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Abstract

Spatiotemporal feature learning is of central importance

for action recognition in videos. Existing deep neural net-

work models either learn spatial and temporal features in-

dependently (C2D) or jointly with unconstrained parame-

ters (C3D). In this paper, we propose a novel neural op-

eration which encodes spatiotemporal features collabora-

tively by imposing a weight-sharing constraint on the learn-

able parameters. In particular, we perform 2D convolu-

tion along three orthogonal views of volumetric video data,

which learns spatial appearance and temporal motion cues

respectively. By sharing the convolution kernels of dif-

ferent views, spatial and temporal features are collabora-

tively learned and thus benefit from each other. The com-

plementary features are subsequently fused by a weighted

summation whose coefficients are learned end-to-end. Our

approach achieves state-of-the-art performance on large-

scale benchmarks and won the 1st place in the Moments

in Time Challenge 2018. Moreover, based on the learned

coefficients of different views, we are able to quantify the

contributions of spatial and temporal features. This analy-

sis sheds light on interpretability of the model and may also

guide the future design of algorithm for video recognition.

1. Introduction

Recently, video action recognition has drawn increasing

attention considering its potential in a wide range of appli-

cations such as video surveillance, human-computer inter-

action and social video recommendation. The key to this

task lies in joint spatiotemporal feature learning. The spa-

tial feature mainly describes appearance of objects involved

in an action and the scene configuration as well within each

frame of the video. Spatial feature learning is analogous

to that of still image recognition, and thus easily benefits

from the recent advancements brought by deep Convolu-

tional Neural Networks (CNN) [13]. While the tempo-

ral feature captures motion cues embedded in the evolving

frames over time. There are two challenges that arise. One

is how to learn the temporal feature. The other is how to
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Figure 1. Visualization of three views of a video, which motivates

our design of collaborative spatiotemporal feature learning. Top

left: view of H-W . Top right: view of T -H . Bottom: view of

T -W .

properly fuse spatial and temporal features.

The first attempt of researchers is to model temporal mo-

tion information explicitly and in parallel to spatial informa-

tion. Raw frames and optical flow between adjacent frames

are exploited as two input streams of a deep neural net-

work [23, 6]. On the other hand, as a generalization of 2D

ConvNets (C2D) for still image recognition, 3D ConvNets

(C3D) are proposed to tackle 3D volumetric video data [24].

In C3D, spatial and temporal features are closely entangled

and jointly learned. That is, rather than learning spatial and

temporal features separately and fusing them at the top of

the network, joint spatiotemporal features are learned by

3D convolutions distributed over the whole network. Con-

sidering the excellent feature representation learning capa-

bility of CNN, ideally C3D should achieve great success on

video understanding just as C2D does on image recogni-

tion. However, the huge number of model parameters and

computational inefficiency limit the effectiveness and prac-

ticality of C3D.

In this paper, we propose a novel Collaborative Spa-
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Figure 2. Comparison of CoST to common spatiotemporal feature

learning architectures. (a) C3D3×3×3. (b) C3D3×1×1. (c) The

proposed CoST.

tioTemporal (CoST) feature learning operation, which

learns spatiotemporal features jointly with a weight-sharing

constraint. Given a 3D volumetric video tensor, we flatten

it into three sets of 2D images by viewing it from different

angles. Then 2D convolution is applied to each set of 2D

images. Figure 1 shows the 2D snapshots from three views

of an exemplary video clip, where a man is high jumping at

the stadium. View of H-W is the natural view with which

human beings are familiar. By scanning the video frame

by frame from this view over time T , we are able to un-

derstand the video content. Although snapshots from views

involving T (i.e. T -W and T -H) are difficult to interpret for

human beings, they contain exactly the same amount of in-

formation as the normal H-W view. More importantly, rich

motion information is embedded within each frame rather

than between frames. Hence 2D convolutions on frames of

the T -W and T -H views are able to capture temporal mo-

tion cues directly. As shown in Figure 2(c), by fusing com-

plementary spatial and temporal features of the three views,

we are able to learn spatiotemporal features using 2D con-

volutions rather than 3D convolutions.

