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Abstract

Age estimation is an important yet very challenging

problem in computer vision. Existing methods for age esti-

mation usually apply a divide-and-conquer strategy to deal

with heterogeneous data caused by the non-stationary ag-

ing process. However, the facial aging process is also a

continuous process, and the continuity relationship between

different components has not been effectively exploited. In

this paper, we propose BridgeNet for age estimation, which

aims to mine the continuous relation between age labels ef-

fectively. The proposed BridgeNet consists of local regres-

sors and gating networks. Local regressors partition the

data space into multiple overlapping subspaces to tackle

heterogeneous data and gating networks learn continuity

aware weights for the results of local regressors by employ-

ing the proposed bridge-tree structure, which introduces

bridge connections into tree models to enforce the similarity

between neighbor nodes. Moreover, these two components

of BridgeNet can be jointly learned in an end-to-end way.

We show experimental results on the MORPH II, FG-NET

and Chalearn LAP 2015 datasets and find that BridgeNet

outperforms the state-of-the-art methods.

1. Introduction

Age estimation attempts to predict the real age value or

age group based on facial images, which is an important

task in computer vision due to the broad applications such

as visual surveillance [38], human-computer interaction [9],

social media [31], and face retrieval [22], etc. Although this

problem has been extensively studied for many years, it is

still very challenging to estimate human age precisely from

a single image.
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Figure 1. Facial images at different ages. The images of each row

come from the same person. On the one hand, we can see the non-

stationary property of aging patterns. The facial aging process

is mainly reflected in the shape of the face during childhood and

skin texture during adulthood. On the other hand, the facial im-

ages at adjacent ages show a very high similarity caused by the

continuous aging process.

Age estimation can be cast as a regression problem by

treating age labels as numerical values. However, the hu-

man face matures in different ways at different ages, e.g.,

bone growth in childhood and skin wrinkles in adulthood

[28]. This non-stationary aging process implies that the

data of age estimation is heterogeneous. Thus many non-

linear regression approaches[12, 15] are inevitably biased

by the heterogeneous data distribution, and they are apt to

overfit the training data [4]. Many efforts [34, 31, 15, 24]

have been devoted to addressing this problem. Divide-and-

conquer proves to be a good strategy to tackle the heteroge-

neous data [18], which divides the data space into multiple

subspaces. Huang et al. use local regressors to learn ho-
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mogeneous data partitions [18]. Many ranking based meth-

ods transform the regression problem into a series of binary

classification subproblems [6, 4]. On the other hand, the fa-

cial aging process is also a continuous process, that is to say,

human faces change gradually with age. Such a continuous

process causes the appearance of faces to be very similar

at adjacent ages. For example, the facial appearance will

be very similar when you are 31 and 32. More examples

are shown in Figure 1. This similarity relationship caused

by continuity plays a dominant role at adjacent ages. The

same phenomenon can be found in adjacent local regressors

or adjacent binary classification subproblems, considering

that we divide data by ages. However, this relationship is

not exploited in existing methods.

In this paper, we propose a continuity-aware probabilis-

tic network, called BridgeNet, to address the above chal-

lenges. The proposed BridgeNet consists of local regres-

sors and gating networks. The local regressors partition the

data space and gating networks provide continuity-aware

weights. The mixture of weighted regression results gives

the final accurate estimation. BridgeNet has many advan-

tages. First, heterogeneous data are explicitly modeled by

local regressors as a divide-and-conquer approach. Second,

gating networks have a bridge-tree structure, which is pro-

posed by introducing bridge connections into tree models to

enforce the similarity between neighbor nodes on the same

layer of bridge-tree. Therefore, the gating networks can be

aware of the continuity between local regressors. Third, the

gating networks of BridgeNet use a probabilistic soft deci-

sion instead of a hard decision, so that the ensemble of local

regressors can give a precise and robust estimation. Fourth,

we can jointly train local regressors and gating networks,

and easily integrate BridgeNet with any deep neural net-

works into an end-to-end model. We validate the proposed

BridgeNet for age estimation on three challenging datasets:

MORPH Album II [29], FG-NET [26], and Chalearn LAP

2015 datasets [7], and the experimental results demonstrate

that our approach outperforms the state-of-the-art methods.

2. Related Work

Age Estimation: Existing methods for age estimation

can be grouped into three categories: regression based

methods, classification based methods, and ranking based

methods [25]. Regression based methods treat age labels as

numerical values and utilize a regressor to regress the age.

Guo et al. introduced many regression based methods for

age estimation, such as SVR, PLS, and CCA [14, 13, 15].

Zhang et al. proposed the multi-task warped Gaussian pro-

cess [45] to predict the age of face images. However, these

universal regressors suffer from handling heterogeneous da-

ta. Hierarchical models [16] and group-specific regression

have shown promising results by dividing data by ages.

