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Abstract

Recently, the attention mechanism has been successful-

ly applied in convolutional neural networks (CNNs), sig-

nificantly boosting the performance of many computer vi-

sion tasks. Unfortunately, few medical image recognition

approaches incorporate the attention mechanism in the C-

NNs. In particular, there exists high redundancy in fun-

dus images for glaucoma detection, such that the attention

mechanism has potential in improving the performance of

CNN-based glaucoma detection. This paper proposes an

attention-based CNN for glaucoma detection (AG-CNN).

Specifically, we first establish a large-scale attention based

glaucoma (LAG) database, which includes 5,824 fundus im-

ages labeled with either positive glaucoma (2,392) or neg-

ative glaucoma (3,432). The attention maps of the oph-

thalmologists are also collected in LAG database through a

simulated eye-tracking experiment. Then, a new structure of

AG-CNN is designed, including an attention prediction sub-

net, a pathological area localization subnet and a glaucoma

classification subnet. Different from other attention-based

CNN methods, the features are also visualized as the local-

ized pathological area, which can advance the performance

of glaucoma detection. Finally, the experiment results show

that the proposed AG-CNN approach significantly advances

state-of-the-art glaucoma detection.

1. Introduction

In recently years, the attention mechanism has been

successfully applied in deep learning based computer vi-

sion tasks, i.e., object detection [3, 31, 28], image caption

[35, 39, 2] and action recognition [30]. The basic idea of

the attention mechanism is to locate the most salient parts

of the features in deep neural networks (DNNs), such that

redundancy is removed for the vision tasks. In general, the

∗Mai Xu is the corresponding author of this paper.

Figure 1. Examples of glaucoma fundus images, attention maps by oph-

thalmologists in glaucoma diagnosis and visualization results of a CN-

N model (Bottom) [15] by an occlusion experiment [40]. The Pearson

Correlation Coefficient (CC) results between the visualized heat maps and

ground-truth ophthalmologist attention maps are 0.33 and 0.14 for correct

and incorrect glaucoma classification, respectively.

attention mechanism is embedded in DNNs by leveraging

the attention maps. Specifically, on the one hand, the atten-

tion maps in [31, 28, 35, 30] are yielded in a self-learned

pattern, with other information weakly supervising the at-

tention maps, i.e., the classification labels. On the other

hand, [39, 37] utilize the human attention information to

guide the DNNs focusing on the region of interest (ROI).

Redundancy also exists in medical image recognition, in-

terfering the recognition results. In particular, there exists

heavy redundancy in fundus images for disease recognition.

For example, the pathological areas of fundus images are in

the region of optic cup and disc, or its surrounding blood

vessel and optic nerve area [25]; other regions such as the

boundary of the eye ball are redundant for the medical di-

agnosis. As shown in Figure 1, glaucoma, an irreversible

optic disease, can be correctly detected by a convolutional

neural network (CNN) [15], when the visualized heat maps

are consistent with the attention maps of ophthalmologist-

s. Otherwise, glaucoma is mislabeled by the CNN model

when the visualized heat maps focus on redundant regions.
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Therefore, it is reasonable to combine the attention mecha-

nism in the CNN model for using fundus images to detect

ophthalmic disease.

However, to our best knowledge, there has been no work-

s incorporating the human attention in medical image recog-

nition. This is mainly because there lacks the doctor at-

tention database, which needs the qualified doctors and a

special technique of capturing the doctor attention in the di-

agnosis. As such, in this paper, we first collect a large-scale

attention based fundus image database for glaucoma detec-

tion (LAG), including 5,824 images with diagnose labels

and human attention maps. Based on the real human atten-

tion, we propose an attention based CNN method (called

AG-CNN) for glaucoma detection based on fundus images.

Although human attention is able to reduce heavy redun-

dancy in fundus images for disease recognition, it may al-

so miss some of the pathological area which is helpful for

disease detection. As a result, the existing CNN models

have outperformed the doctors in medical image recogni-

tion [18, 27, 26]. Thus, we propose to refine the predict-

ed attention maps by incorporating a feature visualization

structure for glaucoma detection. As such, the gap between

human attention and pathological area can be bridged. In

fact, there have been several methods for automatically lo-

cating the pathological area [41, 12, 8, 11, 24], based on

the class activation mapping model (CAM) [42]. However,

these methods cannot locate the pathological area at a small

region due to the limitation of its feature size. In this paper,

we employ the guided back propagation (BP) method [33]

to locate the tiny pathological area, based on the predicted

attention maps. Consequently, the attention maps can be re-

fined and then used to highlight the most critical regions for

glaucoma detection.

