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Abstract

Action recognition with skeleton data has recently at-

tracted much attention in computer vision. Previous stud-

ies are mostly based on fixed skeleton graphs, only captur-

ing local physical dependencies among joints, which may

miss implicit joint correlations. To capture richer depen-

dencies, we introduce an encoder-decoder structure, called

A-link inference module, to capture action-specific latent

dependencies, i.e. actional links, directly from actions. We

also extend the existing skeleton graphs to represent higher-

order dependencies, i.e. structural links. Combing the two

types of links into a generalized skeleton graph, we further

propose the actional-structural graph convolution network

(AS-GCN), which stacks actional-structural graph convolu-

tion and temporal convolution as a basic building block, to

learn both spatial and temporal features for action recog-

nition. A future pose prediction head is added in parallel

to the recognition head to help capture more detailed ac-

tion patterns through self-supervision. We validate AS-GCN

in action recognition using two skeleton data sets, NTU-

RGB+D and Kinetics. The proposed AS-GCN achieves con-

sistently large improvement compared to the state-of-the-art

methods. As a side product, AS-GCN also shows promising

results for future pose prediction.

1. Introduction

Human action recognition, broadly applicable to video

surveillance, human-machine interaction, and virtual real-

ity [9, 7, 25], has recently attracted much attention in com-

puter vision. Skeleton data, representing dynamic 3D joint

positions, have been shown to be effective in action repre-

sentation, robust against sensor noise, and efficient in com-
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Figure 1. Feature learning with generalized skeleton graphs. the

actional links and structural links capture dependencies between

joints. For the action “walking”, actional links denotes that hands

and feet are correlated. The semilucent circles on the right bod-

ies are the joint feature maps for recognition, whose areas are the

response magnitudes. Compared to ST-GCN, AS-GCN obtains

responses on collaborative moving joints (red boxes).

putation and storage [18, 30]. The skeleton data are usu-

ally obtained by either locating 2D or 3D spatial coordi-

nates of joints with depth sensors or using pose estimation

algorithms based on videos [3].

The earliest attempts of skeleton action recognition of-

ten encode all the body joint positions in each frame to a

feature vector for pattern learning [27, 8, 6, 21]. These

models rarely explore the internal dependencies between

body joints, resulting to miss abundant actional information.

To capture joint dependencies, recent methods construct

a skeleton graph whose vertices are joints and edges are

bones, and apply graph convolutional networks (GCN) to

extract correlated features [17]. The spatio-temporal GCN

(ST-GCN) is further developed to simultaneously learn spa-

tial and temporal features [29]. ST-GCN though extracts the
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Figure 2. The pipeline of the proposed AS-GCN. The inferred actional graph A-links and extended structural graph S-links are fed to

the AS-GCN blocks to learn spatial features. The last AS-SCN block is connect to two parallel branches, the recognition head and the

prediction head, which are simultaneously trained.

features of joints directly connected via bones, structurally

distant joints, which may cover key patterns of actions, are

largely ignored. For example, while walking, hands and feet

are strongly correlated. While ST-GCN tries to aggregate

wider-range features with hierarchical GCNs, node features

might be weaken during long diffusion [19].

We here attempt to capture richer dependencies among

joints by constructing generalized skeleton graphs. In par-

ticular, we data-driven infer the actional links (A-links) to

capture the latent dependencies between any joints. Sim-

ilar to [16], an A-link inference module (AIM) with an

encoder-decoder structure is proposed. We also extend

the skeleton graphs to represent higher order relationships

as the structural links (S-links). Based on the general-

ized graphs with the A-links and S-links, we propose an

actional-structural graph convolution to capture spatial fea-

tures. We further propose the actional-structural graph

convolution network (AS-GCN), which stacks multiple of

actional-structural graph convolutions and temporal convo-

lutions. As a backbone network, AS-GCN adapts various

tasks. Here we consider action recognition as the main task

and future pose prediction as the side one. The prediction

head promotes self-supervision and improve recognition by

preserving detailed features. Figure 1 presents the charac-

teristics of the AS-GCN model, where we learn the actional

links and extend the structural links for action recognition.

