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Abstract

This paper studies panoptic segmentation, a recently

proposed task which segments foreground (FG) objects at

the instance level as well as background (BG) contents at

the semantic level. Existing methods mostly dealt with these

two problems separately, but in this paper, we reveal the un-

derlying relationship between them, in particular, FG ob-

jects provide complementary cues to assist BG understand-

ing. Our approach, named the Attention-guided Unified

Network (AUNet), is a unified framework with two branches

for FG and BG segmentation simultaneously. Two sources

of attentions are added to the BG branch, namely, RPN and

FG segmentation mask to provide object-level and pixel-

level attentions, respectively. Our approach is generalized

to different backbones with consistent accuracy gain in both

FG and BG segmentation, and also sets new state-of-the-

arts both in the MS-COCO (46.5% PQ) and Cityscapes

(59.0% PQ) benchmarks.1

1. Introduction

Scene understanding is a fundamental yet challenging

task in computer vision, which has a great impact on

other applications such as autonomous driving and robotics.

Classic tasks for scene understanding mainly include ob-

ject detection, instance segmentation and semantic seg-

mentation. This paper considers a recently proposed task

named panoptic segmentation [23], which aims at finding

all foreground (FG) objects (named things, mainly includ-

ing countable targets such as people, animals, tools, etc.) at

the instance level, meanwhile parsing the background (BG)

contents (named stuff, mainly including amorphous regions

of similar texture and/or material such as grass, sky, road,

etc.) at the semantic level. The benchmark algorithm [23]

and MS-COCO panoptic challenge winners [1] dealt with

1This work was done in Horizon Robotics.

(a) Input Image (b) Panoptic Segmentation

(c) Foreground: things (d) Background: stuff

Figure 1. Given an image 1(a), the goal of panoptic segmenta-

tion 1(b) is to find FG things at the instance level 1(c) and BG

stuff at the semantic level 1(d). The things of the same class share

the same color family but appear in different intensities. All these

results are produced by the proposed approach.

this task by directly combining FG instance segmentation

models [15] and BG scene parsing [45] algorithms, which

ignores the underlying relationship and fails to borrow rich

contextual cues between things and stuff.

In this paper, we present a conceptually simple and uni-

fied framework for panoptic segmentation. To facilitate in-

formation flow between FG things and BG stuff, we com-

bine conventional instance segmentation and semantic seg-

mentation networks, leading to a unified network with two

branches. This strategy brings an immediate improvement

in segmentation accuracy as well as higher efficiency in

computation (because the network backbone can be shared).

This implies that panoptic segmentation benefits from com-

plementary information provided by FG objects and BG

contents, which lays the foundation of our approach.
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Going one step further, we explore the possibility of in-

tegrating higher-level visual cues (i.e., beyond the features

extracted from the end of the backbone) towards the more

accurate segmentation. This is achieved via two attention-

based modules working at the object level and the pixel

level, respectively. For the first module, we refer to the

regional proposals, each of which indicates a possible FG

thing, and adjusts the probability of the corresponding re-

gion to be considered as FG things and BG stuff. For the

second module, we take out the FG segmentation mask, and

use it to refine the boundary between FG things and BG

stuff. In the context of deep networks, these two modules,

named the Proposal Attention Module (PAM) and Mask At-

tention Module (MAM), respectively, are implemented as

additional connections across FG and BG branches. Within

MAM, a new layer named RoIUpsample is designed to de-

fine an accurate mapping function between pixels in the

fixed-shape FG mask and the corresponding feature map. In

practice, all additional connections go from the FG branch

to the BG branch, mainly due to the observation that FG

segmentation is often more accurate2. Furthermore, BG

stuff, while being refined by FG things, also gives feedback

via gradients. Consequently, both FG and BG segmentation

accuracies are considerably improved.

The overall approach, named Attention-guided Unified

Network (AUNet), can be easily instantiated to various net-

work backbones, and optimized in an end-to-end manner.

We evaluate AUNet in two popular segmentation bench-

marks, namely, the MS-COCO [28] and Cityscapes [8]

datasets, and claim the state-of-the-art performance in

terms of PQ, a standard metric integrating accuracies of

both things and stuff [23]. In addition, the benefits brought

by joint optimization and two attention-based modules are

verified through an extensive ablation study 4.2.