The main contributions of this paper are: (1) We estab-

lish a LAG database with 5,824 fundus images, along with

their labels and attention maps. (2) We propose incorporat-

ing the attention maps in AG-CNN, such that the redundan-

cy can be removed from fundus images for glaucoma detec-

tion. (3) We develop a new architecture of AG-CNN, which

visualizes the CNN feature maps for locating pathological

area and then classifies binary glaucoma.

2. Medical Background

The recent success of deep learning methods has bene-

fitted medical diagnosis [7, 4, 38], especially for automat-

ically detecting oculopathy in fundus images [13, 10, 34].

Specifically, [13, 10] worked on classification of diabetic

retinopathy using the CNN models. [34] further proposed

deep learning systems for multi-ophthalmological diseases

detection. However, the above works all transfered some

classic CNN model for nature image classification to med-

ical image classification, regardless of the characteristic of

fundus images.

Glaucoma detection methods can be basically divided in-

to 2 categories, i.e., heuristic methods and deep learning

methods. The heuristic glaucoma detection methods ex-

tract features based on some image processing techniques

[1, 6, 17, 32]. Specifically, [1] extracted the texture fea-

tures and higher order spectra features for glaucoma detec-

tion. [6] used the wavelet-based energy features for glauco-

ma detection. Both [1, 6] applied support vector machine

(SVM)and naive Bayesian classifier to classify the hand-

crafted features. However, the above heuristic methods on-

ly consider a handful of features on fundus images, leading

to lower classification accuracy.

Another category of glaucoma detection methods is

based on deep learning [29, 43, 5, 22, 23]. Specifically,

[29, 43] reported their deep learning work on glaucoma de-

tection based on automatic segmentation of optic cup and

disc. However, their work assume that only the optical cup

and disc are related to glaucoma, lacking end-to-end train-

ing. On the other hand, [5] firstly proposed a CNN method

for glaucoma detection in an end-to-end mannar. [22] fol-

lowed Chen’s work and proposed an advanced CNN struc-

ture combining the holistic and local features for glaucoma

classification. To regularize the input images, both [5, 22]

preprocessed the original fundus images to remove the re-

dundant regions. However, due to the limited training data

and simple structure of networks, the previous works did

not achieve high sensitivity and specificity. Most recently,

a deeper CNN structure has been proposed in [23]. How-

ever, the fundus images exist large redundancy irrelevant to

glaucoma detection, leading to the low efficiency for [23].

3. Database

3.1. Establishment

In this work, we establish a large-scale attention based

glaucoma detection database. Our LAG database contains

5,824 fundus images with 2,392 positive and 3,432 nega-

tive glaucoma samples obtained from Beijing Tongren Hos-

pital 1. Our work is conducted according to the tenets of

Helsinki Declaration. As the retrospective nature and ful-

ly anonymized usage of color retinal fundus images, we are

exempted by the medical ethics committee to inform the pa-

tients. Each fundus image is diagnosed by qualified glauco-

ma specialists, taking the consideration of both morpholog-

ic and functional analysis, i.e, intra-ocular pressure, visual

field loss and manual optic disc assessment. As a result, the

binary labels of positive or negative glaucoma of all fundus

images are confirmed, seen as the gold standard.

Based on the above labelled fundus images, we further

conduct an experiment to capture the attention regions of

the ophthalmologists in glaucoma diagnosis. The experi-

ment is based on an alternative method for eye tracking [19],

1The database is available at https://github.com/smilell/AG-CNN.
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Figure 2. An example of capturing fixations of an ophthalmologist in

glaucoma diagnosis. (Left): Original blurred fundus images. (Middle-

left): Fixations of the ophthalmologist with cleared regions. (Middle-

right): The order of clearing the blurred regions. Note that the size of

the white circles represents the order of fixations. (Right): The generated

attention map based on the captured fixations.