Notably, the convolution kernels of different views are

shared for the following reasons. 1) From the visualization

of the frames of different views (see Figure 1), their visual

appearances are compatible. For example, common spatial

patterns such as edges and color blobs also exist in tempo-

ral views (T -H and T -W ). Hence, the same set of convo-

lution kernels can be applied on frames of different views.

2) Convolution kernels in C2D networks are inherently re-

dundant without pruning [9, 15, 31]. While the redundant

kernels can be exploited for temporal feature learning by

means of weight sharing. 3) The number of model param-

eters is greatly reduced, such that the network is easier to

train and less prone to overfitting, resulting in better per-

formance. Besides, the success of spatial feature learning

on still images (e.g. carefully designed network architecture

and pre-trained parameters) can be transferred to temporal

domain with little effort.

The complementary features of different views are fused

by a weighted summation. We learn an independent co-

efficient for each channel in each view, which allows the

network to attend to either spatial or temporal features on

demand. Moreover, based on the learned coefficients, we

are able to quantify the respective contributions of spatial

domain and temporal domain.

Based on the CoST operation, we build a convolutional

neural network. We will henceforth refer to both the opera-

tion and the network as CoST, which should be easy to iden-

tify according to its context. Compared with C2D, CoST

can learn spatiotemporal features jointly. While compared

with C3D, CoST is based on 2D rather than 3D convolu-

tions. CoST essentially bridges the gap between C2D and

C3D, where the benefits from both sides, i.e. compactness

of C2D and representation capability of C3D are retained.

For the task of action recognition in videos, experiments

show that CoST achieves superior performance over both

C2D and C3D.

The main contributions of this work are summarized as

follows:

• We propose CoST, which collaboratively learns spa-

tiotemporal features using 2D convolutions rather than

3D convolutions.

• To the best of our knowledge, this is the first work on

quantitative analysis of importance of spatial and tem-

poral features for video understanding.

• The proposed CoST model outperforms the conven-

tional C3D model and its variants, achieving state-of-

the-art performance on large-scale benchmarks.

2. Related Work

In the early stage, hand-crafted representations have

been well explored for video action recognition. Many

feature descriptors for 2D images are generalized to 3D

spatiotemporal domain, e.g. Space-Time Interest Points

(STIP) [14], SIFT-3D [21], Spatiotemporal SIFT [1] and

3D Histogram of Gradient [12]. The most successful hand-

crafted representations are dense trajectories [27] and its

improved version [28], which extract local features along

trajectories guided by optical flow.

Encouraged by the great success of deep learning, espe-

cially the CNN model for image understanding, there are a

number of attempts to develop deep learning methods for

action classification [33]. The two-stream architecture [23]

utilizes visual frames and optical flows between adjacent

frames as two separate inputs of the network, and fuses

their output classification scores as the final prediction.

Many works follow and extend this architecture [5, 6, 34].

The LSTM networks have also been employed to capture

temporal dynamics and long range dependences in videos.

In [18, 4] CNN is used to learn spatial feature for each

frame, while LSTM is used to model temporal evolutions.
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Figure 3. Comparison of various residual units for action recogni-

tion in videos.

More recently, with the increasing computing capability

of modern GPUs and the availability of large-scale video

datasets, 3D ConvNet (C3D) has drawn more and more at-

tention. In [24] a 11-layer C3D model is designed to jointly

learn spatiotemporal features on the Sports-1M dataset [11].

However, the huge computational cost and the dense param-

eters of C3D make it infeasible to train a very deep model.

Qiu et al. [19] proposed Pseudo-3D (P3D) which decom-

poses a 3D convolution of 3× 3× 3 into a 2D convolution

of 1× 3× 3 followed by a 1D convolution of 3× 1× 1. In

another work [25], similar architecture is explored and re-

ferred to as (2+1)D. [2] proposed the Inflated 3D ConvNet

(I3D), which is exactly C3D whose parameters are initial-

ized by inflating the parameters of pre-trained C2D model.

