both points are the same.

The asymmetry property of the spherical kernel is sig-

nificant because it restricts the sharing of the same weights

between point pairs, which facilitates in learning more ef-

fective features with finer geometric details. Lemma 2.1

also provides guidelines for the division of the convolu-

tion kernel into bins such that the asymmetry is always pre-

served. To elaborate further on this aspect, we provide few

examples of kernel divisions that violate asymmetry in the

supplementary material of the paper. Note that asymmet-

ric application of kernel weights to pixels comes naturally

in standard CNN kernels. However, the proposed kernel is

able to ensure the same property in the point cloud domain.

Relation to 3D-CNN: Here, we briefly relate the proposed

notion of spherical kernel to the existing techniques that ex-

ploit CNNs for 3D data. Pioneering works in this direction

rasterize the raw data into uniform voxel grids, and then ex-

tract features using 3D-CNNs from the resulting volumetric

representations [23, 39]. In 3D-CNNs, the convolution ker-

nel of size 3 × 3 × 3 = 27 is prevalently used, that splits

the space in 1 cell/voxel for radius r = 0 (self-convolution);

6 cells for radius r = 1; 12 cells for radius r =
√
2; and

8 cells for radius r =
√
3. An analogous spherical con-

volution kernel for the same region can be specified with a

radius ρ =
√
3, using the following edges for the bins:

Θ = [−π,−π

2
, 0,

π

2
, π];

Φ = [−π

2
,−π

4
, 0,

π

4
,
π

2
];

R = [ǫ, 1,
√
2, ρ], ǫ→ 0+. (3)

This division results in a kernel size (i.e. total number of

bins) 4× 4× 3 + 1 = 49, which is the coarsest multi-scale

quantization allowed by Lemma 2.1.

Notice that, if we move radially from the center to the pe-

riphery of spherical kernel, we encounter identical number

of bins (16 in this case) after each edge defined by R, where

fine-grained bins are located close to the origin that can

encode detailed local geometric information of the points.

This is in sharp contrast to 3D-kernels that must keep the

size of all cells constant and rely on increased input reso-

lution of the data to capture finer details - generally entail-

ing memory issues. The multi-scale granularity of spherical

kernel makes it a natural choice for raw point clouds.

4. Neural Network

Most of the existing attempts to process point clouds

with neural networks [18, 19, 28, 32, 33] rely on K-NN

or range searches to define local neighborhood of points,

that are subsequently used to perform operations like con-

volution or pooling. However, to process large point

clouds, these search strategies become computationally pro-

hibitive. For unstructured data, an efficient mechanism

to define point neighbourhood is tree-structuring, e.g. Kd-

tree [2]. The hierarchical nature of tree structures also pro-

vide guidelines for neural network architectures that can be

used to process the point cloud. More importantly, a tree-

structured data also possess the much desired attributes of

permutation and translation invariance for neural networks.

A. Core Architecture

We exploit octree structuring [24] of point clouds and

design a neural network based on the resulting trees. Our

choice of using octree comes from its amenability to neural

networks as the base data structure [29], and its ability to

account for more data in point neighborhoods compared to,

for example, Kd-tree. We illustrate 3D space partitioning

under octree, the resulting tree, and the formation of neural

network using the proposed strategy of network construc-

tion in Fig. 2 for a toy example. For an input point cloud

P , we construct an octree of depth L (L = 3 in the figure).

In the construction, the splitting of nodes is fixed to use a

maximum capacity of one point, with the exception of the

last layer leaf nodes. The point in a parent node is computed

as the Expected value of the points in its children. The al-

location of multiple points in the last layer nodes directly

results from the allowed finest partitioning of the space. For

the sub-volumes in 3D space that are not densely populated,

9634

Figure 2. Illustration of octree guided network architecture using a toy example: The point cloud in 3D space is partitioned under an

octree of depth 3. The corresponding tree representation allocates points to nodes at the maximum depth based on the space partitioning,

and computes the location of each parent node as the Expected location of its children. Leaf nodes on shallow branches are replicated to

match the maximum depth. The corresponding neural network has the same number of hidden layers as tree depth, and it learns spherical

convolutional kernels for feature extraction.

our splitting strategy can result in leaf nodes before the tree

reaches its maximum depth. In such cases, to facilitate map-

ping of the tree to a neural network, we replicate the leaf

nodes to the maximum depth of the tree. We safely ignore

the empty nodes while implementing the network, resulting

in computational and memory benefits.