Table 1. CC values of attention maps between one ophthalmologist and

the mean of the rest ophthalmologists.

Ophthalmologist one v.s. others one v.s. random

1
st 0.594 6.59 × 10

−4

2
nd 0.636 2.49 × 10

−4

3
rd 0.687 2.49 × 10

−4

4
th 0.585 8.44 × 10

−4

in which mouse clicks are used by the ophthalmologists to

explore ROI for glaucoma diagnosis. Specifically, all the

fundus images are initially displayed blurred, and then the

ophthalmologists use the mouse as an eraser to successive-

ly clear the circle regions for diagnosing glaucoma. Note

that the radius of all circle regions is set to 40 pixels, while

all fundus images are with 500 × 500 pixels. This ensures

that the circle regions are approximately equivalent to the

fovea (2◦ − 3◦) of the human vision system at a comfort-

able viewing distance (3-4 times of screen height). The or-

der of clearing the blurred regions represents the degree of

attention by ophthalmologists, as the GT of the attention

map. Once the ophthalmologist is able to diagnose glauco-

ma with the partly cleared fundus image, the above region

clearing process is terminated and the next fundus image is

displayed for diagnosis.

In the above experiment, the fixations of ophthalmolo-

gists are represented by the center coordinate (xj
i , y

j
i ) of

the cleared circle region for the i-th fixation of the j-th

ophthalmologist. Then, the attention map A of one fun-

dus image can be generated by convoluting all fixations

{(xj
i , y

j
i )}

Ij ,J

i=1,j=1
with the 2D Gaussian filter at square de-

cay according to the order of i, where J is the total number

of ophthalmologists (=4 in our experiment) and Ij is the

number of fixations from the j-th ophthalmologist on the

fundus image. Here, the standard deviation of the Gaussian

filter is set to 25, according to [36]. Figure 2 shows an ex-

ample of the fixations of one ophthalmologist and attention

map of all ophthalmologists for a fundus image.

3.2. Data analysis

Now, we mine our LAG database to investigate the at-

tention maps of all fundus images in glaucoma diagnosis.

Specifically, we have the following findings.

Figure 3. (Left): Proportion of regions in the fundus images cleared by

different ophthalmologists for glaucoma diagnosis. (Right): Proportion

of regions in attention maps with values being above a varying threshold.

Note that the values of the attention maps range from 0 to 1.

Finding 1: The ROI in fundus images is consistent across

ophthalmologists for glaucoma diagnosis.

Analysis: In this analysis, we calculate the Pearson cor-

relation coefficients (CC) of attention maps between one

ophthalmologist and the remaining three ophthalmologist-

s. Table 1 reports the CC results averaged over all fundus

images in our LAG database. In this table, we also show

the CC results of attention maps between one ophthalmolo-

gist and the random baseline. Note that the random baseline

generates the attention maps by making their values follow

the Gaussian distribution. We can see from Table 1 that the

CC values of attention maps between one and the remain-

ing ophthalmologists are all above 0.55, significantly larger

than those of the random baseline. This implies that atten-

tion exists consistency among ophthalmologists in glauco-

ma diagnosis. This completes the analysis of Finding 2.

Finding 2: The ROI in fundus images concentrates on

small regions for glaucoma diagnosis.

Analysis: In this analysis, we calculate the percentage

of regions that ophthalmologists cleared for glaucoma diag-

nosis. Figure 3 (Left) shows the percentage of the cleared

circle regions for each ophthalmologist, which is averaged

over all 5,824 fundus images of our LAG database. We can

see that the average ROI accounts for 14.3% of the total area

in the fundus images, with a maximum of 17.8% (the 3rd

ophthalmologist) and a minimum of 11.8% (the 4th oph-

thalmologist). Moreover, we calculate the proportion of re-

gions in attention maps, the values of which are above a

varying threshold. The result is shown in Figure 3 (Right).

The fast decreasing curve shows that most attention only

focuses on small regions of fundus images for glaucoma di-

agnosis. This completes the analysis of Finding 2.

Finding 3: The ROI for glaucoma diagnosis is of differ-

ent scales.