The major contribution of this research is to present a

simple and unified framework for both FG and BG seg-

mentation, which reaches the top performance in MS-

COCO [28] and Cityscapes [8] datasets. Furthermore, this

work also investigate the complementary information deliv-

ered by FG objects and BG contents. While panoptic seg-

mentation serves as a natural scenario of studying this topic,

its application lies in a wider range of visual tasks. Our so-

lution, AUNet, is a preliminary exploration in this field, yet

we look forward to more efforts along this direction.

The remainder of this paper is organized as follows. Sec-

tion 2 briefly reviews related work. Section 3 elaborates the

proposed AUNet, including two attention-based modules.

After experiments are shown in Section 4, we conclude this

work in Section 5.

2We find the pixel accuracy of things is much higher (6.7% absolute

gap) than that of stuff, when considering instance with the same semantic

as one category, e.g., all individuals are evaluated as person in testing. We

evaluate them on the same MS-COCO semantic evaluation metric.

2. Related Work

Traditional deep learning based scene understanding re-

searches often focused on foreground or background tar-

gets [15, 45]. Recently, the rapid progress in object detec-

tion [13, 14, 34] and instance segmentation [9, 15, 25, 31]

made it possible to achieve object localization and segmen-

tation at a finer level. Meanwhile, the development of se-

mantic segmentation [5, 6, 33, 45] boosted the performance

of scene parsing. Despite their effectiveness, the separation

of these tasks caused the lack of contextual cues in instance

segmentation as well as the confusion brought by individu-

als in semantic segmentation. To bridge this gap, recently,

researchers proposed a new task named panoptic segmen-

tation [23], which aims at accomplishing both tasks (FG

instance and BG semantic segmentation) simultaneously.

Panoptic Segmentation: In [23], the author gave a bench-

mark of panopic segmentation by combining instance and

semantic segmentation models. Later, a weakly-supervised

method [24] was proposed on top of initialized semantic

results, and an end-to-end approach [11] was designed to

combine both FG and BG cues. However, their performance

is far from the benchmark [23]. Different from them, our

proposed AUNet achieves the top performance in an end-

to-end framework. Furthermore, we also establish the bond

between proposal-based instance and FCN based semantic

segmentation. Most recently works include [22, 29, 40].

Instance Segmentation: Instance segmentation aims at

discriminating different instances of the same object. There

are mainly two streams of methods to solve this task,

namely, proposal-based methods and segmentation-based

methods. Proposal-based methods, with the help of accu-

rate regional proposals, often achieved higher performance.

Recent examples include MNC [9], FCIS [25], Mask R-

CNN [15] and PANet [31]. Moreover, segmentation-based

methods aggregated pixel-level cues to compose instances

combined with semantic segmentation [2, 26, 32] or depth

ordering [44] results.

Semantic Segmentation: With the development of so-

called encoding-decoding networks such as FCN [33], rapid

progress has been made in semantic segmentation [5,6,45].

In segmentation, capturing contextual information plays a

vital role, for which various approaches were proposed in-

cluding ASPP used in DeepLab [5, 6] for multi-scale con-

texts, DenseASPP [41] for global contexts, and PSPNet [45]

which collected contextual priors. There were also efforts

to use attention modules for spatial feature selection, such

as [12, 42, 43], which will be detailed discussed next.

Attention-based Modules: Attention-based modules have

been widely applied in visual tasks, including image pro-

cessing, video understanding, and object tracking [7,19,37,

46, 47]. In particular, SENet [19] formulated channel-wise

relationships via an attention-and-gating mechanism, non-
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Figure 2. The proposed network structure. We adopt FPN as our backbone and share features with three parallel branches, namely

foreground branch, background branch, and RPN branch. In the training stage, the network is optimized in an end-to-end manner. In

the inference stage, panoptic results are generated by things and stuff results following the method described in Section 3.4. “⊕” denotes

element-wise sum and the green “⊗” represents Proposal Attention Module (PAM) or Mask Attention Module (MAM) according to its

position. PAM and MAM model the complementary relation between two branches. Details of PAM and MAM are shown in Figure 3 and

Figure 5. The red and green arrows represent upsample and attention operations, respectively.

local network [37] bridged self-attention for machine trans-

lation [36] to video classification using non-local filters. In

the scope of scene understanding, [42] and [43] aggregated

global contextual information as well as class-dependent

features by channel-attention operations. More recently,

self-attention and channel attention were adopted by [12]

to model long-range contexts in the spatial and channel di-

mensions, respectively. In this work, we establish the rela-

tionship between foreground things and background stuff in

panoptic segmentation with a series of coarse-to-fine atten-

tion blocks.