Huang et al. presented Soft-margin Mixture of Regression

to learn homogeneous partitions and learned a local regres-

sor for each partition [18]. But the continuity relationship

between partitioned components is ignored in these meth-

ods. Classification based methods usually treat different

ages or age groups as independent class labels [15]. DEX

[31] cast age estimation as a classification problem with 101

categories. Therefore, the costs of any type of classification

error are the same, which can’t exploit the relations between

age labels. Recently, several researchers introduced ranking

techniques to the problem of age estimation. These methods

usually utilize a series of simple binary classifiers to deter-

mine the rank of the age for a given input face image. Then

the final age value can be obtained by combining the result-

s of these binary classification subproblems. Chang et al.

[4] proposed an ordinal hyperplanes ranker to employ the

information of relative order between ages. Niu et al. [24]

addressed the ordinal regression problem with multiple out-

put CNN. Chen et al. [6] presented Ranking-CNN and es-

tablished a much tighter error bound for ranking based age

estimation. However, the relations between binary subprob-

lems are ignored in these methods, and ordinal regression is

limited to scalar output [18].

Random Forests: Random forests [3] is a widely used

classifier in machine learning and computer vision commu-

nity. Their performance has been empirically demonstrated

in many tasks such as human pose estimation [36] or image

classification [2]. Meanwhile, deep CNN [21, 17] shows

the superior performance of feature learning. Deep neu-

ral decision forests (dDNFs) were proposed in [20] to com-

bine these two worlds. Each neural decision tree consists

of several split nodes and leaf nodes. Each split node de-

cides the routing direction in a probabilistic way, and each

leaf node holds a class-label distribution. The dDNFs are

differentiable, and the split nodes and leaf nodes are alter-

nating learned using a two-step optimization strategy. As a

classifier, dDNFs have shown the superior results on many

classification tasks. There have been some efforts to migrate

dDNFs to the regression problem. Shen et al. proposed DR-

F for age estimation by extending the distribution of leaf n-

ode to the continuous Gaussian distribution [34]. NRF [32]

was designed for monocular depth estimation, which used

CNN layers to build the structure of random forests. How-

ever, as will be mentioned in Sec. 3, it is not suitable to use

tree architectures directly in some regression tasks, such as

age estimation.

3. Proposed Approach

3.1. Overall Framework

The flow chart of our method is illustrated in Fig 2. For

any input image x ∈ X , we first crop the human face from

the image to remove the background and then align the face.

The aligned face image is sent to a deep convolution neural
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Figure 2. Flowchart of our proposed method for age estimation. For a given input image, we first apply a face alignment algorithm to get

an aligned facial image. Then the aligned image is passed through a CNN for feature extraction. The extracted features are connected with

two parts of BridgeNet: local regressors and gating networks separately. Gating networks generate continuity-aware gating functions to

weight the regression results provided by local regressors. The final age is computed by summing the weighted regression results.

network to extract features. Then the features are connect-

ed with two parts of BridgeNet: local regressors and gating

networks separately. The final age is estimated as a weight-

ed combination over all the local regressors.

The local regressors are utilized to handle heterogeneous

data, which splits the training data into k overlapping sub-

sets. Each subset is used to learn a local regressor. We

denote y ∈ Y as the output target of input sample x ∈ X ,

so the regressor of the lth subset (l = 1, 2, ..., k) can be

formulated as:

f(y|x, z = l) = N (y|µl(x), σ
2

l ), (1)

where z is a latent variable that denotes the affiliation of

{x, y} to a subset, and µl(x) denotes the regression result

of the lth local regressor for input sample x. Moreover,

a Gaussian distribution N (y) with a mean of µl(x) and a

variance of σ2

l is used to model the regression error.

In order to combine these regression results effectively,

the gating networks with a new bridge-tree architecture are

proposed, which generate a gating function for each local

regressor. We denote the gating function corresponding to

the lth local regressor as πl(x). Clearly, πl(x)s are pos-

itive and
∑

l πl(x) = 1 for any x ∈ X . Then we can

address age estimation by modeling the conditional proba-

bility function:

p(y|x) =
∑

l

πl(x)N (y|µl(x), σ
2

l ). (2)

The objective of age estimation is to find a mapping g :

x → y. The output ŷ is estimated for an input sample

x by calculating the expectation of conditional probability

distribution:

ŷ = E[p(y|x)] = E[
∑

l

πl(x)N (y|µl(x), σ
2

l )]

=
∑

l

πl(x)µl(x).
(3)

So the sum of regression results weighted by gating func-

tions gives the final estimated age. In the following sec-

tions, we will provide a detailed description of how local

regressors and gating networks generate regression results

and continuity-aware gating functions respectively.

3.2. Local Regressors

As a divide-and-conquer approach, local regressors can

be used to model heterogeneous data effectively. Local re-

gressors divide the data space into multiple subspaces, and

each local regressor only performs regression on one sub-

space. We can regard local regressors as multiple expert-

s. Each expert has good knowledge in a small regression

region, and different experts cover different regression re-

gions. So the ensemble of experts can give a desirable result

even with heterogeneous data.

Here, we divide data by age labels, and each regressor

is assigned data in an age group. The mediums of the re-

gression regions of local regressors are evenly distributed

throughout the whole regression space, and all local regres-

sors have the same length of regression region.