Analysis: Finding 2 shows that the ROI is small for glau-

coma diagnosis, comparing with the whole fundus images.

Here, although ROI is small, its scale is various across all

the fundus images. Figure 4 visualizes the fixation maps of

some fundus images, in which the ROI are with different

scales. As shown in Figure 4, the sizes of the optic discs
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Figure 4. Fundus images with or without glaucoma for both positive and

negative pathological myopia.

for pathological myopia are considerably larger than others.

As such, we use myopia and non-myopia to select samples

with various scales of ROI (large or small optic cups). We

further find that the images of both positive and negative

glaucoma have various-scaled ROI, as demonstrated in Fig-

ure 4. For each image in our LAG database, Figure 5 further

plots the proportion of the ROI in the fixation maps, the val-

ues of which are larger than a threshold. We can see that the

ROI is at different scale for glaucoma diagnosis. Finally,

the analysis of Finding 3 can be accomplished.

4. Method

4.1. Framework

In this section, we discuss the proposed AG-CNN

method. Since Findings 1 and 2 show that glaucoma diag-

nosis is highly related to small ROI regions, the attention

prediction subnet is developed in AG-CNN for reducing

the redundancy of fundus images. In addition, we design

a pathological area localization subnet, which is achieved

by visualizing the CNN feature map, based on ROI regions

of the attention prediction subnet. Based on the patholog-

ical area, the glaucoma classification subnet is developed

for producing the binary labels of glaucoma, in which the

multi-scale features are learned and extracted. The intro-

duction of multi-scale features is according to Finding 3.

The framework of AG-CNN is shown in Figure 6, and

its components, including multi-scale building block, de-

convolutional module and feature normalization, are further

demonstrated in Figure 7. As shown in Figure 6, the input

to AG-CNN is the RGB channels of a fundus image, while

the output is (1) the located pathological area and (2) the

binary glaucoma label. In addition, the located pathological

area is obtained in our AG-CNN in two 2 stages. In the first

stage, the ROI of glaucoma detection is learned from the at-

tention prediction subnet, aiming to predict human attention

on diagnosing glaucoma. In the second stage, the predicted

attention map is embedded in the pathological area local-

ization subnet, and then the feature map of this subnet is

visualized to locate the pathological area. Finally, the lo-

Figure 5. Proportion of ROI above the threshold of 0.10, 0.15 and 0.20,

for all of the fundus images in LAG database.

cated pathological area is further used to to mask the input

and features of the glaucoma classification subnet, for out-

putting the binary labels of glaucoma.

The main structure of AG-CNN is based on residual net-

works [15], in which the basic module is building block.

Note that all convolutional layers in AG-CNN are followed

by a batch normalization layer and a ReLU layer for in-

creasing the nonlinearity of AG-CNN, such that the conver-

gence rate can be sped up. The process of training AG-CNN

is in an end-to-end manner with three parts of supervision,

i.e., attention prediction loss, pathological area localization

loss and glaucoma classification loss.

4.2. Attention prediction subnet

In AG-CNN, an attention prediction subnet is designed

to generate the attention maps of the fundus images, which

are then used for pathological area localization and glauco-

ma detection. Specifically, the input of the attention predic-

tion subnet is the RGB channels of a fundus image, which is

represented by the tensor (size: 224×224×3 ). Then, the in-

put tensor is fed to one convolutional layer with kernel size

of 7× 7, followed by one max-pooling layer. Subsequently,

the features flow into 8 building blocks for extracting the

hierarchical features. For more details about the building

blocks, refer to [15]. Afterwards, the features of 4 hierati-

cal building blocks are processed by feature normalization

(FN), the structure of which is shown in Figure 7 (Right).

As a result, four 28× 28× 128 features are obtained. They

are concatenated to form 28×28×512 deep multi-scale fea-

tures. Given the deep multi-scale features, a deconvolution-

al module is applied to generate the gray attention map with

the size of 112 × 112 × 1. The structure of the deconvolu-

tional module is also shown in Figure 7 (middle). As shown

in this figure, the deconvolutional module is comprised by 4

convolutional layers and 2 deconvolutional layers. Finally,

a 112 × 112 × 1 attention map can be yielded, the values

of which range from 0 to 1. In AG-CNN, the yielded atten-

tion maps are used to weight the input fundus images and

the extracted features of the pathological area localization

subnet. This is to be discussed in the next section.
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Figure 6. Architecture of our AG-CNN network for glaucoma detection. The sizes of the feature maps and convolutional kernels are shown in this figure.