3. Attention-guided Unified Network

3.1. Problem and Baselines

Panoptic segmentation task aims at understanding every-

thing visible in one view, which means each pixel of an im-

age must be assigned a semantic label and an instance ID.

To address this issue, the existing top algorithms [1, 23] di-

rectly combined the instance and semantic results from sep-

arate models, such as Mask R-CNN [15] and PSPNet [45].

We formulate the problem of panoptic segmentation as

recognizing and segmenting all FG things and understand-

ing all BG stuff. In this way, we solve the problem from two

aspects, namely foreground branch and background branch

in a unified network (Figure 2). In detail, given an input

image X , our goal is to generate FG things result YTh and

BG stuff result YSt simultaneously. Thus, the panoptic re-

sult YPa can be generated from YTh and YSt directly us-

ing the fusion method in Section 3.4. The performance of

panoptic results is evaluated by panoptic quality (PQ) [23]

as described in Section 4.1. For this purpose, we firstly in-

troduce our unified framework for panoptic segmentation in

this section. Then, key elements in our designed attention-

guided modules are elaborated, including proposal attention

module (PAM) and mask attention module (MAM). Finally,

we give our implementation details.

In this work, we view the method, in which things and

stuff are generated from separate models, as our baseline.

Specifically, the baseline method gives the result of things

YTh and stuff YSt from separate models MTh and MSt re-

spectively. And the FG model MTh and BG model MSt are

given the similar backbones (e.g., FPN [27]) for the follow-

ing unified framework.

3.2. Unified Framework

In order to bridge the gap between FG things with BG

stuff, we propose the Attention-guided Unified Network

(AUNet). Comparing with the baseline approach, the pro-

posed AUNet fuses two models (MTh and MSt) together

by sharing the same backbone and generates YTh and YSt

from parallel branches. As clearly illustrated in Figure 2,

the AUNet is conceptually simple: FPN is adopted as the

backbone to extract discriminative features from different

scales and shared by all the branches.

Different from traditional approaches, which directly

combine results from MTh and MSt, the proposed AUNet

optimizes them using a joint loss function L (defined in Sec-

tion 3.4) and facilitates both tasks in a unified framework.

In detail, we adopt a proposal-based instance segmentation
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module to generate finer masks M in foreground branch.

And for background branch, light heads are designed to

aggregate scene information from shared multi-scale fea-

tures. In this way, the shared backbone is supervised by

FG things and BG stuff simultaneously, which promotes the

connection between two branches in feature space. In order

to build up the bond between FG objects and BG contents

more explicitly, two sources of attention modules are added.

We consider the coarse attention operation between the i-th

scale BG feature map with the corresponding RPN feature

map, denoted by Si and Pi respectively. The attention mod-

ule can be formulated as Si⊗Pi , where “⊗” denotes atten-

tion operations, as illustrated in Figure 2. Furthermore, the

finer relationship is established by the attention between the

processed feature map Spam and the generated FG segmen-

tation mask Proi, which can be formulated as Spam ⊗ Proi.

Details will be investigated in the following section.

3.3. Attention­guided Modules

Considering the complementary relationship between

FG things and BG stuff, we introduce features from fore-

ground branch to background branch for more contextual

cues. From another perspective, the attention operation

connecting two branches also establishes a bond between

proposal-based method and FCN-based method segmenta-

tion. To this end, two spatial attention modules are pro-

posed, namely proposal attention module (PAM) and mask

attention module (MAM).

3.3.1 Proposal Attention Module

In classic two-stage detection frameworks, region proposal

network (RPN) [34] is introduced to give predicted binary

class labels (foreground and background) and bounding-

box coordinates. This means RPN features contain rich

background information which can only be obtained from
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Figure 3. The designed proposal attention module (PAM) for com-

plementary relationship establishment. We adopt this block in

each scale of shared features, i.e., W ′′ and H
′′ changes in each

scale. Here, “⊗” denotes spatial element-wise multiplication and

“⊕” denotes element-wise sum. The green arrows represent oper-

ations in PAM. GAP and GN indicate Global Average Pooling and

Group Normalization [38], respectively.

stuff annotations in background branch. Therefore, we pro-

pose a new approach to establish the complementary rela-

tionship between FG elements and BG contents, called Pro-

posal Attention Module (PAM). As shown in Figure 3, we

utilize contextual cues from RPN branch for attention oper-

ation. Here, we give a detailed formulation for this process.