Based on the hierarchical tree structure, our neural net-

work also has L hidden layers. Notice that, in Fig. 2 we use

l = 1 for the first hidden layer that corresponds to Depth

= 3 for the tree. We will use the same convention in the

text to follow. For each non-empty node in the tree, there

is a corresponding neuron in our neural network. Recall

that, a spherical convolutional kernel is specified with a tar-

get point over whose neighborhood the convolution is per-

formed. Therefore, to facilitate convolutions, we associate a

single 3D point with each neuron, except for the leaf nodes

at the maximum depth of the tree. For a leaf node, the as-

sociated point is the mean value of data points allocated to

that node. A neuron uses its associated point/location to

select the appropriate spherical kernel and later applies the

non-linear activation (not shown in Fig. 2). In our network,

all convolution layers before the last layer are followed by

batch normalization and ReLU activations.

We denote the location associated with the ith neuron in

the lth layer of the network as x̄
l
i. From l = 1 to l = L,

we can represent the locations associated with all neurons

as Q1 = {x̄1
i }m1

i=1, . . . , QL = {x̄L
1 }mL

i=1. Denoting the raw

input points as Q0 = {x̄0
i }m0

i=1, x̄l
i is numerically computed

by our network as:

x̄
l
i =

∑

x̄
l−1

j
∈N (x̄l

i
)

x̄
l−1
j

|N (x̄l
i)|

, (4)

where N (x̄l
i) contains locations of the relevant children

nodes in the octree. It is worth noting that the strategy

used for specifying the network layers also entails that

|Ql−1| > |Ql|. Thus, from the first layer to the last, the

features learned by our network move from lower to higher

level of abstraction similar to the standard CNNs.

In relating the spherical nature of point neighborhood

considered in our network to the cubic partitioning of space

by octree, a subtle detail is worth considering. Say xmin =

[xmin, ymin, zmin]
⊺, and xmax = [xmax, ymax, zmax]

⊺ deter-

mine the range of point coordinates in a given cubic volume

resulting from our space partitioning. The spherical neigh-

borhood associated with a neuron in the lth layer is defined

with the radius ρ = 2l−L−1||xmax − xmin||2. This neigh-

bourhood may not strictly circumscribe all points of the cor-

responding cubic volume at this level due to shape dissimi-

larity. Although the number of such points is minuscule in

practice, we still take those into account by assigning them

to the outer-most bins of our kernels based on their azimuth

and elevation values.

Our neural network performs inter-layer convolutions in-

stead of intra-layer convolutions. This drastically reduces

the operations required to process large point clouds when

compared with graph-based networks [3, 7, 15, 33, 41].

We note that for all nodes with a single child, only self-

convolutions are performed in the network. Note that due

to its unconventional nature, spherical convolutional kernel

is not readily implemented using the existing deep learning

libraries, e.g. matconvnet [36]. Therefore, we implement

it ourselves with CUDA C++ and mex interface2. For the

other modules such as ReLU, batch normalization etc., we

use matconvnet. See Sec. E of the supplementary material

to understand the spherical kernel in a conventional way.

Comparison to OctNet [29]: OctNet [29] also makes use

of octree structure. However, OctNet processes point clouds

as regular 3D volumes - a 3D-CNN. In contrast, we process

point clouds following their unstructured nature. Our net-

work learns features for each point in the sets from Q0 to

QL, which is in contrast to OctNet that must account for

occupied and unoccupied voxels, entailing complexity. We

exploit octree structure to simultaneously construct neigh-

borhoods of all points and coarsen the original point cloud

layer-by-layer, while OctNet uses this structure to voxelize

2The implementation will be made public.