To further model the continuity of age labels, we let

the regression regions of local regressors are densely over-

lapped. The adjacent local regressors have a very high over-
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(a) Illustration how to build a four-layer binary bridge-tree. Node o5
and o6, node l2 and l3, node l6 and l7 in the binary tree are merged

into node o5, l2 and l3 in the binary bridge-tree respectively. Node l4
and l5 are truncated.
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(b) Illustration how to build a three-layer triple bridge-tree. Node l3
and l4, node l6 and l7 in the triple tree are merged into node l3 and l5
in the triple bridge-tree respectively.

Figure 3. Illustration how to build a bridge-tree

lap in their responsible regions, which makes them have a

high similarity. Therefore, for any value, there are multi-

ple regressors responsible for regressing it, which allows us

to employ ensemble learning to make the regression result

more accurate.

3.3. Gating Networks

Bridge Connections: The design of local regressors fol-

lows the principle of divide-and-conquer. In our approach,

gating networks are required to decide the weights of lo-

cal regressors. Therefore, using gating networks with a

divide-and-conquer architecture makes the gating networks

and local regressors better cooperate with each other. The

tree structure is a widely used hierarchical architecture with

the divide-and-conquer principle. For example, the decision

tree is a popular classifier in machine learning and computer

vision community, which has a tree structure and a coarse-

to-fine decision-making process.

On the other hand, there is a continuity relationship be-

tween local regressors due to the continuous aging process.

The design of densely overlapped local regressors further

strengthens this relationship. However, directly using tree

structure can not well model this relationship between local

regressors, considering that the leaves of the decision tree

are independent class labels, while the leaves of our method

are local regressors with a strong relationship. For exam-

ple, the leaf node l4 and l5 in the left side of Figure 3(a) are

adjacent leaf nodes, but their first common ancestor node is

the root node, so the similarity between l4 and l5 caused by

continuity can’t be well modeled.

We introduce bridge connections into tree models to en-

force the similarity between neighbor nodes. For two adja-

cent nodes on the same layer, the rightmost child of the left

node and the leftmost child of the right node are merged

into one node. We call this operation a bridge connection

because it connects two distant nodes like a bridge. The

merged point, which is named bridge node here, plays a

role in communicating information between the child nodes

of the left node and the child nodes of the right node. By

applying this operation to a tree model layer by layer, a new

continuity-aware structure named bridge-tree is obtained.

Figure 3(a) shows how to get a 4-layer binary bridge-tree

by applying bridge connections to a 4-layer binary tree. We

can see in the binary bridge-tree that the rightmost child of

node o2 and the leftmost child of node o3 are merged into

node o5. Bridge node o5 is the information communication

bridge between the child nodes of node o2 and the child

nodes of node o3. The same operation is applied to node l2
and l3, node l6 and l7 in the binary tree. They are merged

into node l2 and l3 in binary bridge-tree respectively. Node

l4 and l5 in binary tree are truncated because that node o5
and o6 in the binary tree have already been merged into one

node. Furthermore, the bridge connection can be applied

to multiway tree to get multiway bridge-tree. Especially,

Figure 3(b) gives another example of how to build a triple

bridge-tree. It is worth noting that the growth rate of node

number of the triple bridge-tree is very close to that of the

binary tree.

Gating Functions: In this section, we will describe how

to use bridge-tree structured gating networks to generate

continuity-aware gating functions. Bridge-tree contains t-

wo types of nodes: decision (or split) nodes and prediction

(or leaf) nodes. The decision nodes indexed by O are in-

ternal nodes, and the prediction nodes indexed by L are the

terminal nodes. Each prediction node l ∈ L correspond-

s to a regression result µl(x) and a gating function πl(x).
The regression results are given by local regressors while

the gating functions are given by gating networks.

To facilitate the later parts of this paper, N is used to in-

dex all nodes in bridge-tree and E is used to index all edges

in bridge-tree. We also denote Fn and Cn as the parent n-

odes set and the child nodes set of node n ∈ N , respective-

ly. When a sample x ∈ X reaches a decision node o, it will

be sent to the children of this node. Following [20, 34, 35],

we use a probabilistic soft decision. Every edge e ∈ E is

attached with a probability value. The edges connecting de-

cision node o and its child nodes form a decision probability

distribution at node o. So that means emo (x)s are positive for

any node m ∈ Co and
∑

m∈Co
emo (x) = 1, where emo (x)

represents the probability value which sits at the edge from
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Figure 4. Illustration how to implement gating networks. An FC

layer connected with deep CNN is employed. Each neuron in the

fully-connected layer corresponds to an edge of bridge-tree. For

example, neural f1, f2 and f3 correspond to edge o1-o2, o1-o3,

and o1-o4 respectively. For the triple bridge-tree, every three neu-

rons are normalized using a softmax layer. Then the normalized

outputs of neurons give all the probability values on the edges of

bridge-tree. Finally, the gating functions for leaf nodes are calcu-

lated using Eq. 4 and Eq. 5.