Given an input feature map Pi ∈ R
Cr×W ′′

×H′′

from the

i-th scale RPN branch, the FG weighted map Mi before

sigmoid activation can be formulated as:

Mi = f(σ(f(Pi, wi,1)), wi,2) (1)

where f(·, ·) denotes a convolution function, σ represents

the ReLU activation function, Mi ∈ R
1×W ′′

×H′′

means

the generated FG weighted map, both wi,1 ∈ R
C′

r
×Cr×1×1

and wi,2 ∈ R
1×C′

r
×1×1 indicate convolutional parameters.

To emphasize the background contents, we formulate the

attention weighted map M ′

i as 1− sigmoid(Mi). Then, the

i-th scale activated feature map S′

i ∈ R
Cs×W ′′

×H′′

can be

presented as:

S′

i,j = Si,j ⊗M ′

i ⊕ Si,j (2)

where ⊗ and ⊕ denotes element-wise multiplication and

sum respectively, Si,j means the j-th layer of semantic fea-

ture map Si ∈ R
Cs×W ′′

×H′′

.

Motivated by [19], a simple background reweight func-

tion is designed to downweight useless background layers

after attention operation. We believe it could be improved,

but it is beyond the scope of this work. The reweighted fea-

ture map S′′

i ∈ R
Cs×W ′′

×H′′

can be generated as:

Ni = sigmoid(GN(f(G(S′

i), wi,3))) (3)

S′′

i,k = S′

i,k ⊗Ni (4)

where G and GN denotes global average pooling and group

norm [38] respectively, Ni ∈ R
Cs×1×1 means reweighting

operator, wi,3 ∈ R
Cs×Cs×1×1 represents convolutional pa-

rameter, and S′

i,k indicates the k-th pixel channel in S′

i.

Based on the above formulation of PAM, we highlight

the background regions in the shared feature maps via at-

tention operation and background reweight function. It also

facilitates the learning of things in turn by enhancing the

weights of activated foreground regions during backpropa-

gation (see Section 4.2).

3.3.2 Mask Attention Module

With the introduction of contextual cues by PAM, back-

ground branch is encouraged to focus more on the regions of

stuff. However, the predicted coarse areas from RPN branch

lack enough cues for precise BG representations. Unlike

RPN features, the m×m fixed-shape masks generated from

foreground branch encode finer FG layouts. Thus, we pro-

pose Mask Attention Module (MAM) to further model the
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relationship, as illustrated in Figure 5. Consequently, the

1 × W ′ × H ′ shape FG segmentation mask is needed for

similar attention operations as before. Now, the problem is:

how to reproduce the W ′ ×H ′ shape FG feature map from

m×m masks?

RoIUpsample: In order to solve the size mismatching

problem, we propose a new differentiable layer called

RoIUpsample. Specifically, RoIUpsample is designed sim-

ilar to the inverse process of RoIAlign [15], as clearly illus-

trated in Figure 4. In the RoIUpsample layer, the m × m

mask (m equals to 14 or 28 in Mask R-CNN) is firstly

reshaped to the same size of RoIs (generated from RPN).

Then we utilize the designed inverse bilinear interpolation

to compute values of the output features at four regularly

sampled locations (same with RoIAlign) in each mask bin,

and then sum up the final results as the generated mask fea-

ture map. To meet the requirement of bilinear interpola-

tion [21], in which near points are given more contributions,

an operation for inverse bilinear interpolation is formulated:























R(p1,1) =
(1−xp)(1−yp)
valuex×valuey

R(pg)

R(p1,2) =
(1−xp)yp

valuex×valuey
R(pg)

R(p2,1) =
xp(1−yp)

valuex×valuey
R(pg)

R(p2,2) =
xpyp

valuex×valuey
R(pg)

(5)

where R(pj,k) denotes the result of point pj,k after inverse

bilinear interpolation, R(pg) here equals to one quarter of

the corresponding value in the input mask, and normalized

weights valuex, valuey are defined as:

valuex = x2
p + (1− xp)

2
, valuey = y2p + (1− yp)

2
(6)

in which xp and yp indicate the distance between grid point

pg and generated p1,1 in two axes respectively, as presented

in Figure 4(b). Note that with the Equation 5 and 6, the m×
m mask can also be reverted from the generated W ′ × H ′

feature map with the forward bilinear interpolation.