9635

Figure 3. Classification and segmentation using the core network of Fig. 2. For classification, the features at the root node (top layer)

are concatenated with the max-pooled (dashed lines) features at the remaining layers followed by FC layers. For segmentation, the

representation of a point uses the layer-level features of all the ancestors along the path to the root node, e.g. red path for point ‘1’ and blue

path for point ‘m’. Point-wise classification (segmentation) is performed using the concatenated raw point features (xyz/xyz − rgb), the

MLP features and all the extracted layer-level features. A simple configuration MLP(32)-Octree(64-128-256) is shown for illustration.

the point cloud into different resolutions.

B. Classification and Segmentation

The classification and segmentation networks are basi-

cally variants of the same core architecture shown in Fig 2.

However, we additionally insert an MLP layer prior to the

octree structure to obtain more expressive point-wise fea-

tures. This concept is inspired from Kd-Net [16]. Figure 3

shows the complete architectures for classification and seg-

mentation. To fully exploit the hierarchical features learned

at different octree levels, we use features from all octree lay-

ers. For classification, we max pool the features from inter-

mediate layers, including the raw features, and concatenate

them with the features at the root node to form a global rep-

resentation of the complete point cloud. For segmentation,

we need point wise features. The feature of each point is

the concatenation of raw features, MLP features and layer-

wise features without any pooling. The final classification

or segmentation is performed using three fully connected

layers.

5. Experiments

We conduct experiments on clean CAD Models as well

as noisy point clouds to evaluate the performance of our

method for the tasks of 3D object classification, part seg-

mentation and semantic segmentation. Throughout the ex-

periments, we keep the size of our convolution kernel fixed

to 8× 2× 3 + 1, in which the radial dimension is split uni-

formly. We use three fully connected layers (512-256-C)

followed by softmax as the classifier for both the classifica-

tion and segmentation tasks. Here, C denotes the number of

classes/parts. The training of our network is conducted us-

ing a Titan Xp GPU with 12 GB memory. We use Stochas-

tic Gradient Descent with momentum to train the network.

The batch size is kept fixed to 16 in all our experiments.

These hyper-parameters were empirically optimized using

cross-validation. We use only the (x, y, z) coordinates of

points provided by point clouds to train our network, and the

(r, g, b) values when the color information is provided. Few

existing methods in the literature also take advantage of nor-

mals, and use them as input features. However, normals are

not directly sensed by 3D sensors and must be computed us-

ing the point coordinates. This also entails additional com-

putational burden. Hence, we avoid using normals as input

features. In our experiments, we follow the standard prac-

tice of taking advantage of data augmentation. To that end,

we used random sub-sampling of the original point clouds,

performed random azimuth rotation (up to π
6 rad) and also

applied noisy translation (std. dev = 0.02) to increase the

number of training examples. These operations were per-

formed on the fly in each training epoch of the network.

A. Classification

We use the benchmark datasets ModelNet10 and Model-

Net40 [39] to evaluate our technique for the classification

task. These datasets are created using clean CAD models.

ModelNet10 contains 10 categories of object meshes, and

the samples are split into 3,991 training examples and 908

test instances. ModelNet40 contains object meshes for 40

categories with 9,843/2,468 training/testing split.

Compared to existing works (e.g. [27, 28, 32, 33]), the

convolutions performed in our network allow the proposed

method to consume large input point clouds. Hence, we

train our network using 10K input points. For the classifi-

cation task, we adopted a network with 6 levels of octree,

whereas the number of feature channels are kept MLP(32)-

Octree(64-64-64-128-128-128). The network comprises

two components, octree based architecture for feature ex-

traction and classification stage. We train the whole net-

work in an end-to-end fashion. We standardize the input

models by normalizing the 3D point clouds to fit into a cube

of [−1, 1]3 with zero mean.

Table 1 benchmarks the object classification perfor-

mance of our approach that is abbreviated as Ψ-CNN3. Our

method uses xyz coordinates of points as raw features to

achieve these results. As can be seen, Ψ-CNN consistently

3A Greek alphabet is chosen as prefix to avoid duplication with other

OCNNs and SCNNs, e.g. [21, 26, 37].

9636

Table 1. Classification performance on ModelNets [39].