node o to node m. Once a sample ends in a leaf node l,

the gating function for leaf node l can be obtained by accu-

mulating all the probability values of the path from the root

node to the leaf node l. For example, there are three paths

from root node o1 to leaf node l2 in the binary bridge-tree

in Figure 3(a): o1 − o2 − o4 − l2, o1 − o2 − o5 − l2, and

o1 − o3 − o5 − l2. So the gating function for leaf node

l2 can be computed as πl2(x) = eo2o1(x)e
o4
o2
(x)el2o4(x) +

eo2o1(x)e
o5
o2
(x)el2o5(x) + eo3o1(x)e

o5
o3
(x)el2o5(x). Moreover, we

give a recursive expression of gating function by extending

the definition of gating function to all nodes n ∈ N :

πn0(x) = 1 (4)

πn(x) =
∑

m∈Fn

πm(x)enm(x), (5)

where πn(x) denotes the gating function for node n and

node n0 is the root node of bridge-tree. We establish a

one-to-one correspondence between the gate networks and

the probability values on the edges of bridge-tree, that is to

say, every gating network corresponds to a probability val-

ue which sits at an edge of the bridge-tree. Then the gating

functions for leaf nodes can be calculated using the outputs

of gating networks in the above recursive way.

3.4. Implementation Details

We employ a fully-connected layer to implement dense-

ly overlapped local regressors. The sigmoid function is u-

tilized as the activation function. Then each local regressor

maps the activation value to their regression space as the

expert result. As mentioned above, we use µl(x) to denote

the result of the lth local regressor , then the regression loss

is given by:

Lreg(x, y) =
∑

l∈L

Il(x, y)(y − µl(x))
2, (6)

where Il(x, y) denotes if y is located in the responsible re-

gion of the lthlocal regressor.

Figure 4 demonstrates the implementation of gating net-

works, which also employs a fully-connected layer. Each

neuron in the fully-connected layer corresponds to an edge

of bridge-tree. We let B represents the number of branches

of each decision node. Considering that B edges starting

from the same node form a probability distribution, we ap-

ply a softmax function to every B neurons of the fully con-

nected layer for normalization. The gating functions of leaf

nodes can be calculated using these normalized outputs of

neurons according to Eq. 4 and Eq. 5.

Since the ground truth for supervising gating functions

is not available, we build approximated gating targets for an

input sample (x, y) as follow:

π̂l(x) =
1

R
Il(x, y), (7)

where R =
∑

l I(x, y) is used for normalization. Al-

though the labels are not accurate, our gating networks can

be aware of the continuity between local regressors, so a sat-

isfying result can be achieved even with weakly supervised

signals.

The KL divergence is utilized as the loss term to train the

gating networks of BridgeNet:

Lgate(x, y) = −
∑

l∈L

π̂l(x) log(πl(x)). (8)

In the end, we jointly learn local regressors and gating

networks by defining the total loss as follow:

Ltotal(x, y) = Lreg(x, y) + λLgate(x, y), (9)

where λ is used to balance the importance between the re-

gression task and gating task.

We observe that the proposed BridgeNet can be easily

implemented by using typically available fully-connected,

softmax and sigmoid layers in the existing deep learning

frameworks such as TensorFlow [1], PyTorch [27], etc. Fur-

thermore, our fully differentiable BridgeNet can be embed-

ded within any deep convolutional neural networks, which

enables us to conduct end-to-end training and obtain a better

feature representation.

4. Experiments

In this section, we first introduce the datasets and present

some details about our experiment settings. Then we

demonstrate the experimental results to show the effective-

ness of the proposed BridgeNet.
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4.1. Datasets

MORPH II is the largest publicly available longitudinal

face dataset and the most popular dataset for age estimation.

This dataset includes more than 55,000 images from about

13,000 subjects and age ranges from 16 to 77 years.

In this paper, two widely used protocols are employed

for evaluation on MORPH II. The first setting uses a subset

of MORPH II as described in [4, 5, 41]. This setting se-

lects 5,492 images of people of Caucasian descent to avoid

the cross-race influence. Then these 5,492 images are ran-

domly divided into two non-overlapped parts: 80% of data

for training and 20% of data for testing. The second set-

ting used in [43, 13] randomly splits the whole MORPH

II dataset into three non-overlapped subsets S1, S2, S3 fol-

lowing the rules detailed in [43]. The training and testing

are repeated twice in this setting: 1) training on S1, testing

on S2 + S3 and 2) training on S2, testing on S1 + S3. We

will report the performance of these two experiments and

their average.

FG-NET consists of 1002 color or greyscale face images

of 82 individuals with ages ranging from 0 to 69 years old

subjects. For evaluation, we adopt the setup of [12, 31],

which uses leave-one person-out (LOPO) cross-validation.

The average performance over 82 splits is reported.

Chalearn LAP 2015 is the first dataset on apparent age

estimation. For any image, at least 10 independent user-

s are required to give their opinions and then the average

age is used as the annotation. Additionally, the standard

deviation of opinions for a given image is also provided.