Then, the generated feature map is assigned to four dif-

ferent scales according to the size of RoIs, which is similar

with that in FPN [27]. Consequently, the generated FG fea-

ture map is achieved for the following operations.

Attention Operation: Different from traditional instance

segmentation tasks, the predicted FG masks are utilized to

give background branch more contextual guidance in pixel-

level. We firstly aggregate them together to the Cm×W ′×
H ′ feature map using RoIUpsample, as presented in Fig-

ure 5. Then, the finer 1 × W ′ × H ′ activated BG regions

can be produced, similar with that in PAM. With the intro-

duction of attention, the FG masks is also supervised by se-

mantic loss function, which enables a further improvement

in scene understanding (both for things and stuff), as dis-

cussed in Section 4.2. A similar background reweight func-

tion is adopted to aggregate useful highlighted background
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Figure 4. Comparison between RoIAlign [15] and our proposed

RoIUpsample. The designed RoIUpsample, which can be viewed

as an inverse operation of RoIAlign, reverts the feature map from

FG masks according to their accurate spatial locations. Here, we

show an example of RoIAlign output and RoIUpsample input with

m = 2 for an intuitive illustration.
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multiplication and “⊕” denotes element-wise sum. The red and

green arrows represent upsample and operations in MAM respec-

tively. GAP and GN are identical with that in PAM.

features. Consequently, we model the complementary rela-

tionship between FG things and BG stuff with the proposed

PAM and MAM.

3.4. Implementation Details

In this section, we give more implementation details on

the training and inference stage of our proposed AUNet.

Training: As well elaborated in Section 3.2, all of our pro-

posed methods are trained in a unified framework. The

whole network is optimized via a joint loss function L dur-

ing training stage:

L = λ1LRPN + λ2LRCNN + λ3LMask + λ4LSeg (7)
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where LRPN, LRCNN, LMask , and LSeg denotes the loss

function of RPN, RCNN, instance segmentation, and se-

mantic segmentation, respectively. Specifically, hyperpa-

rameters are designed to balance training processes, where

λ1 to λ4 are set to {1, 1, 1, 0.3} for MS-COCO and {1,

0.75, 1, 1} for Cityscapes.

In details, we adopt ResNet-FPN [17, 27] as our back-

bone. And the hyperparameters in the foreground branch

are set following Mask R-CNN [15]. The backbone is pre-

trained on ImageNet [35], and the remaining parameters are

initialized following [16]. As standard practice [10, 17, 27],

8 GPUs are used to train all the models. Each mini-batch

has 2 images per GPU for ResNet-50 and ResNet-101 based

networks and 1 image per GPU for the others. The net-

works are optimized for several epochs (18 for MS-COCO

and 100 for Cityscapes) using mini-batch stochastic gradi-

ent descent (SGD) with a weight decay of 4e-5 and a mo-

mentum of 0.9. Batch Normalization [20] in the backbone

is fixed and Group Normalization [38] is added to all of

the branches in our final results. For MS-COCO [28], the

learning rate is initialized with 0.02 for the first 13 epochs

and divided by 10 at 15-th and 18-th epoch respectively. In-

put images are horizontally flipped and reshaped to the scale

with a 600 pixels short edge during training. Multi-scale

testing is adopted for final results 4.3. For Cityscapes [8],

the learning rate is initialized with 0.01 and divided by 10 at

68-th and 88-th epoch respectively. We construct each mini-

batch for training from 16 random 512×1024 image crops

(2 crops per GPU) after randomly flipping and scaling each

image by 0.5 to 2.0×. Multi-scale testing is dropped in 4.3.