4.3. Pathological area localization subnet

After predicting the attention maps, we further design a

pathological area localization subnet to visualize the CNN

feature map in glaucoma classification. The predicted at-

tention maps can effectively make the network focus on the

salient region with reduced redundancy; however, the net-

work may inevitably miss some potential features useful for

glaucoma classification. Moreover, it has been verified that

the deep learning methods outperform human in the task

of image classification both on nature images [14, 21] and

medical images [18, 27, 26]. Therefore, we further design a

subnet to visualize the CNN features for finding the patho-

logical area.

Specifically, the pathological area localization subnet is

mainly composed of convolutional layers and fully connect-

ed layers. In addition, the predicted attention maps are used

to mask the input fundus images and the extracted feature

maps at different layers of the pathological area localization

subnet. The structure of this subnet is the same as the glau-

coma classification subnet, which is to be discussed in sec-

tion 4.4. Then, the visualization map of pathological area is

yielded through guided BP [33] from the output of the fully

connection layer to the input RGB channels fundus images.

Finally, the visualization map is down-sampled to 112×112
with its values being normalized to 0 − 1, as the output of

the pathological area localization subnet.

4.4. Glaucoma classification subnet

In addition to the attention prediction subnet and patho-

logical area localization subnet, we design a glaucoma clas-

sification subnet for the binary classification of positive or

negative glaucoma. Similar to the attention prediction sub-

net, the glaucoma classification subnet is composed of one

7 × 7 convolutional layer, one max-pooling layer, 4 multi-

scale building blocks.

The multi-scale building blocks differ from the tradition-

al building block of [15] from the following aspect. As

512

fi

fi-1

Figure 7. Components of the AG-CNN architecture.

shown in Figure 7 (Left), 4 channels of convolutional lay-

ers C1, C2, C3 and C4 with different kernel sizes are con-

catenated to extract multi scale features, comparing with the

traditional building block which only has a single convolu-

tional channel. Finally, 2 fully connected layers are applied

to output the classification result.

The main difference between the glaucoma classification

subnet and the conventional residual network [15] is that the

visualization maps of pathological area weight both the in-

put image and extracted features to focus on the ROI. As-

sume that the visualization map generated by the patholog-

ical area localization subnet is V̂. Mathematically, the fea-

tures F in the glaucoma classification subnet can be masked

by V̂ as follows,

F
′ = F⊙

{

(1− θ)V̂ ⊕ θ
}

, (1)

where θ (=0.5 in this paper) is a threshold to control the

impact of the visualization map. In the above equation, ⊙
and ⊕ represent the element-wise multiplication and addi-

tion. In the glaucoma classification subnet, the input fun-

dus image is masked with the visualization map in the same

way. Finally, in our AG-CNN method, the redundant fea-

tures irrelevant to glaucoma detection can be inhibited and

the pathological area can be highlighted.

4.5. Loss function

In order to achieve end-to-end training, we supervise the

training process of AG-CNN through attention prediction

128 128
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Table 2. Performance of three methods for glaucoma detection over the

test set of our LAG database.

Method Accuracy Sensitivity Specificity AUC F2−score

Ours 95.3% 95.4% 95.2% 0.975 0.951

Chen et al. 89.2% 90.6% 88.2% 0.956 0.894

Li et al. 89.7% 91.4% 88.4% 0.960 0.901

loss (denoted by Lossa) , feature visualization loss (denot-

ed by Lossf ) and glaucoma classification loss (denoted by

Lossc), as shown in Figure 6. In our LAG database, both

the glaucoma label l (∈ {0, 1}) and the attention map A

(with its elements Ai,j ∈ [0, 1]) are available for each fun-

dus image, seen as the GT in the loss function. We assume

that l̂ (∈ {0, 1}) and Â (with its elements Âi,j ∈ [0, 1])
are the predicted glaucoma label and attention map, respec-

tively. Following [16], we utilize the Kullback-Leibler (K-

L) divergence function as the human-attention loss Lossa.