This dataset contains 4699 images, where 2476 images for

training, 1136 images for validation, and 1087 images for

testing. The age range is from 0 to 100 years old.

IMDB-WIKI contains more than half a million labeled

images of celebrities, which are crawled from IMDb and

Wikipedia. This datatset contains too much noise, so it is

not suitable for evaluation. However, it is still a good choice

to use this dataset for pretraining after data cleaning. We

select about 200 thousand images according to the setting

in [31] to pre-train our network.

4.2. Experimental Settings

Face alignment is a common preprocessing step for age

estimation. First, all images are sent to MTCNN [44] for

face detection. Then we align all the face images by simi-

larity transformation based on the detected five facial land-

marks. After that, all images are resized into 256× 256.

Data augmentation is an effective way to avoid overfit-

ting and improve the generalization of deep networks, espe-

cially when the training data is insufficient. Here, we aug-

ment training images with horizontal flipping and random

cropping.

VGG-16 [37] is employed as the basic backbone network

of the proposed method. We first initialize the VGG-16 net-

Table 1. The comparisons between the proposed method and other

state-of-the-art methods on MORPH II dataset (setting I) and FG-

NET dataset.

Method MORPH II FG-NET Year

Human [16] 6.30 4.70 -

AGES [8] 8.83 6.77 2007

IIS-LDL [10] - 5.77 2010

CPNN [11] - 4.76 2013

MTWGP [45] 6.28 4.83 2010

OHRank [4] 6.07 4.48 2011

CA-SVR [5] 5.88 4.67 2013

DRFs [34] 2.91 3.85 2018

DEX [31] 2.68 3.09 2016

Pan et al. [25] - 2.68 2018

BridgeNet 2.38 2.56 -

Table 2. The results on MORPH II dataset (setting II). The perfor-

mance of two different settings and their average are reported. Our

method achieves the state-of-the-art performance.

Method Train Test MAE Avg

KPLS [13]
S1 S2+S3 4.21

4.18
S2 S1+S3 4.15

BIF+KCCA [14]
S1 S2+S3 4.00

3.98
S2 S1+S3 3.95

CPLF [43]
S1 S2+S3 3.72

3.63
S2 S1+S3 3.54

Tan et al. [40]
S1 S2+S3 3.14

3.03
S2 S1+S3 2.92

DRFs [34]
S1 S2+S3 -

2.98
S2 S1+S3 -

BridgeNet
S1 S2+S3 2.74

2.63
S2 S1+S3 2.51

work with the weights from training on ImageNet 2012 [33]

dataset. Then the network is pre-trained on IMDB-WIKI

dataset. To optimize the proposed network, we use the

mini-batch stochastic gradient descent (SGD) with batch

size 64 and apply the Adam optimizer [19]. The initial

learning rate is set to 0.0001 for experiments on MORPH II

dataset. The training images on FG-NET and Chalearn LAP

2015 datasets are extremely insufficient, so we set the initial

learning rate of CNN part to 0.00001 for the experiments on

these datasets to avoid overfitting. The initial learning rate

of the BridgeNet part is still 0.0001 on these datasets to ac-

celerate convergence. We train our network for 60 epochs

and set λ to 0.001 to balance the gating loss and regression

loss. The length of regression region for local regressors is

set to 25. We choose a triple bridge-tree with a depth of

5 as the architecture of our BridgeNet, which is a trade-off

of efficiency and complexity. Our algorithm is implement-

ed within the PyTorch [27] framework. A GeForce GTX
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Table 3. Comparisons with the state-of-the-art methods on the Chalearn LAP 2015 dataset

Rank Team
Validation Set Test Set Pretrain

Netwrok
# of

MAE ǫ-error MAE ǫ-error Set Networks

- BridgeNet 2.98 0.26 2.87 0.255140 IMDB-WIKI VGG-16 1

- Tan et al. [39] 3.21 0.28 2.94 0.263547 IMDB-WIKI VGG-16 8

1 CVL ETHZ [31] 3.25 0.28 - 0.264975 IMDB-WIKI VGG-16 20

2 ICT-VIPL [23] 3.33 0.29 - 0.270685 MORPH, CACD, et al. GoogleNet 8

3 WVU CVL [46] - 0.31 - 0.294835 MORPH, CACD, et al. GoogleNet 5

4 SEU NJU [42] - 0.34 - 0.305763 FG-NET,MORPH,et al. GoogleNet 6

Human - - - 0.34 - - -

Table 5. The results of binary bridge-tree structure on MORPH II

dataset (setting I)

Num. of leaf nodes 16 32 64 128

MAE 2.43 2.39 2.36 2.35

1080Ti GPU is used for neural network acceleration.