Inference: The panoptic results are produced in inference

stage by fusing the results of FG things and BG stuff in a

similar way with that in [23]. In this stage, the overlaps of

things are first resolved in a NMS-like procedure which pre-

dicts the segments with higher confidence scores. And the

relationships among categories are also considered during

this procedure. For example, ties should not be overlapped

by person in the final result. Then, the non-overlapping in-

stance segments are combined with stuff results by assign-

ing instance label first in favor of the things.

4. Experiments

In this section, our approach is evaluated on Microsoft

COCO [28] and Cityscapes [8] datasets. We first give de-

scription of the datasets as well as the evaluation metrics.

Then we evaluate our method and give detailed analyses.

Comparison with the state-of-the-art methods in panoptic

segmentation are presented at last.

4.1. Dataset and Metrics

Dataset: Due to the novelty of panoptic task itself, there

are few datasets with detailed panoptic annotations as well

as public evaluation metrics. Microsoft COCO [28] is the

most suitable and challenging one for the new panoptic seg-

mentation task, for the detailed annotations and high data

complexity. It consists of 115k images for training and 5k

images for validation, as well as 20k images for test-dev

and 20k images for test-challenge. MS-COCO panoptic

annotations includes 80 thing categories and 53 stuff cat-

egories. We train our models on train set with no extra data

and reports results on val set and test-dev set for compari-

son. Cityscapes [8] dataset is adopted to further illustrate

the effectiveness of the proposed method. In detail, it con-

tains 2975 images for training, 500 images for validation

and 1525 images for testing with fine annotations. It has

another 20k coarse annotations for training, which are not

used in our experiment. We report our results on val set

with 19 semantic label and 8 annotated instance categories.

Evaluation Metrics: We adopt the evaluation metrics in-

troduced by [23], which computes panoptic quality (PQ)

metric for evaluation. PQ can be explained as the multi-

plication of a segmentation quality (SQ) and a recognition

quality (RQ) term:

PQ =

∑

(p,g)∈TP IoU (p, g)

|TP |
︸ ︷︷ ︸

segmentation quality(SQ)

×
|TP |

|TP |+ 1
2
|FP |+ 1

2
|FN |

︸ ︷︷ ︸

recognition quality(RQ)

(8)

where IoU(p, g) means the intersection-over-union be-

tween predicted object p and ground truth g, true positives

(TP ) denotes matched pairs of segments (IoU(p, g) > 0.5),

false positives (FP ) represents unmatched predicted seg-

ments, and false negatives (FN ) means unmatched ground

truth segments. PQ, SQ, and RQ of both thing and stuff are

also reported in our results.

4.2. Component­wise Analysis and Diagnosis

In this section, we will decompose our approach step-

by-step to reveal the effect of each component. All ex-

periments in this section are trained and evaluated on MS-

COCO dataset in a single model with no extra data. Here,

we adopt ResNet-50-FPN as our backbone. For fair com-

parison, we strictly follow the merging method in [23] with

no trick or multi-scale data augmentation in training and

inference stage when doing component-wise analyses. As

presented in Table 1, our proposed AUNet achieve an ab-

solute improvement of 2.4% in PQ when compared with

separate training method.

4.2.1 Unified Framework

As elaborated in Section 3.2, our proposed unified frame-

work deals with FG things and BG stuff in parallel branches.

As shown in Table 1, the unified framework boosts up the

performance both in PQSt and PQTh, which brings 1.1%
absolute improvements in PQ. This can be attributed to the
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Table 1. Comparison among different settings of panoptic quality

(%) on the MS-COCO dataset. “rewt” means using background

reweight function in PAM and MAM. PQTh and PQSt indicates

PQ for things and stuff respectively.

Method PAM MAM rewt PQ PQTh PQSt AP mIoU

sep ✗ ✗ ✗ 37.2 47.1 22.8 33.4 44.5

e2e ✗ ✗ ✗ 38.3 47.9 23.9 33.7 44.8

PAM ✓ ✗ ✗ 39 48.5 24.5 34.2 45.1

PAMr ✓ ✗ ✓ 39.4 48.9 25.2 34.4 45.3

MAM ✗ ✓ ✗ 38.9 48.6 24.2 34.3 45.2

MAMr ✗ ✓ ✓ 39.2 48.6 24.9 34.3 45.3

AUNet ✓ ✓ ✓ 39.6 49.1 25.2 34.7 45.1

shared backbone and joint optimization, with which the net-

work is supervised to focus on more discriminative features

for both things and stuff. With the shared backbone, the mis-

classification in stuff are effectively reduced and the things

are given more details.