Method
ModelNet10 ModelNet40

class instance class instance

OctNet [29] 90.1 90.9 83.8 86.5

ECC [33] 90.0 90.8 83.2 87.4

PointNet [27] – – 86.2 89.2

PointNet++ [28] – – – 90.7

Kd-Net [16] 92.8 93.3 86.3 90.6

SO-Net [18] 93.9 94.1 87.3 90.9

KCNet [32] – 94.4 – 91.0

Ψ-CNN 94.4 94.6 88.7 92.0

achieves the best performance on ModelNets. We note that,

like our method Kd-Net [16] and OctNet [29] are also tree

structure based networks. However, they require twice the

number of parametric layers as required by our method to

achieve the reported performance. This is a direct conse-

quence of effective exploration of geometric information by

the proposed kernel. We also provide an ablation study to

support this in the supplementary material of the paper.

B. Part Segmentation

ShapeNet part segmentation dataset [40] contains 16,881

CAD models from 16 categories. The models in each cat-

egory have two to five annotated parts, amounting to 50

parts in total. The point clouds are created with uniform

sampling from 3D meshes. This dataset provides xyz co-

ordinates of the points as raw features, and has 14007/2874

training/testing split defined. We use a 6-level octree for

the segmentation network, with configuration MLP(64)-

Octree(128-128-256-256-512-512). The output class num-

ber C of the classifier is determined by the number of parts

in each category. We use the part-averaged IoU (mIoU) pro-

posed in [27] to report the performance in Table 2. Simi-

lar to the classification task, we also standardize the input

models of ShapeNet by normalizing input point clouds to

[−1, 1]3 cube with zero mean.

In Table 2, we compare our results with the popular

methods that also take irregular point clouds as input. Yet,

to achieve their results, some of these methods exploit nor-

mals besides xyz coordinates as input features, e.g. Point-

Net, PointNet++, SO-Net. It can seen that Ψ-CNN not only

achieves the highest mIoU 86.8%, but also outperforms the

other approaches on 11 out of 16 categories. To the best

of our knowledge, Ψ-CNN records the new state-of-the-

art performance on this part segmentation dataset that is

∼ 1% higher than the specialized segmentation networks,

SSCN [11] and SGPN [38].

In Fig. 4, we show few representative segmentation re-

sults. High mIoU is achieved by Ψ-CNN for the high-

quality results, whereas the mIoU value is low for the other

case. Examining the low-quality results, we found that

most of these cases are caused by one of the two condi-

tions. (1) Confusing ground truth labelling: E.g. the axle in

Skateboard is labelled as a separate segment in most of the

ground truth samples but part of the wheels in few other

samples. Hence, the network learns the more dominant

segmentation. Similar is the case for the legs of Chairs.

(2) Small parts without clear boundaries: E.g. handles of a

Bag are considered separate segments in the ground truth.

We also provide further examples in the supplementary ma-

terial. From these results, we can easily conclude the suc-

cess of Ψ-CNN for the part segmentation task.

C. Semantic Segmentation

We also test our model for Semantic Segmentation of

real world data with RueMonge2014 dataset [30]. This

dataset contains 700 meter facades along a street annotated

with point-wise labelling. The classes includes window,

wall, balcony, door, roof, sky and shop. The point clouds are

provided with color features. To train our network, we split

both the training and testing data into 1m3 blocks. We align

the facade plane of all the blocks into the same plane, and

adjust the gravitational axis to be upright. We only force

the x and y dimensions to have zero-means, but not the

z axis. This processing strategy is adopted to avoid loos-

ing the height information. We use xyz+rgb as input raw

features to train our network. The used network configura-

tion is MLP(64)-Octree(64-64-128-128-256-256). Table 3

compares the results of our approach with those of the re-

cent methods on this dataset, under the evaluation protocol

of [10]. With 7 parametric layers, we achieve better per-

formance than OctNet, which uses 20 parametric layers to

learn the final representation of each point. These results

demonstrate the promises of Ψ-CNN in practical applica-

tions. Visualizations for the segmentation results are pro-

vided in the supplementary material.

D. Discussion

For geometrically meaningful convolutions, knowledge

of local neighborhood of points is imperative. A related

approach, ECC [33] exploits range search for this purpose.