The feature responses present that we could capture more

global joint information than ST-GCN, which only uses the

skeleton graph to model the local relations.

To verify the effectiveness of the proposed AS-GCN, we

conduct extensive experiments on two distinct large-scale

data sets: NTU-RGB+D [22] and Kinetics [12]. The ex-

periments have demonstrated that AS-GCN outperforms the

state-of-the-art approaches in action recognition. Besides,

AS-GCN accurately predicts future frames, showing that

sufficient detailed information is captured. The main con-

tributions in this paper are summarized as follows:

• We propose the A-link inference module (AIM) to infer

actional links which capture action-specific latent depen-

dencies. The actional links are combined with structural

links as generalized skeleton graphs; see Figure 1;

• We propose the actional-structural graph convolution net-

work (AS-GCN) to extract useful spatial and temporal

information based on the multiple graphs; see Figure 2;

• We introduce an additional future pose prediction head to

predict future poses, which also improves the recognition

performance by capturing more detailed action patterns;

• The AS-GCN outperforms several state-of-the-art meth-

ods on two large-scale data sets; As a side product, AS-

GCN is also able to precisely predict the future poses.

2. Related Works

Skeleton data is widely used in action recognition. Nu-

merous algorithms are developed based on two approaches:

the hand-crafted-based and the deep-learning-based. The

first approach designs algorithms to capture action patterns

based on the physical intuitions, such as local occupancy

features [28], temporal joint covariances [10] and Lie group

curves [27]. On the other hand, the deep-learning-based

approach automatically learns the action faetures from

data. Some recurrent-neural-network (RNN)-based mod-

els capture the temporal dependencies between consecutive

frames, such as bi-RNNs [6], deep LSTMs [22, 20], and

attention-based model [24]. Convolutional neural networks

(CNN) also achieve remarkable results, such as residual

temporal CNN [14], information enhancement model [21]

and CNN on action representations [13]. Recently, with

the flexibility to exploit the body joint relations, the graph-

based approach draws much attention [29, 23]. In this work,

we adopt the graph-based approach for action recognition.

Different from any previous method, we learn the graphs

adaptively from data, which captures useful non-local in-
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formation about actions.

3. Background

In this section, we cover the background material neces-

sary for the rest of the paper.

3.1. Notations

We consider a skeleton graph as G(V,E), where V is

the set of n body joints and E is a set of m bones. Let

A ∈ {0, 1}n×n be the adjacent matrix of the skeleton

graph, where Ai,j = 1 if the i-th and the j-th joints are

connected and 0 otherwise. A fully describes the skeleton

structure. Let D ∈ R
n×n be the diagonal degree matrix,

where Di,i =
∑

j Ai,j . To capture more refined location

information, we part one root node and its neighbors into

three sets, including 1) the root node itself, 2) the centripetal

group, which are closer to the body barycenter than root,

and 3) the centrifugal group, and A is accordingly parted to

be A(root), A(centripetal) and A(centrifugal). We denote the

partition group set as P = {root, centripetal, centrifugal}.

Note that
∑

p∈P
A(p) = A. Let X ∈ R

n×3×T be the 3D

joint positions across T frames. Let Xt = X:,:,t ∈ R
n×3 be

the 3D joint positions at the t-th frame, which slices the t-th
frame in the last dimension of X . Let xt

i = Xi,:,t ∈ R
d be

the positions of the i-th joint at the t-th frame.