4.2.2 Proposal Attention Module

The proposed PAM builds the complementary relationship

between things and stuff from different scales. By this

way, the binary-classified RPN branch is optimized under

the supervision of semantic labels. With the bond between

stuff and things established, the network performs consis-

tent gain in PQSt and PQTh, as presented in Table 1. The

background reweight function proves its effectiveness in

PQSt. This can be resulted from the global contextual fea-

tures introduced by global average pooling in Equation 3,

which means it chooses to aggregate highlighted BG fea-

tures under the guidance of global context. As shown in

Figure 6, the activated feature map M ′

4 emphasize the back-

ground areas with context cues. It is worth noting that we

have tried other fusion methods for FG and BG feature fu-

sion, such as concatenation and direct summary after fea-

ture transformation. But these strategies have minor contri-

butions, which means the attention is more appropriate for

relationship establishment.

4.2.3 Mask Attention Module

While the PAM establishes the bond between FG objects

and BG contents, the MAM gives background finer repre-

sentations, as elaborated in Section 3.3.2 and Figure 6. As

that in PAM, MAM also achieves better performance over

the raw method in both PQSt and PQTh. However, the con-

tribution of MAM is slightly lower than PAM. We guess

this is caused by the lack of contextual cues in the gener-

ated FG segmentation mask.3 In fact, we also evaluate the

performance when adopting different resolution masks for

RoIUpsample, namely the 14 × 14 mask and the 28 × 28

3We adopt zero padding for vacant areas in RoIUpsample layer, result-

ing in blank BG context. This needs to be investigated in the future works.

In
p

u
t

Im
ag

e
A

ct
iv

at
ed

 M
as

k

in
P

A
M

(4
th

sc
al

e)

A
ct

iv
at

ed
 M

as
k

in
M

A
M

Figure 6. Heatmaps of the activated BG areas in PAM (the 4th

scale, M ′

4) and MAM. The red regions are assigned more weights

while the blue regions less weights in the background branch. All

the input images are sampled from the MS-COCO val set.

one. The result shows the high resolution mask features

bring a further gain (0.1% absolute improvement in PQ)

over the smaller one. This is reasonable, because RoIUp-

sample layer generates finer layouts if given higher resolu-

tion masks. With the help of background reweight function,

MAMr achieves 39.2% in PQ.

4.3. Comparison to State­of­the­arts

We compare our proposed network with other state-

of-the-art methods on MS-COCO [28] test-dev and

Cityscapes [8] val set.

MS-COCO: As shown in Table 2, the proposed AUNet

achieves the leading PQ performance 46.5% in MS-COCO

dataset without bells-and-whistles. In details, winners of

COCO2018 panoptic challenge [1] adopt numerous addi-

tional network enhancements during training and inference

stage, e.g., abundant extra data (110k external annotated

MS-COCO images), multi-scale training, model ensemble.

Moreover, considering the network enhancements adopted

by the winner teams, cascade R-CNN [4] is adopted for

things and extra blocks or label bank [18] are added for

stuff as well. Different from them, the proposed AUNet

achieves the top performance in a unified framework with

no extra data or additional network enhancements for both

things and stuff. To be more specific, only one single model

based on the ResNeXt-152-FPN4 is adopted in the AUNet.

Filtering out the improvement bring by model ensem-

ble, we compare the AUNet with “PKU 360” team who

adopted a similar backbone but with additional skills. The

result shows that our algorithm perform better than them

especially in PQSt, for about 4.9% absolute improvements.

Furthermore, the AUNet overpasses the former end-to-end

method, namely JSIS-Net [11], with a 19.3% absolute gap,

which proves the effectiveness of the proposed method. In

Table 2, it is clear that the AUNet have a great balance be-

4We use the 64×4d variant of ResNeXt [39] with deformable conv [10]

and non-local blocks [37].
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Table 2. Panoptic quality (%) on MS-COCO 2018 test-dev. “extra data” here denotes using extra dataset for training, “e2e” represents using

a unified framework for things and stuff prediction, and “enhanceTh” and “enhanceSt” indicates using additional enhancement techniques

in network heads for things and stuff respectively. PQTh and PQSt means PQ result for things and stuff respectively. We report our single

model results with no extra data or network enhancement.