Another obvious choice is K-NN clustering. However, with

tree structures, e.g. octree; the point neighborhood infor-

mation is already readily available that adds to computa-

tional efficiency of Ψ-CNN. In Fig. 5, we report the tim-

ings of computing neighborhoods under different choices,

and compare them to octree construction. As can be seen,

for larger number of input points, octree structuring is more

efficient as compared to K-NN and range searching. More-

over, its efficiency is also better than Kd-tree for large input

sizes because the binary split in Kd-tree forces it to be much

deeper than octree.

Running our classification network on 1K randomly se-

lected samples from ModelNets, we compute the test time

of our network for point clouds of sizes 10K, and report tim-

ings in Table 4. The test time for a sample consists of time

required to construct the octree and performing the forward

9637

High-Quality Segmentation Low-Quality Segmentation

GT Ours GT Ours GT Ours GT Ours

Lamp 91.4% Bag 98.1% Lamp 35.5% Bag 46.8%

Skateboard 92.2% Chair 96.0% Skateboard 55.8% Chair 41.6%
Figure 4. Representative examples of high- and low-quality segmentation results of Ψ-CNN. Computed mIoU is also given in each case.

Low-quality segemetation generally result from: (1) confusing ground truth labeling, e.g. axles of skateboards are considered separate

segments in most of the ground-truth labels, (2) small object parts with no clear boundaries, e.g. handles of bags. Color coding is within

category (best viewed on screen).

Table 2. Results on ShapeNet part segmentation dataset
Method mIoU NO. Airplane Bag Cap Car Chair Earphone Guitar Knife Lamp Laptop Motorbike Mug Pistol Rocket Skateboard Table

3D-CNN [27] 79.4 0 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.9 58.7 91.8 76.4 51.2 65.3 77.1

Kd-net [16] 82.3 0 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3

PointNet [27] 83.7 0 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6

SyncSpecCNN [41] 84.7 2 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1

KCNet [32] 84.7 1 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.2 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3

SO-Net [18] 84.9 1 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0

PointNet++ [28] 85.1 0 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6

Ψ-CNN 86.8 11 84.2 82.1 83.8 80.5 91.0 78.3 91.6 86.7 84.7 95.6 74.8 94.5 83.4 61.3 75.9 85.9

Table 3. Semantic Segmentation on RueMonge2014 dataset

Method Average Overall IoU

Riemenschneider et al. [30] – – 42.3

Martinovic et al. [22] – – 52.2

Gadde et al. [10] 68.5 78.6 54.4

OctNet 2563 [29] 73.6 81.5 59.2

Ψ-CNN 74.7 83.5 63.6

Figure 5. Comparison of octree structuring with K-NN, range

search and Kd-tree for neighborhood computation.

Input size Octree construction Forward pass Total Normal computation

10K 3.5 30.6 34.1 27.4

Table 4. Per-sample test time (ms) for 10K input. The computing

time for normals is included for reference only - indicated by red.

pass. We also show the time of normal computation in the

table for reference. Our approach does not compute nor-

mals to achieve the results reported in the previous section.

To put these timings into perspective, PointNet++ [28] re-

quires roughly 115ms for a forward pass of input with 1024

points on the same machine. In Fig. 6, we also show a repre-

sentative example of point cloud coarsening by our method

l = 1 l = 2 l = 3 l = 4 l = 5
Figure 6. Point cloud coarsening example under octree structuring

by our technique. ‘l’ is the octree level.

under octree structuring. Our network gradually sparsifies

the point cloud by applying spherical convolutional kernel

at each level.

6. Conclusion
We introduced the notion of spherical convolutional ker-

nels for point cloud processing and demonstrated its util-

ity with a neural network guided by octree structure. The

network successively performs convolutions in the neigh-

borhood of its neurons, the locations of which are governed

by the nodes of the underlying octree. To perform the con-

volutions, our spherical kernel divides its occupied space

into multiple bins and associates a weight matrix to each

bin. These matrices are learned with network training. We

have shown that the resulting network can efficiently pro-

cess large 3D point clouds in effectively achieving excellent

performance on the tasks of 3D classification and segmen-

tation on synthetic and real data.

Acknowledgments This research was supported by

ARC Discovery Grant DP160101458 and partially by

DP190102443. We also thank NVIDIA corporation for do-

nating the Titan XP GPU used in our experiments.