4.3. Evaluation Metrics

The mean absolute error (MAE) and cumulative score

(CS) are used as evaluation metrics on MORPH II and FG-

NET datasets. MAE is calculated using the mean abso-

lute errors between the estimated result and ground truth:

MAE = 1

K

∑K

i=1
|y′

i
− yi|, where y

′

i
denotes the predict-

ed age value for the ith image, and K is the number of test-

ing samples. Obviously, a lower MAE result means better

performance. CS(θ) is computed as follows: CS(θ) = Kθ

K
,

where Kθ represents the number of test images whose abso-

lute error between the estimated result and the ground truth

is not greater than θ years. Naturally, the higher the CS(θ),
the better performance it gets. The ǫ-error was proposed

by the Chalearn LAP challenge as a quantitative measure,

which is defined as: ǫ = 1− 1

K

∑K

i=1
e
−

(y′

i
−yi)

2

2σ2
i , where σi

is the standard deviation of the ith image. Clearly, a lower

ǫ-error means better performance.

4.4. Results and Analysis

Comparisons with the State-of-the-art: We first com-

pare the proposed BridgeNet with other state-of-the-art

methods on MORPH II dataset with different settings and

FG-NET dataset. Table 1 and Table 2 show the results

on MORPH II and FG-NET using MAE metric. The re-

sults demonstrate that our method outperforms the state-of-

the-art methods with a clear margin on both datasets. Our

method achieves the lowest MAE of 2.38, 2.63, and 2.56

on MORPH II with setting I, MORPH II with setting II,

and FG-NET respectively. The classification based method-

s, such as DEX [31], Tan et al. [40], are not optimal because

they treat different ages as independent class labels. On the

other hand, the ranking based methods, such as OHRank

[4], can’t capture the continuity relationship among compo-

nents, resulting in unsatisfactory performance. DRFs [34]

uses a tree structure to weight several Gaussian distributions

and Pan et al. propose a mean-variance loss for age estima-

tion. Both of them can’t effectively model the continuous

property of the aging process. The CS comparisons with

the state-of-the-art methods on MORPH II and FG-NET are

shown in Figure 5. The experimental results show that our

approach consistently outperforms other methods.

In addition to these two datasets, we present results

of our method on Chalearn LAP 2015 dataset. Follow-

ing [31, 30, 39], a few tricks are used on this competition

dataset. To get the performance on the test set, we finetune

our network on both training and validation sets after fine-

tuning on IMDB-WIKI dataset. In the test phase, for any

given image, we crop it into four corners and a central crop,

then the five crops plus the flipped version of these are sent

to our network, and these ten predictions are averaged. It is

important to note that we only use these tricks on Chalearn

LAP 2015 dataset. To make a more comprehensive com-

parison, we also show the performance on the validation set,

which only uses the training set to finetune. The experimen-

tal results are shown in Table 3. The bottom half of the table

shows the results of the participating teams, and the top half

shows the results of our method and another state-of-the-art

method. We can see that our method achieves better perfor-

mance than other methods. Our method achieves an MAE

of 2.98 and a ǫ-error of 0.26 on the validation set, which

reduces the state-of-the-art performance by 0.23 years for

MAE and 0.02 for ǫ-error. For the test set, we also achieve

a lower MAE and ǫ-error. All of the above results of our

method are obtained by using a single network, while oth-

ers methods use an ensemble of multiple networks, which

further illustrates the superiority of our method.

Ablation Study and Parameters Discussion: To vali-

date the effectiveness of the proposed BridgeNet, we com-

pare it with two baseline architectures: one uses a tree struc-

ture to construct gating functions, and the other uses a soft-

max layer to construct gating functions. To be fair, we use

triple bridge-tree structure, whose node growth rate is close

to that of the binary tree. The experiments are conducted on

MORPH II dataset (setting I) and Table 4 shows the results.

1151



1 2 3 4 5 6 7 8 9 10

Error Level θ
10

20

30

40

50

60

70

80

90

100

C
um

ul
at

iv
e 

Sc
or

e 
(%

)

AGES
WTWGP
OHRank
DEX
BridgeNet

(a) MORPH II (setting I)
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(b) MORPH II (setting II)
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(c) FG-NET

Figure 5. (a) CS curves compared with other methods on MORPH II dataset with setting I. (b)CS curves compared with other methods on

MORPH II dataset with setting II. * means that the IMDB-WIKI dataset was not used to pre-train the model. (c) CS curves compared with

other methods on FG-NET.

Table 4. The comparisons of different architectures on MORPH II dataset (setting I)

Architecture Softmax Tree(binary) Bridge-Tree(triple)

Depth - 4 5 6 7 3 4 5 6

Num. of leaf nodes 16 32 64 128 16 32 64 128 15 31 63 127

Num. of decision nodes - 15 31 63 127 11 26 57 120

MAE 2.68 2.59 2.54 2.53 2.66 2.54 2.51 2.49 2.51 2.43 2.38 2.38

Several conclusions are drawn from Table 4. First, in any

of the above architectures, a lower MAE can be obtained by

using more leaf nodes, which is reasonable because more

leaf nodes mean more local regressors and more local re-

gressors mean more expert intelligence. Furthermore, when

the number of leaf nodes is large enough, the performance

tends to be saturated. This is because too many leaf nodes

make some adjacent local regressors correspond to the same

training data, so it can not increase the actual number of

experts. Second, we observe that the tree-based method

slightly outperforms the softmax based method when the

number of leaf nodes is the same. The tree-based method

has a coarse-to-fine, top-to-down decision-making process

as a hierarchical architecture, so it can give better perfor-

mance than softmax based method. However, it doesn’t

explicitly model the continuity relationship between local

regressors, so the performance gain is tiny. Third, bridge-

tree based method (BridgeNet) significantly outperform-

s the tree-based method at a similar number of leaf n-

odes even with a shallower depth and fewer decision nodes.