Method backbone extra data e2e enhanceTh enhanceSt PQ SQ RQ PQTh SQTh RQTh PQSt SQSt RQSt

Megvii (Face++) ensemble model ✓ ✗ ✓ ✓ 53.2 83.2 62.9 62.2 85.5 72.5 39.5 79.7 48.5

Caribbean ensemble model ✗ ✗ ✓ ✓ 46.8 80.5 57.1 54.3 81.8 65.9 35.5 78.5 43.8

PKU 360 ResNeXt-152-FPN ✗ ✗ ✓ ✓ 46.3 79.6 56.1 58.6 83.7 69.6 27.6 73.6 35.6

JSIS-Net [11] ResNet-50 ✗ ✓ ✗ ✗ 27.2 71.9 35.9 29.6 71.6 39.4 23.4 72.3 30.6

Ours ResNet-101-FPN ✗ ✓ ✗ ✗ 45.2 80.6 54.7 54.4 83.3 64.8 31.3 76.6 39.4

Ours ResNet-152-FPN ✗ ✓ ✗ ✗ 45.5 80.8 55.0 54.7 83.4 65.2 31.6 76.9 39.7

Ours ResNeXt-152-FPN ✗ ✓ ✗ ✗ 46.5 81.0 56.1 55.8 83.7 66.3 32.5 77.0 40.7

Table 3. Panoptic quality (%) on the Cityscapes val set. PQTh

and PQSt denotes PQ result for things and stuff respectively. We

compare our results with the bottom-up methods (the first row).

Oursequ indicates all things are considered as one category in the

background branch during training.

Method backbone PQ PQTh PQSt AP mIoU

DWT [3] VGG16 - - - 21.2 -

SGN [30] VGG16 - - - 29.2 -

Li et. al. [24] ResNet-101 53.8 42.5 62.1 28.6 -

Mask R-CNN [15] ResNet-50 - - - 31.5 -

Oursequ ResNet-50-FPN 55.0 51.2 57.8 32.2 -

Ours ResNet-50-FPN 56.4 52.7 59.0 33.6 73.6

Ours ResNet-101-FPN 59.0 54.8 62.1 34.4 75.6

tween things and stuff, even when comparing with the chal-

lenge winners (no extra data). This is due to the introduc-

tion of unified framework and attention-guided modules for

complementary relationship establishment, as well elabo-

rated in Section 4.2. Figure 7 gives intuitive presentations

of the top performance using our proposed AUNet.

Cityscapes: We compare our proposed method with the

leading bottom-up methods and Mask R-CNN in Table 3.

Firstly, we adopt the same training strategy with that in MS-

COCO, which means all things are considered as one cate-

gory in background branch, denoted as Oursequ. However,

the strategy is inferior to that when using all 19 semantic

labels, as illustrated in Table 3. Additionally, the MAM,

which is proved to decrease the PQ in Cityscapes, is dis-

abled in the final results. We guess the decline is caused by

the inconsistency with prior information 2, which means the

relatively worse things prediction may give wrong cues to

stuff. Overall, the proposed method surpass previous state-

of-the-art [24], with a 5.2% absolute gap.

5. Conclusions

This paper presents AUNet, a unified framework for

panoptic segmentation. The key difference from prior ap-

proaches lies in that we unify FG (instance-level) and BG

(semantic-level) segmentation into one model, so that the

FG branch, often being better optimized, can assist the BG

(a) Input image (b) Ground truth (c) Our results

Figure 7. Example results of AUNet on the MS-COCO val set.

Our performance on things 7(c) is even better than human anno-

tations 7(b). The things of the same class share the same color

family but appear in different intensities.

branch via two sources of attention (i.e., proposal attention

module and mask attention module), which offer object-

level and pixel-level guidance, respectively. In experiments,

we observe consistent accuracy gain in MS-COCO, based

on which new state-of-the-arts are achieved.

Our research delivers an important message: in visual

tasks, it is often beneficial to partition targets into a few

subclasses according to their properties, so that complemen-

tary information can be propagated across subclasses to as-

sist scene understanding. Panoptic segmentation, being a

new task, offers a natural partition between FG things and

BG stuff, yet more possibilities remain unexplored and to

be studied in the future.
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