The most closely related work to ours is Slicing

CNN [22], which also learns features from multiple views

for crowd video understanding. However, there are sub-

stantial differences between Slicing CNN and the proposed

CoST. Slicing CNN learns independent features of the

three views via three different network branches, which are

merged at the top of the network. Aggregation of spatial

and temporal features is conducted only once at the network

level. On the contrary, we learn spatiotemporal features col-

laboratively using a novel CoST operation. Spatiotemporal

feature aggregation is conducted layer-wise.

3. Method

In this section, we first review the conventional C2D and

C3D architectures, which are implemented as a baseline.

Then we introduce the proposed CoST. The connection and

comparison between CoST and C2D / C3D are also dis-

cussed.

3.1. 2D ConvNets

C2D leverages the strong spatial feature representation

capability of 2D convolutions, while simple strategy (e.g.

pooling) is utilized for temporal feature aggregation. In this

Name Output Size Filter Stride

input 8×224×224 none none

conv1 8×112×112 1× 7× 7, 64 1,2,2

pool1 8×56×56 3× 3× 3,max 1,2,2

block1 8×56×56





1× 1× 1, 64

1× 3× 3, 64

1× 1× 1, 256



× 3 1,1,1

pool2 4×56×56 3× 1× 1,max 2,1,1

block2 4×28×28





1× 1× 1, 128

1× 3× 3, 128

1× 1× 1, 512



× 4 1,2,2

block3 4×14×14





1× 1× 1, 256

1× 3× 3, 256

1× 1× 1, 1024



× 6 1,2,2

block4 4×7×7





1× 1× 1, 512

1× 3× 3, 512

1× 1× 1, 2048



× 3 1,2,2

pool3 1×1×1 4× 7× 7, average 1,1,1

fc 1×1×1 2048×class 1,1,1

Table 1. Architecture of ResNet-50-C2D. Spatial striding is per-

formed on the first residual unit of each block.

work, we implement C2D as a baseline model. We choose

ResNets [8] as our backbone networks, whose residual unit

is shown in Figure 3(a). To handle 3D volumetric video

data, the vanilla ResNets need to be adapted accordingly.

Taking ResNet-50 as an example, its adapted version for

video action recognition is illustrated in Table 1. For con-

venience we will henceforth refer to it as ResNet-50-C2D.

Note the differences between ResNet-50-C2D and vanilla

ResNet-50. Firstly, all k×k 2D convolutions are adapted to

their 3D form, i.e. 1× k× k. Secondly, a temporal pooling

(pool2) is append after block1 to halve the number of frames

from 8 to 4. Thirdly, the global average pooling (pool3) is

also adapted from 7 × 7 to 4 × 7 × 7 such that spatial and

temporal features are aggregated simultaneously. Similarly,

we can setup ResNet-101-C2D based on ResNet-101.

3.2. 3D ConvNets

C3D is a natural generalization of C2D for 3D video

data. In C3D, 2D convolutions are converted to 3D by in-

flating the filters from square to cubic. For example, an

h× w 2D filter can be converted into a t× h× w 3D filter

by introducing an additional temporal dimension t [5, 2].

In modern deep CNN architectures like ResNets, there are

two main types of filters, i.e. 1 × 1 and 3 × 3. As ex-

plored in [30], given a residual unit comprised of 1× 1 and

3 × 3 convolutions, we may either inflate the middle 3 × 3
filter into 3 × 3 × 3 (C3D3×3×3) as shown in Figure 3(b),

or inflate the first 1 × 1 filter into 3 × 1 × 1 (C3D3×1×1)

as shown in Figure 3(c). Experiments in [30] demonstrate

that C3D3×3×3 and C3D3×1×1 achieve comparable perfor-

mance, while the latter contains much fewer parameters and
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is more computationally efficient. Therefore, in our imple-

mentation, C3D3×1×1 is adopted and referred to as C3D for

simplicity. Notably, the C3D3×1×1 model learns spatial and

temporal features alternatively rather than jointly, which is

very similar to the (2+1)D [25] and P3D [19] models.