The five layers triple bridge-tree achieves an MAE of 2.38,

which reduces the MAE by 0.13 years compared with the

six layers binary tree. This shows the benefit of introducing

bridge connections and explicitly modeling the continuity

relation.

To further demonstrate the superiority of bridge-tree, we

show the results using binary bridge-tree architecture on

MORPH II dataset (setting I) in Table 5. We can see that

binary bridge-tree further improves the accuracy. This is

because, with the same number of leaf nodes, binary bridge-

tree has more bridge nodes, which makes it better capture

the continuity relationship between local regressors.

5. Conclusions

In this paper, we have presented BridgeNet, a continuity-

aware probabilistic network for age estimation. BridgeNet

explicitly models the continuity relationship between dif-

ferent components constructed by local regressors using a

probabilistic network with a bridge-tree architecture. Ex-

periments on three datasets demonstrate that our method

is more accurate than other state-of-the-art methods. Al-

though our method is designed for age estimation, it can al-

so be used for other regression-based computer vision tasks.

In the future work, we plan to investigate the effectiveness

of BridgeNet in crowd counting, pose estimation and other

regression-based tasks.

Acknowledgement

This work was supported in part by the National

Key Research and Development Program of China under

Grant 2017YFA0700802, in part by the National Natu-

ral Science Foundation of China under Grant 61822603,

Grant U1813218, Grant U1713214, Grant 61672306, Grant

61572271, and in part by the Shenzhen Fundamental

Research Fund (Subject Arrangement) under Grant J-

CYJ20170412170602564.

1152



References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. C-

itro, G. S. Corrado, A. Davis, J. Dean, and M. Devin. Ten-

sorflow: Large-scale machine learning on heterogeneous dis-

tributed systems. 2016. 5

[2] A. Bosch, A. Zisserman, and X. Munoz. Image classification

using random forests and ferns. In ICCV, pages 1–8, 2007.

2

[3] L. Breiman. Random forests. Machine Learning, 45(1):5–

32, 2001. 2

[4] K. Y. Chang, C. S. Chen, and Y. P. Hung. Ordinal hyper-

planes ranker with cost sensitivities for age estimation. In

CVPR, pages 585–592, 2011. 1, 2, 6, 7

[5] K. Chen, S. Gong, T. Xiang, and C. L. Chen. Cumulative at-

tribute space for age and crowd density estimation. In CVPR,

pages 2467–2474, 2013. 6

[6] S. Chen, C. Zhang, M. Dong, J. Le, and M. Rao. Using

ranking-cnn for age estimation. In CVPR, pages 742–751,

2017. 2

[7] S. Escalera, J. Fabian, P. Pardo, X. Baro, J. Gonzalez, H. J.

Escalante, D. Misevic, U. Steiner, and I. Guyon. Chalearn

looking at people 2015: Apparent age and cultural event

recognition datasets and results. In ICCVW, pages 243–251,

2015. 2

[8] Geng, Xin, Zhou, ZhiHua, SmithMiles, and Kate. Automat-

ic age estimation based on facial aging patterns. TPAMI,

29(12):2234–2240, 2007. 6

[9] Geng, Xin, Zhou, ZhiHua, Zhang, Yu, Li, Gang, and Dai.

Learning from facial aging patterns for automatic age esti-

mation. ACM MM, pages 307–316, 2006. 1

[10] X. Geng, C. Yin, and Z. H. Zhou. Facial age estimation by

learning from label distributions. In AAAI, pages 451–456,

2010. 6

[11] X. Geng, C. Yin, and Z. H. Zhou. Facial age estimation

by learning from label distributions. TPAMI, 35(10):2401–

2412, 2013. 6

[12] G. Guo, Y. Fu, C. R. Dyer, and T. S. Huang. Image-based

human age estimation by manifold learning and locally ad-

justed robust regression. TIP, 17(7):1178–1188, 2008. 1,

6

[13] G. Guo and G. Mu. Simultaneous dimensionality reduction

and human age estimation via kernel partial least squares re-

gression. In CVPR, pages 657–664, 2011. 2, 6

[14] G. Guo and G. Mu. Joint estimation of age, gender and eth-

nicity: Cca vs. pls. In FG, pages 1–6, 2013. 2, 6

[15] G. Guo, G. Mu, Y. Fu, and T. S. Huang. Human age estima-

tion using bio-inspired features. In CVPR, pages 112–119,

June 2009. 1, 2

[16] H. Han, C. Otto, X. Liu, and A. K. Jain. Demographic esti-

mation from face images: Human vs. machine performance.