3.2. Spatio-Temporal GCN

Spatio-temporal GCN (ST-GCN) [29] consists of a series

of the ST-GCN blocks. Each block contains a spatial graph

convolution followed by a temporal convolution, which al-

ternatingly extracts spatial and temporal features. The last

ST-GCN block is connected to a fully-connected classifier

to generate final predictions. The key component in ST-

GCN is the spatial graph convolution operation, which in-

troduces weighted average of neighboring features for each

joint. Let Xin ∈ R
n×din be the input features of all joints

in one frame, where din is the input feature dimension, and

Xout ∈ R
n×dout be the output features obtained from spa-

tial graph convolution, where dout is the dimension of out-

put features. The spatial graph convolution is

Xout =
∑

p∈P

M
(p)
st ◦ Ã(p)XinW

(p)
st , (1)

where Ã(p) = D(p)−
1

2 A(p)D(p)−
1

2 ∈ R
n×n is the normal-

ized adjacent matrix for each partition group, ◦ denotes the

Hadamard product, M
(p)
st ∈ R

n×n and W
(p)
st ∈ R

n×dout

are trainable weights for each partition group to capture

edge weights and feature importance, respectively.

4. Actional-Structural GCN

The generalized graph, named actional-structural graph,

is defined as Gg(V,Eg), where V is the original set of joints

(b) S-links (c) A-links(a) Skeleton graph

Figure 3. An example of the skeleton graph, S-links and A-links

for walking. In each plot, the links from ”Left Hand” to its neigh-

bors are shown in solid lines. (a) Skeleton links with limited neigh-

boring range; (b) S-links, allowing ”Left Hand” to link to the entire

arm; (c) A-links, capturing long-range action-specific relations.
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Figure 4. A-links inference module (AIM). To infer the A-link be-

tween two joints, the joint features are concatenated and fed into

the encoder-decoder formed AIM. The encoder produces the in-

ferred A-links and the decoder generates the future pose condi-

tioned on the A-links and previous actions.

and Eg is the set of generalized links. There are two types

of links in Eg: structural links (S-links), explicitly derived

from the body structure, and actional links (A-links), di-

rectly inferred from skeleton data. See the illustration of

both types in Figure 3.

4.1. Actional Links (A-links)

Many human actions need far-apart joints to move col-

laboratively, leading to non-physical dependencies among

joints. To capture corresponding dependencies for various

actions, we introduce actional links (A-links), which are ac-

tivated by actions and might exist between arbitrary pair of

joints. To automatically infer the A-links from actions, we

develop a trainable A-link inference module (AIM), which

consists of an encoder and a decoder. The encoder pro-

duces A-links by propagating information between joints

and links iteratively to learn link features; and the decoder

predict future joint positions based on the inferred A-links;

see Figure 4. We use AIM to warm-up the A-links, which

are further adjusted during the training process.
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Encoder. The functionality of an encoder is to estimate

the states of the A-links given the 3D joint positions across

time; that is,

A = encode(X ) ∈ [0, 1]n×n×C , (2)

where C is the number of A-link types. Each element

Ai,j,c denotes the probability that the i, j-th joints are con-

nected with the c-th type. The basic idea to design the

mapping encode(·) is to first exact link features from 3D

joint positions and then convert the link features to the

linking probabilities. To exact link features, we propa-

gate information between joints and links alternatingly. Let

xi = vec (Xi,:,:) ∈ R
dT be the vector representation of the

i-th joint’s feature across all the T frames. We initialize the

joint feature p
(0)
i = xi. In the k-th iteration, we propagate

information back and forth between joints and links,

link features : Q
(k+1)
i,j = f (k)

e (f (k)
v (p

(k)
i )⊕ (f (k)

v (p
(k)
j )),

joint features : p
(k+1)
i = F(Q

(k+1)
i,: )⊕ p

(k)
i ,

where fv(·) and fe(·) are both multi-layer perceptrons, ⊕ is

vector concatenation, and F(·) is an operation to aggregate

link features and obtain the joint feature; such as averaging

and elementwise maximization. After propagating for K
times, the encoder outputs the linking probabilities as

Ai,j,: = softmax

(
Q

(K)
i,j + r

τ

)
∈ R

C , (3)

where r is a random vector, whose elements are i.i.d. sam-

pled from Gumbel(0, 1) distribution and τ controls the dis-

cretization of Ai,j,:. Here we set τ = 0.5. We obtain the

linking probabilities Ai,j,: in the approximately categorical

form by Gumbel softmax [11].