In our implementation, we inflate the first 1× 1 filter for

every two residual units following [30]. However, we leave

conv1 unchanged to be 2D (1× 7× 7), as opposed to [30].

3.3. CoST

In this section, we elaborately describe the proposed

CoST model. Figure 2 compares the proposed CoST oper-

ation to common spatiotemporal feature aggregating mod-

ules. As mentioned above, C3D3×3×3 utilizes a 3D convo-

lution of 3 × 3 × 3 to extract spatial (along H and W ) and

temporal (along T ) features jointly. In the C3D3×1×1 con-

figuration, a 1D 3 × 1 × 1 convolution along T is utilized

to aggregate temporal feature, followed by a 2D 1 × 3 × 3
convolution along H and W for spatial feature. While in

the proposed method, we perform 2D 3 × 3 convolutions

along three views of the T × H × W volumetric data, i.e.

H-W , T -H and T -W separately. Notably, the parameters

of the three-view convolutions are shared, which keeps the

number of parameters the same as single-view 2D convo-

lution. The three resulting feature maps are subsequently

aggregated with weighted summation. The weights are also

learned during training in an end-to-end manner.

Let x denote the input feature maps of size T × H ×

W × C1 where C1 is the number of input channels. The

three sets of output feature maps from different views are

computed by:

xhw = x⊗w1×3×3,

xtw = x⊗w3×1×3,

xth = x⊗w3×3×1,

(1)

where ⊗ denotes 3D convolution, w is convolution filters

of size 3 × 3 shared among the three views. To apply w to

frames of different views, we insert an additional dimension

of size 1 at different indices. The resulting variants of w, i.e.

w1×3×3, w3×1×3 and w3×3×1 learn features of the H-W ,

T -W and T -H views respectively. Then, the three sets of

feature maps are aggregated with weighted summation:

y =
[

αhw, αtw, αth

]





xhw

xtw

xth



 , (2)

where α = [αhw, αtw, αth] are the coefficients of size

C2 × 3. C2 is the number of output channels and 3 denotes

three views. To avoid magnitude explosion of the resulting

responses from multiple views, α is normalized with the

Softmax function along each row.

1 × 3 × 3 3 × 1 × 3 3 × 3 × 1T × 𝐻 ×𝑊 × 𝐶1

𝜶

𝒙ℎ𝑤 𝒙𝑡𝑤 𝒙𝑡ℎ
𝒙ℎ𝑤, 𝒙𝑡𝑤, 𝒙𝑡ℎ 𝑇

𝒚

𝒙

×
T × 𝐻 ×𝑊 × 𝐶2

𝐶2 × 3 model parameters

Share weight

Softmax

Figure 4. Architecture of CoST(a), where the coefficients α are

part of the model parameters.

1 × 3 × 3 3 × 1 × 3 3 × 3 × 1T × 𝐻 ×𝑊 × 𝐶1

𝑝𝑜𝑜𝑙𝑖𝑛𝑔 1 × 1 × 1 × 𝐶2𝑝𝑜𝑜𝑙𝑖𝑛𝑔 𝑝𝑜𝑜𝑙𝑖𝑛𝑔
Squeeze & Concat

𝐶2 × 3
1 × 1 × 11 × 1 × 1 1 × 1 × 1

FC & Softmax

𝜶

𝒙ℎ𝑤 𝒙𝑡𝑤 𝒙𝑡ℎ
𝒙ℎ𝑤, 𝒙𝑡𝑤, 𝒙𝑡ℎ 𝑇

𝒚

𝒙
T × 𝐻 ×𝑊 × 𝐶2

1 × 1 × 1 × 𝐶2

𝐶2 × 3

Share weight

×

Figure 5. Architecture of CoST(b), where the coefficients α are

predicted by the network.

To learn the coefficients α, we propose two architec-

tures, named CoST(a) and CoST(b).