TPAMI, 37(6):1148–1161, 2015. 2, 6

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, pages 770–778, 2016. 2

[18] D. Huang, L. Han, and F. D. L. Torre. Soft-margin mixture

of regressions. In CVPR, pages 4058–4066, 2017. 1, 2

[19] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. Computer Science, 2014. 6

[20] P. Kontschieder, M. Fiterau, A. Criminisi, and S. Rota Bulo.

Deep neural decision forests. In ICCV, pages 1467–1475,

2015. 2, 4

[21] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, pages 1097–1105, 2012. 2

[22] A. Lanitis, C. Draganova, and C. Christodoulou. Compar-

ing different classifiers for automatic age estimation. TSMC,

Part B (Cybernetics), 34(1):621–628, Feb 2004. 1

[23] X. Liu, S. Li, M. Kan, J. Zhang, S. Wu, W. Liu, H. Han,

S. Shan, and X. Chen. Agenet: Deeply learned regressor

and classifier for robust apparent age estimation. In ICCVW,

pages 258–266, 2015. 7

[24] Z. Niu, M. Zhou, L. Wang, X. Gao, and G. Hua. Ordinal

regression with multiple output cnn for age estimation. In

CVPR, pages 4920–4928, 2016. 1, 2

[25] H. Pan, H. Han, S. Shan, and X. Chen. Mean-variance loss

for deep age estimation from a face. In CVPR, June 2018. 2,

6

[26] G. Panis, A. Lanitis, N. Tsapatsoulis, and T. F. Cootes.

Overview of research on facial ageing using the fg-net age-

ing database. Iet Biometrics, 5(2):37–46, 2016. 2

[27] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. 2017. 5, 6

[28] N. Ramanathan, R. Chellappa, and S. Biswas. Age progres-

sion in human faces : A survey. JVLC, 15, 2009. 1

[29] K. Ricanek and T. Tesafaye. Morph: a longitudinal image

database of normal adult age-progression. In FG, pages 341–

345, 2006. 2

[30] R. Rothe, R. Timofte, and L. V. Gool. Dex: Deep expectation

of apparent age from a single image. In ICCVW, December

2015. 7

[31] R. Rothe, R. Timofte, and L. V. Gool. Deep expectation

of real and apparent age from a single image without facial

landmarks. IJCV, pages 1–14, 2016. 1, 2, 6, 7

[32] A. Roy and S. Todorovic. Monocular depth estimation using

neural regression forest. In CVPR, pages 5506–5514, 2016.

2

[33] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, and M. Bern-

stein. Imagenet large scale visual recognition challenge. I-

JCV, 115(3):211–252, 2015. 6

[34] W. Shen, Y. Guo, Y. Wang, K. Zhao, B. Wang, and A. L.

Yuille. Deep regression forests for age estimation. In CVPR,

June 2018. 1, 2, 4, 6, 7

[35] W. Shen, K. ZHAO, Y. Guo, and A. L. Yuille. Label distribu-

tion learning forests. In I. Guyon, U. V. Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, ed-

itors, NIPS, pages 834–843. 2017. 4

[36] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook,

R. Moore, R. Moore, P. Kohli, A. Criminisi, and A. Kipman.

Efficient human pose estimation from single depth images.

TPAMI, 35(12):2821–2840, 2013. 2

[37] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

6

1153



[38] Z. Song, B. Ni, D. Guo, T. Sim, and S. Yan. Learning univer-

sal multi-view age estimator using video context. In ICCV,

pages 241–248, Nov 2011. 1

[39] Z. Tan, J. Wan, Z. Lei, R. Zhi, G. Guo, and S. Z. Li. Efficient

group-n encoding and decoding for facial age estimation. T-

PAMI, PP(99):1–1, 2017. 7

[40] Z. Tan, S. Zhou, J. Wan, Z. Lei, and S. Z. Li. Age estima-

tion based on a single network with soft softmax of aging

modeling. In ACCV, pages 203–216, 2017. 6, 7

[41] X. Wang, R. Guo, and C. Kambhamettu. Deeply-learned

feature for age estimation. In WACV, pages 534–541, 2015.

6

[42] X. Yang, B. B. Gao, C. Xing, and Z. W. Huo. Deep label

distribution learning for apparent age estimation. In ICCVW,

pages 344–350, 2015. 7

[43] D. Yi, Z. Lei, and S. Z. Li. Age estimation by multi-scale

convolutional network. In ACCV, pages 144–158, 2014. 6

[44] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detec-

tion and alignment using multitask cascaded convolutional

networks. IEEE SPL, 23(10):1499–1503, 2016. 6

[45] Y. Zhang and D. Y. Yeung. Multi-task warped gaussian pro-

cess for personalized age estimation. In CVPR, pages 2622–

2629, 2010. 2, 6

[46] Y. Zhu, Y. Li, G. Mu, and G. Guo. A study on apparent age

estimation. In ICCVW, pages 267–273, 2015. 7

1154