Specifically, the human-attention loss is represented by

Lossa =
1

I · J

I
∑

i=1

J
∑

j=1

Aij log(
Aij

Âij

), (2)

where I and J are the length and width of attention maps.

Furthermore, the pathological area localization subnet

and glaucoma classification subnet are all supervised by the

glaucoma label l based on the cross-entropy function, which

measures the distance between the predicted label l̂ and its

corresponding GT label l. Mathematically, Lossf is calcu-

lated as follows,

Lossc = l log(
1

1 + e−l̂c
)+ (1− l) log(1−

1

1 + e−l̂c
), (3)

where l̂c represents the predicted label from the glaucoma

classification subnet. Similar way is used to calculate Lossf,

which replaces l̂c by l̂f in 3.

Finally, the overall loss is the linear combination of

Lossa, Lossf and Lossc:

Loss = α · Lossa + β · Lossf + γ · Lossc, (4)

where α, β and γ are hyper-parameters for balancing the

trade-off among attention loss, visualization loss and clas-

sification loss. At the begining of training AG-CNN, we

choose to set α ≫ β = γ to speed the convergence of at-

tention prediction subnet. Then, we set α ≪ β = γ to

minimize the feature visualization loss and the classification

loss, thus realizing the convergence of prediction. Given the

loss function of (4), our AG-CNN model can be end-to-end

trained for glaucoma detection and pathological location.

5. Experiments and Results

5.1. Settings

In this section, the experiment results are presented to

validate the performance of our method in glaucoma detec-

Table 3. Performance of three methods for glaucoma detection over the

RIM-ONE database.

Method Accuracy Sensitivity Specificity AUC F2−score

Ours 85.2% 84.8% 85.5% 0.916 0.837

Chen et al. 80.0% 69.6% 87.0% 0.831 0.711

Li et al. 66.1% 71.7% 62.3% 0.681 0.679

tion and pathological area localization. In our experiment,

the 5,824 fundus images in our LAG database are random-

ly divided into training (4,792 images), validation (200 im-

ages) and test (832 images) sets. To test the generalization

ability of our AG-CNN, we further validate the performance

of our method on another public database RIM-ONE [9].

Before inputting to AG-CNN, the RGB channels of fundus

images are all resized to 224 × 224. In training AG-CNN,

the gray attention maps are downsampled to 112×112 with

their values normalized to be 0 ∼ 1. The loss function of

(4) for training the AG-CNN model is minimized through

the gradient descent algorithm with Adam optimizer [20].

The initial learning rate is 1 × 10−5. We first set α = 20
and β = γ = 1 in (4) until the loss of the attention predic-

tion subnet converges, and then set α = 1 and β = γ = 10
for focusing on the feature visualization loss and glaucoma

classification loss. Additionally, batch size is set to be 8.

Given the trained AG-CNN model, our method is eval-

uated and compared with two other state-of-the-art glauco-

ma detection methods [5, 23], in terms of different metrics.

Specifically, the metrics of sensitivity and specificity are de-

fined as follows,

Sensitivity =
TP

TP + FN
, (5)

Specificity =
TN

TN+ FP
, (6)

where TP,TN,FP and FN are the numbers of the true pos-

itive glaucoma, true negative glaucoma, false positive glau-

coma and false negative glaucoma, respectively. Based on

TP, FP and FN, the Fβ−score is calculated by

Fβ−score =
(1 + β2) · TP

(1 + β2) · TP + β2 · FN + FP
. (7)

In the above equation, β is the hyper-parameter balancing

the trade-off between sensitivity and specificity, and it is set

to 2 as the sensitivity is more important in medical diag-

nosis. In addition, receiver operating characteristic curve

(ROC) and area under ROC (AUC) are also evaluated for

comparing the performance of glaucoma detection. All ex-

periments are conducted on a computer with an Intel(R)

Core(TM) i7-4770 CPU@3.40GHz, 32GB RAM and a s-

ingle Nvidia GeForce GTX 1080 GPU. Benefiting from the

GPU, our method is able to detect glaucoma of 30 fundus

images per second, and it is comparable to 83 and 21 fundus

images per second for [5] and [23].
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Figure 8. Comparison of ROC curves among different methods. (Left):

Testing on our LAG testing set. (Right): Testing on RIM-ONE database.