CoST(a). As illustrated in Figure 4, the coefficients α are

considered as part of the model parameters, which can be

updated with back-propagation during training. During in-

ference, the coefficients are fixed and the same set of coef-

ficients is applied to each video clip.

CoST(b). The coefficients α are predicted by the network

based on the feature maps by which α will be multiplied.

This design is inspired by the recent self-attention [26]

mechanism for machine translation. In this case, the co-

efficients for each sample depend on the sample itself. It

can be formulated as:

[

αhw, αtw, αth

]

= f(
[

xhw,xtw,xth

]

) (3)

The architecture of CoST(b) is illustrated in Figure 5. The

computational block inside the dashed lines represents the

function f in Equation (3). Specifically, for each view, we

first reduce the feature map from a size of T ×H×W ×C2

to 1 × 1 × 1 × C2 using global max pooling along dimen-

sion T , H and W . Then, a 1× 1× 1 convolution is applied

on the pooled features, whose weights are also shared by all
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Figure 6. Connection of CoST to C2D (a) and C3D (b).

three views. This convolution maps features of dimension

C2 back to C2, which captures the contextual information

among channels. After that, the three sets of features are

concatenated and fed into a fully connected (FC) layer. As

opposed to the 1 × 1 × 1 convolution, this FC layer is ap-

plied to each row of the C2 × 3 matrix, which captures the

contextual information among different views. Finally, we

normalize the output by the Softmax function.

The residual unit of the proposed CoST is shown in Fig-

ure 3(d). We replace the middle 3× 3 convolution with our

CoST operation, either CoST(a) or CoST(b), and leave the

preceding 1× 1 convolution unchanged. Based on the C2D

configuration of ResNets, we build CoST by replacing the

C2D unit with the proposed CoST unit for every two resid-

ual units, which is consistent to C3D.

3.4. Connection to C2D and C3D

The proposed CoST is closely related to C2D and C3D.

As shown in Figure 6(a), if the coefficients of the T -W and

T -W views were set to zero, CoST degenerates to C2D.

Hence, CoST is a strict generalization of C2D.

To compare CoST with C3D, let us exclude the dimen-

sions of input and output channels for simplicity. 3D con-

volution with a kernel size of k × k × k contains k3 pa-

rameters and covers a cubic receptive field of k3 voxels.

While the proposed CoST operation covers an irregular re-

ceptive field of 3k2 − 3k + 1 voxels. Figure 6(b) shows a

comparison of receptive field when k is equal to 3. C3D

covers the whole 3 × 3 × 3 cube, while CoST covers the

shaded region excluding the 8 corner voxels. If the con-

volution kernels of the three views are learned separately

without weight sharing, CoST is nearly equivalent to C3D

except that the 8 corner parameters of the cubic kernel are

fixed to zero and not learnable. When weight sharing is

enabled in CoST, although the receptive field contains 19

voxels in total, the corresponding 19 parameters can be de-

rived from the 9 learnable parameters shared among differ-

ent views. Therefore, CoST can be considered as a special

case of C3D, where similar receptive field is covered with

significantly reduced number of parameters.

In terms of computational cost, CoST is also superior

over C3D. The number of multiply-adds involved in the

CoST operation is approximately 3k2 (excluding input and

output channels), while that of C3D is k3. Computational

cost of CoST increases quadratically with the kernel size

rather than cubically. This characteristic makes the employ-

ment of large kernel possible, which has not been explored

yet on video data. Moreover, for the CoST(a) variant, some

voxels in the receptive field are duplicately computed by

multiple views in our current implementation. With an op-

timized implementation, the number of multiply-adds can

be reduced from 3k2 to 3k2 − 3k + 1, e.g. from 27 to 19

(save ∼ 30%) for the case of k = 3.

4. Experiments

To validate the effectiveness of the proposed CoST for

the task of action recognition in videos, we perform ex-

tensively experiments on two of the largest benchmark

datasets, i.e. Moments in Time [17] and Kinetics [2]. Ac-

curacies are measured on the validation set of both datasets

in all experiments.