9638

References

[1] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis,

M. Fischer, and S. Savarese. 3D semantic parsing of large-

scale indoor spaces. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1534–

1543, 2016. 1

[2] J. L. Bentley. Multidimensional binary search trees used

for associative searching. Communications of the ACM,

18(9):509–517, 1975. 4

[3] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral

networks and locally connected networks on graphs. In In-

ternational Conference on Learning Representations, 2014.

1, 2, 5

[4] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,

Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,

et al. ShapeNet: An information-rich 3D model repository.

arXiv preprint arXiv:1512.03012, 2015. 1

[5] T. S. Cohen, M. Geiger, J. Köhler, and M. Welling. Spherical

cnns. In International Conference on Learning Representa-

tions, 2018. 3

[6] B. De Brabandere, X. Jia, T. Tuytelaars, and L. Van Gool.

Dynamic filter networks. In Advances in Neural Information

Processing Systems, 2016. 3

[7] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolu-

tional neural networks on graphs with fast localized spectral

filtering. In Advances in Neural Information Processing Sys-

tems, pages 3844–3852, 2016. 1, 2, 5

[8] M. Engelcke, D. Rao, D. Zeng Wang, C. Hay Tong, and

I. Posner. Vote3Deep: Fast object detection in 3D point

clouds using efficient convolutional neural networks. In

IEEE International Conference on Robotics and Automation,

June 2017. 3

[9] A. Frome, D. Huber, R. Kolluri, T. Bülow, and J. Malik.

Recognizing objects in range data using regional point de-

scriptors. European Conference on Computer Vision, pages

224–237, 2004. 3

[10] R. Gadde, V. Jampani, R. Marlet, and P. V. Gehler. Efficient

2D and 3D facade segmentation using auto-context. IEEE

transactions on Pattern Analysis and Machine Intelligence,

40(5):1273–1280, 2018. 7, 8

[11] B. Graham, M. Engelcke, and L. van der Maaten. 3D se-

mantic segmentation with submanifold sparse convolutional

networks. Proceedings of the IEEE Computer Vision and

Pattern Recognition, pages 18–22, 2018. 7

[12] T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner,

K. Schindler, and M. Pollefeys. Semantic3D.net: A new

large-scale point cloud classification benchmark. In ISPRS

Annals of the Photogrammetry, Remote Sensing and Spatial

Information Sciences, pages 91–98, 2017. 1

[13] J. Huang and S. You. Point cloud labeling using 3D convo-

lutional neural network. In ICPR, pages 2670–2675, 2016.

3

[14] M. Jaderberg, K. Simonyan, A. Zisserman, et al. Spatial

transformer networks. In Advances in Neural Information

Processing Systems, pages 2017–2025, 2015. 2

[15] T. N. Kipf and M. Welling. Semi-supervised classification

with graph convolutional networks. In International Confer-

ence on Learning Representations, 2017. 1, 2, 5

[16] R. Klokov and V. Lempitsky. Escape from cells: Deep kd-

networks for the recognition of 3d point cloud models. In

Proceedings of the IEEE International Conference on Com-

puter Vision, pages 863–872. IEEE, 2017. 1, 2, 6, 7, 8

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998. 1

[18] J. Li, B. M. Chen, and G. H. Lee. So-net: Self-organizing

network for point cloud analysis. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 9397–9406, 2018. 2, 4, 7, 8

[19] Y. Li, R. Bu, M. Sun, and B. Chen. Pointcnn. Advances in

Neural Information Processing Systems, 2018. 2, 4

[20] Y. Li, S. Pirk, H. Su, C. R. Qi, and L. J. Guibas. FPNN: Field

probing neural networks for 3D data. In Advances in Neural

Information Processing Systems, pages 307–315, 2016. 3

[21] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky.

Sparse convolutional neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 806–814, 2015. 6

[22] A. Martinovic, J. Knopp, H. Riemenschneider, and

L. Van Gool. 3D all the way: Semantic segmentation of

urban scenes from start to end in 3D. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4456–4465, 2015. 8

[23] D. Maturana and S. Scherer. VoxNet: A 3D convolutional

neural network for real-time object recognition. In IEEE/RSJ

International Conference on Intelligent Robots and Systems,

pages 922–928. IEEE, 2015. 1, 3, 4

[24] D. Meagher. Geometric modeling using octree encoding.