Decoder. The functionality of the decoder to predict the

future 3D joint positions conditioned on the A-links inferred

by the encoder and previous poses; that is,

Xt+1 = decode(Xt, . . . ,X1,A) ∈ R
n×3,

where Xt is the 3D joint positions at the t-th frame. The

basic idea is to first extract joint features based on the A-

links and then convert joint features to future joint positions.

Let xt
i ∈ R

d be the features of the ith joint at the t-th frame.

The mapping decode(·) works as

(a) Qt
i,j =

∑C

c=1 Ai,j,cf
(c)
e (f

(c)
v (xt

i)⊕ f
(c)
v (xt

j))

(b) pt
i = F(Qt

i,:)⊕ xt
i

(c) St+1
i = GRU(St

i,p
t
i)

(d) μ̂t+1
i = fout(S

t+1
i ) ∈ R

3,

where f
(c)
v (·), f

(c)
e (·) and fout(·) are MLPs. Step (a) gen-

erates link features by weighted averaging on the linking

probabilities Ai,j,:; Step (b) aggregates the link features to

obtain the corresponding joint features; Step (c) uses a gated

recurrent unit (GRU) to update the joint features [5]; and

Step (d) predicts the mean of future joint positions. We fi-

nally sample the future joint positions x̂t+1
i ∈ R

3 from a

Gaussian distribution, i.e. x̂t+1
i ∼ N (μ̂t+1

i , σ2I), where σ2

denotes the variance and I is an identity matrix.

We pretrain AIM for a few epoches to warm-up A-links.

Mathematically, the cost function of AIM is

LAIM(A) = −
n∑

i=1

T∑

t=2

‖xt
i − μ̂t

i‖
2

2σ2
+

C∑

c=1

log
A:,:,c

A
(0)
:,:,c

,

where A
(0)
:,:,c is the prior of A. In experiments, we find the

performance boosts when p(A) promotes the sparsity. The

intuition behind is that too many links would capture use-

less dependencies to confuse action pattern learning; how-

ever, in (3), we ensure that
∑C

c=1 Ai,j,c = 1. Since the

probability one is allocated to C link types, it is hard to pro-

mote sparsity when C is small. To control the sparsity level,

we introduce a ghost link with a large probability, indicat-

ing that two joints are not connected through any A-link.

The ghost link still ensures that the probabilities sum up

to one; that is, for ∀i, j, Ai,j,0 +
∑C

c=1 Ai,j,c = 1, where

Ai,j,0 is the probability of isolation. Here we set the prior

A
(0)
:,:,0 = P0 and A

(0)
:,:,c = P0/C for c = 1, 2, · · · , C. In the

training of AIM, we only update the probabilities of A-links

Ai,j,c, where c = 1, · · · , C.

We accumulate LAIM for multiple samples and minimize

it to obtain a warmed-up A. Let A
(c)
act = A:,:,c ∈ [0, 1]n×n

be the c-th type of linking probability, which represents the

topology of the c-th actional graph. We define the actional

graph convolution (AGC), which uses the A-links to capture

the actional dependencies among joints. In the AGC, we

use Â
(c)
act as the graph convolution kernel, where Â

(c)
act =

D
(c)
act

−1
A

(c)
act. Given the input Xin, the AGC is

Xact = AGC(Xin) (4)

=

C∑

c=1

Â
(c)
actXinW

(c)
act ∈ R

n×dout ,

where W
(c)
act is the trainable weight to capture feature im-

portance. Note that we use the AIM to warm-up A-links in

the pretraining process; during the training of action recog-

nition and pose prediction, the A-links are further optimized

by forward-passing the encoder of AIM only.