5.2. Evaluation on glaucoma detection

In this section, we compare the glaucoma detection per-

formance of our AG-CNN method with two other methods

[5, 23]. Note that the models of other methods are retrained

over our LAG database for fair comparison. Table 2 lists the

results of accuracy, sensitivity, specificity, F2−score and

AUC. As seen in Table 2, our AG-CNN method achieves

95.3%, 95.4% and 95.2% in terms of accuracy, sensitivity

and specificity, respectively, which are considerably better

than other two methods. Then, the F2−score of our method

is 0.951, while [5] and [23] only have F2−scores of 0.894

and 0.901. The above results indicate that our AG-CNN

method significantly outperforms other two methods in all

metrics.

In addition, Figure 8 (Left) plots the ROC curves of our

and other methods, for visualizing the trade-off between

sensitivity and specificity. We can see from this figure that

the ROC curve of our method is closer to the upper-left cor-

ner, when comparing with other two methods. This means

that the sensitivity of our method is always higher than those

of [5, 23] at the same specificity. We further quantify ROC

performance of three methods through AUC. The AUC re-

sults are also reported in Table 2. As shown in this table, our

method has larger AUC than other two compared method-

s. In summary, we can conclude that our method performs

better in all metrics than [5, 23] in glaucoma detection.

To evaluate the generalization ability, we further com-

pare the performance of glaucoma detection by our method

with other 2 methods [5, 23] on the RIM-ONE database [9].

To our best knowledge, there is no other public database

of fundus images for glaucoma. The results are shown in

Table 3 and Figure 8 (Right). As shown in Table 3, all met-

rics of our AG-CNN method over the RIM-ONE database

are above 0.83, despite slightly smaller than the results over

our LAG database. The performance of our method is con-

siderably better than other two methods (except specificity

of [23]). It is worth mentioning that the metric of sensitiv-

ity is more important than that of specificity in glaucoma

detection, as other indicators, e.g., intra-ocular pressure and

the field of vision, can be further used for confirming the

Figure 9. Attention maps predicted by AG-CNN ramdomly selected from

the test dataset. The fundus images are from our LAG (upper) and RIM-

ONE (lower) database. Note that the RIM-ONE database has not the GT

of the attention map.

diagnosis of glaucoma. This implies that our method has

high generalization ability.

More importantly, Table 3 and Figure 8 (Right) show that

our AG-CNN method performs significantly better than oth-

er methods especially in terms of sensitivity. In particular,

the performance of [23] severely degrades, as incurring the

over-fitting issue. In a word, our AG-CNN method perform-

s well in the generalization ability, considerably better than

other state-of-the-art methods [5, 23].

5.3. Evaluation on attention prediction and patho-
logical area localization

We first evaluate the accuracy of the attention model em-

bedded in our AG-CNN model. Figure 9 visualizes the at-

tention maps predicted by our AG-CNN method over the

LAG database and RIM-ONE database. We can see from

this figure that the predicted attention maps of AG-CNN are

close to those of GT, when testing on our LAG database.

The CC between the predicted attention maps and the GT

is 0.934 on average, with a variance of 0.0032. This im-

plies the attention prediction subnet of AG-CNN is able to

predict attention maps with high accuracy. We can further

see from Figure 9 that the attention maps locate the salient

optic cup and disc for the RIM-ONE database, in which the

scales of fundus images are totally different from those of

LAG database. Thus, our method is robust to the scales of

fundus images in predicting attention maps.

Then, we focus on the performance of pathological area

localization. Figure 10 visualizes the located pathological

area over the LAG database. Comparing the GT pathologi-

cal area with our localization results, we can see from Fig-

ure 10 that our AG-CNN model can accurately located the

areas of optic cup and disc and the region of retinal nerve

fiber layer defect, especially for the pathological areas of

the upper and lower optic disc edge.