Computer graphics and image processing, 19(2):129–147,

1982. 1, 4

[25] V. Nair and G. E. Hinton. Rectified linear units improve

restricted boltzmann machines. In ICML, pages 807–814,

2010. 3

[26] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkate-

san, B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally.

SCNN: An accelerator for compressed-sparse convolutional

neural networks. In Proceedings of the 44th Annual Interna-

tional Symposium on Computer Architecture, pages 27–40.

ACM, 2017. 6

[27] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. PointNet: Deep

learning on point sets for 3D classification and segmenta-

tion. Proceedings of the IEEE Conference on Computer Vi-

sion and Pattern Recognition, pages 652–660, 2017. 1, 2, 6,

7, 8

[28] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. PointNet++: Deep

hierarchical feature learning on point sets in a metric space.

Advances in Neural Information Processing Systems, 2017.

1, 2, 4, 6, 7, 8

[29] G. Riegler, A. Osman Ulusoy, and A. Geiger. OctNet: Learn-

ing deep 3d representations at high resolutions. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3577–3586, 2017. 1, 2, 3, 4, 5, 7, 8

9639

[30] H. Riemenschneider, A. Bódis-Szomorú, J. Weissenberg,

and L. Van Gool. Learning where to classify in multi-view

semantic segmentation. In European Conference on Com-

puter Vision, pages 516–532, 2014. 2, 7, 8

[31] N. Sedaghat, M. Zolfaghari, and T. Brox. Orientation-

boosted voxel nets for 3D object recognition. In British Ma-

chine Vision Conference, 2017. 3

[32] Y. Shen, C. Feng, Y. Yang, and D. Tian. Mining point cloud

local structures by kernel correlation and graph pooling. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, volume 4, 2018. 2, 4, 6, 7, 8

[33] M. Simonovsky and N. Komodakis. Dynamic edge-

conditioned filters in convolutional neural networks on

graphs. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2017. 1, 2, 4, 5, 6,

7

[34] F. Tombari, S. Salti, and L. Di Stefano. Unique shape context

for 3D data description. In Proceedings of the ACM work-

shop on 3D object retrieval, pages 57–62. ACM, 2010. 3

[35] F. Tombari, S. Salti, and L. Di Stefano. Unique signatures of

histograms for local surface description. In European Con-

ference on Computer Vision, pages 356–369, 2010. 3

[36] A. Vedaldi and K. Lenc. Matconvnet: Convolutional neural

networks for matlab. In Proceedings of the 23rd ACM inter-

national conference on Multimedia, pages 689–692. ACM,

2015. 5

[37] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong. O-

CNN: Octree-based convolutional neural networks for 3D

shape analysis. ACM Transactions on Graphics, 36(4):72,

2017. 6

[38] W. Wang, R. Yu, Q. Huang, and U. Neumann. SGPN:

Similarity group proposal network for 3D point cloud in-

stance segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2569–

2578, 2018. 7

[39] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3D ShapeNets: A deep representation for volumetric

shapes. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 1912–1920, 2015. 1,

2, 3, 4, 6, 7

[40] L. Yi, V. G. Kim, D. Ceylan, I. Shen, M. Yan, H. Su, A. Lu,

Q. Huang, A. Sheffer, L. Guibas, et al. A scalable active

framework for region annotation in 3D shape collections.

ACM Transactions on Graphics, 35(6):210, 2016. 1, 2, 7

[41] L. Yi, H. Su, X. Guo, and L. J. Guibas. Syncspeccnn: Syn-

chronized spectral cnn for 3d shape segmentation. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2282–2290, 2017. 2, 5, 8

[42] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and

T. Funkhouser. 3DMatch: Learning local geometric descrip-

tors from RGB-D reconstructions. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 199–208, 2017. 3

[43] Y. Zhang, M. Bai, P. Kohli, S. Izadi, and J. Xiao. Deep-

context: Context-encoding neural pathways for 3D holistic

scene understanding. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision, pages 1192–1201,

2017. 3

9640