4.1. Datasets

Moments in Time. The Moments in Time dataset contains

802245 training videos and 39900 validation videos from

339 action categories. The videos are trimmed such that the

duration is about 3 seconds.

Kinetics. The Kinetics dataset contains 236763 training

videos and 19095 validation videos, which are annotated

as one of 400 human action categories. Note that the full

Kinetics dataset contains a bit more samples. The numbers

only cover the samples we are able to download. The dura-

tion of the videos is about 10 seconds.

4.2. Implementation Details

During training, we first sample 64 continuous frames

from a video and then sub-sample one frame for every 8

frames, resulting in 8 frames in total. Next, image patches

with a size of 224× 224 pixels are randomly cropped from

a scaled video whose shorter side is randomly sampled be-

tween 256 and 320 pixels. Hence, the network input is of

dimension 8 × 224 × 224. In all experiments, our models

are initialized from ImageNet [20] pre-trained 2D models.

We train the models on an 8-GPU machine. To speedup

training, the 8 GPUs are grouped into two workers and the

weights are updated asynchronously between the two work-

ers. Each GPU process a mini-batch of 8 video clips. That

is, for each worker 4 GPUs are employed, resulting in a total

mini-batch size of 32. We train the models for 600k itera-

tions using the SGD optimizer with momentum. We use a

momentum of 0.9 and a weight decay of 0.0001. The learn-

ing rate is initialized to 0.005 and reduced by a factor of 10

at 300k and 450k iterations respectively.
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Dataset Method
Accuracy (%)

Top-1 Top-5 Average

Moments
CoST(a) 29.3 55.8 42.6

CoST(b) 30.1 57.2 43.7

Kinetics
CoST(a) 73.6 90.8 82.2

CoST(b) 74.1 91.2 82.7

Table 2. Comparison of CoST(a) and CoST(b) for coefficient

learning. The backbone network is ResNet-50.

During inference, following [30] we perform spatially

fully convolutional inference on videos whose shorter side

is rescaled to 256 pixels. While for the temporal domain, we

sample 10 clips evenly from a full-length video and com-

pute their classification scores individually. The final pre-

diction is the averaged score of all clips.

4.3. Ablation Studies

To validate the effectiveness of individual components

of our approach, we perform ablation studies on coeffi-

cient learning, impact of collaborative spatiotemporal fea-

ture learning and improvements of CoST over C2D and

C3D.

4.3.1 Coefficient Learning

We first compare the performance of the two CoST vari-

ants for coefficient learning of different views. As shown

in Table 2, on both of the Moments in Time and Kinetics

datasets, coefficients predicted by the network (CoST(b))

outperform those learned as model parameters (CoST(a)).

This result verifies the effectiveness of the self-attention

mechanism introduced in our model. It also reveals that

for different video clips, the importance of spatial and tem-

poral features varies. Henceforth, the CoST(b) architecture

is adopted in the following experiments.

4.3.2 Impact of Collaborative Feature Learning

To validate the effectiveness of collaborative spatiotemporal

feature learning through weight sharing, we compare the re-

sults of the CoST(b) network with and without weight shar-

ing. When weight sharing is disabled, the parameters of the

three convolutional layers in Figure 5 are learned indepen-

dently such that spatiotemporal features are learned in a de-

coupled manner. As listed in Table 3, with weight sharing

among different views, accuracies get improved by about

1% on both datasets. This result shows that our analysis on

the characteristics of the three spatial and temporal views in

Section 1 is reasonable and their collaborative feature learn-

ing is beneficial.

Dataset Share Weight
Accuracy (%)

Top-1 Top-5 Average

Moments
29.0 56.1 42.5

X 30.1 57.2 43.7

Kinetics
73.2 90.2 81.7

X 74.1 91.2 82.7

Table 3. Performance improvements brought by weight sharing us-

ing ResNet-50 as the backbone.