Besides, we calculate the CC between the located patho-

logical area and the GT attention maps of ophthalmologist-
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Figure 10. Comparison of pathological area localization results for glau-

coma detection. (1st row): The pathological areas located by ophthalmol-

ogists. Optic cup and disc are labeled in blue and the regions of retinal

nerve fiber layer defect are labeled in green. (2nd row): The result of our

method. (3rd row): The result of CAM based method. (4th row): The

result of ablation experiment.

s, with an average of 0.581 and a variance of 0.028. This

also implies that (1) on one hand, the pathological area lo-

calization results are consistent with the attention maps of

ophthalmologists; (2) on the other hand, the pathological

area cannot be completely covered by the attention maps.

Moreover, we also compare our attention based pathologi-

cal area localization results with a state-of-art method [12],

which is based on the CAM model [42]. The results of [12]

are shown in the 3rd row of Figure 10. We can see that it

can roughly highlight the ROI but cannot pinpoint the tiny

pathological area, e.g., the upper and lower edge of the optic

disc boundary. In some cases, [12] highlight the boundary

of the eyeball, indicating that the CAM based methods ex-

tracted some unuseful features (i.e., redundancy) for clas-

sification. Therefore, the pathological area localization in

our approach is effective and reliable, especially compared

to the CAM based method that does not incorporate human

attention.

5.4. Results of ablation experiments

In our ablation experiments, we first illustrate the impact

of predicted attention maps for located pathological area.

To this end, we simply remove the attention prediction sub-

net, and then compare the pathological localization results

with and without predicted attention maps. The results are

shown in Figure 10. We can see that the pathological area

can be effectively localized by using the attention maps. In

contrast, the located pathological area distributes over the

whole fundus image, once the attention maps are not in-

corporated. Therefore, the above results verify the effec-

tiveness and necessity of predicting the attention maps for

pathological area localization in our AG-CNN approach.

Next, we assess the impact of the predicted attention

map and the located pathological area on the performance

of glaucoma detection. To this end, we simply remove the

Table 4. Ablation results over the test set of our LAG database. APS

represents the attention prediction subnet. PAL represents the pathological

area localization subnet.

Method Accuracy Sensitivity Specificity AUC F2−score

Full AG-CNN 95.3% 95.4% 95.2% 0.975 0.951

W APS W/O PAL 94.0% 94.0% 94.0% 0.973 0.936

W/O APS W PAL 87.1% 87.7% 86.7% 0.941 0.867

W/O APS W/O PAL 90.8% 91.1% 90.5% 0.966 0.904

W/O multi-scale block 92.2% 92.0% 92.3% 0.974 0.915

attention prediction subnet and pathological area localiza-

tion subnet of AG-CNN, respectively, for classifying the

binary labels of glaucoma. The results are shown in Ta-

ble 4. As seen in this table, the introduction of both the

predicted attention map and located pathological area can

improve accuracy, sensitivity, specificity and F2−score by

4.5%, 4.3%, 4.7% and 4.7%. However, the performance

of only embedding the pathological area localization subnet

and without the attention prediction subnet is even worse

than removing them both. It verifies the necessity of our at-

tention prediction subnet for pathological area localization

and glaucoma detection.

Hence, the attention prediction subnet and pathological

area localization subnet are able to improve the performance

of glaucoma detection in AG-CNN. Additionally, we show

the effectiveness of the proposed multi-scale block in AG-

CNN, via replacing it by the default conventional shortcut

connection in residual network [15]. The results are also

shown in Table 4. We can see that the multi-scale block can

also enhance the performance of glaucoma detection.

6. Conclusion

In this paper, we have proposed a new deep learning

method, named AG-CNN, for automatic glaucoma detec-

tion and pathological area localization upon fundus images.

Our AG-CNN model is composed of the subnets of atten-

tion prediction, pathological area localization and glauco-

ma classification. As such, glaucoma could be detected us-

ing the deep features highlighted by the visualized maps of

pathological areas, based on the predicted attention maps.

For training the AG-CNN model, we established the LAG

database with 5,824 fundus images labeled with either pos-

itive or negative glaucoma, along with their attention map-

s on glaucoma detection. The experiment results showed

that the predicted attention maps significantly improve the

performance of glaucoma detection and pathological area

localization in our AG-CNN method, far better than other

state-of-the-art methods.
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