4.2. Structural Links (S-links)

As shown in (1), Ã(p)Xin aggregates the 1-hop neigh-

bors’ information in skeleton graph; that is, each layer in

ST-GCN only diffuse information in a local range. To ob-

tain long-range links, we use the high-order polynomial of
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A, indicating the S-links. Here we use ÂL as the graph

convolution kernel, where Â = D−1A is the graph tran-

sition matrix and L is the polynomial order. Â introduces

the degree normalization to avoid the magnitude explosion

and has probabilistic intuition [1, 4]. With the L-order poly-

nomial, we define the structural graph convolution (SGC),

which can directly reach the L-hop neighbors to increase

the receptive field. The SGC is formulated as

Xstruc = SGC (Xin) (5)

=

L∑

l=1

∑

p∈P

M
(p,l)
struc ◦ Â

(p)lXinW
(p,l)
struc

∈ R
n×dout ,

where l is the polynomial order, Â(p) is the graph transition

matrix for p-th parted graph, M
(p,l)
struc ∈ R

n×n and W
(p,l)
struc ∈

R
n×dstruc are the trainable weights to capture edge weights

and feature importance; namely, larger weight indicates

more important corresponding feature. The weights are

introduced for each polynomial order and each individual

parted graph. Note that with the degree normalization, the

graph transition matrix Â(p) provides the nice initialization

for edge weights, which stabilizes the learning of M
(p,l)
struc.

When L = 1, the SGC degenerates to the original spatial

graph convolution operation. For L > 1, the SGC acts like

the Chebyshev filter and is able to approximate the convo-

lution designed in the graph spectral domain [2]

4.3. Actional-Structural Graph Convolution Block

To integrally capture the actional and structural features

among arbitrary joints, we combine the AGC and SGC and

develop the actional-structural graph convolution (ASGC).

In (4) and (5), we obtain the joint features from AGC and

SGC in each time stamp, respectively. We use a convex

combination of both as the response of the ASGC. Mathe-

matically, the ASGC operation is formulated as

Xout = ASGC (Xin)

= Xstruc + λXact ∈ R
n×dout ,

where λ is a hyper-parameter, which trades off the impor-

tance between structural features and actional features. A

non-linear activation function, such as ReLU(·), can be fur-

ther introduced after ASGC.

Theorem 1. The actional-structural graph convolution is

a valid linear operation; that is, when Y1 = ASGC (X1)
and Y2 = ASGC(X2). Then, aY1 + bY2 =
ASGC (aX1 + bX2), ∀a, b ∈ R.

The linearity ensures that ASGC effectively preserves in-

formation from both structural and actional aspects; for ex-

ample, when the response from the action aspect is stronger,

it can be effectively reflected through ASGC.
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Figure 5. An AS-GCN block consists of ASGC, T-CN, and other

operations: batch normalization (BN), ReLU and the residual

block. The shapes of data are above the BN and ReLU blocks.

The shapes of network parameters are under ASGC and T-CN.
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Figure 6. The backbone network of AS-GCN, which includes nine

AS-GCN blocks. The feature dimensions are presented.

To capture the inter-frame action features, we use one

layer of temporal convolution (T-CN) along the time axis,

which extracts the temporal feature of each joint indepen-

dently but shares the weights on each joint. Since ASGC

and T-CN learns spatial and temporal features, respectively,

we concatenate both layers as an actional-structural graph

convolution block (AS-GCN block) to extract temporal fea-

tures from various actions; see Figure 5. Note that ASGC

is a single operation to extract only spatial information and

the AS-GCN block includes a series of operations to extract

both spatial and temporal information.

4.4. Multitasking of AS-GCN

Backbone network. We stack a series of AS-GCN

blocks to be the backbone network, called AS-GCN; see

Figure 6. After the multiple spatial and temporal feature

aggregations, AS-GCN extracts high-level semantic infor-

mation across time.

Action recognition head. To classify actions, we con-

struct a recognition head following the backbone network.

We apply the global averaging pooling on the joint and tem-

poral dimensions of the feature maps output by the back-

bone network, and obtain the feature vector, which is fi-

nally fed into a softmax classifier to obtain the predicted

class-label ŷ. The loss function for action recognition is the

standard cross entropy loss

Lrecog = −yT log(ŷ),

where y is the ground-truth label of the action.

Future pose prediction head. Most previous works on

the analysis of skeleton data focused on the classification

task. Here we also consider pose prediction; that is, using
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