Method
Accuracy (%)

Top-1 Top-5 Average

ResNet-50

C2D 27.9 54.6 41.3

C3D 29.0 55.3 42.2

CoST 30.1 57.2 43.7

ResNet-101

C2D 30.0 56.8 43.4

C3D 30.6 57.7 44.2

CoST 31.5 57.9 44.7

Table 4. Performance comparison of C2D, C3D and CoST on the

validation set of Moments in Time.

Method
Accuracy (%)

Top-1 Top-5 Average

ResNet-50

C2D 71.5 89.8 80.7

C3D 73.3 90.4 81.9

CoST 74.1 91.2 82.7

ResNet-101

C2D 72.9 89.8 81.4

C3D 74.5 91.1 82.8

CoST 75.5 92.0 83.8

Table 5. Performance comparison of C2D, C3D and CoST on the

validation set of Kinetics.

4.3.3 Improvements over C2D and C3D

To compare CoST with the C2D and C3D baselines,

we train all the three networks using the same protocol.

Their performances on the Moments in Time and Kinet-

ics datasets are listed in Table 4 and Table 5 respectively.

We can see that C3D is far better than C2D, while CoST

consistently outperforms C3D by about 1%, which clearly

demonstrates the superiority of CoST. Note that the perfor-

mance of C3D with ResNet-50 backbone is on par with the

proposed CoST without weight sharing (see Table 3), which

validates the connection between CoST and C3D described

in Section 3.4.

4.4. Comparisons with the Stateofthearts

Besides the 8-frame model, we also train a model with a

higher temporal resolution, i.e. 32 frames. On Moments in

time, the 32 input frames are sampled from 64 continuous

frames mentioned earlier. While on Kinetics, we sample 32
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Method Network Pre-training Input Size
Accuracy (%)

Top-1 Top-5

C3D [7] ResNet-101 None 16×112×112 62.8 83.9

C3D [7] ResNeXt-101 None 16×112×112 65.1 85.7

ARTNet [29] ResNet-18 None 16×112×112 69.2 88.3

STC [3] ResNeXt-101 None 32×112×112 68.7 88.5

I3D [2] Inception ImageNet 64×224×224 71.1∗ 89.3∗

R(2+1)D [25] Custom None 8×112×112 72.0 90.0

R(2+1)D [25] Custom Sports-1M 8×112×112 74.3 91.4

S3D-G [32] Inception ImageNet 64×224×224 74.7 93.4

NL I3D [30] ResNet-101 ImageNet 32×224×224 76.0 92.1

NL I3D [30] ResNet-101 ImageNet 128×224×224 77.7 93.3

CoST ResNet-101 ImageNet 8×224×224 75.5 92.0

CoST ResNet-101 ImageNet 32×224×224 77.5 93.2

Table 6. Comparison with the state-of-the-arts on the validation set of Kinetics. For fair comparison, only results based on the RGB

modality are listed. All the numbers are single-model results. ∗ indicates results on the test set.

Method
Accuracy (%)

Top-1 Top-5

ResNet-50-Scratch [17] 23.7 46.7

ResNet-50-ImageNet [17] 27.2 51.7

SoundNet-Audio [17] 7.6 18.0

TSN-Flow [17] 15.7 34.7

RGB+Flow+Audio [17] 30.4 55.9

CoST (ResNet-50, 8 frames) 30.1 57.2

CoST (ResNet-101, 8 frames) 31.5 57.9

CoST (ResNet-101, 32 frames) 32.4 60.0

Table 7. Comparison with the state-of-the-arts on the validation set

of Moments in Time. Methods marked in gray exploit additional

modalities, e.g. audio and optical flow.

frames from a clip of 128 frames considering that videos

in this dataset is longer than those in Moments in Time.

The 32-frame model is fine-tuned from the 8-frame model,

where the parameters of BN layers [10] are frozen.

On the Moments in Time dataset, Table 7 shows a com-

parison of the proposed CoST with existing methods. CoST

improves the ResNet-50 C2D baseline reported in [17] by

2.9% and 5.5% in terms of top-1 and top-5 accuracies re-

spectively. While ResNet-101 based CoST with 32 input

frames achieves 32.4% top-1 accuracy and 60.0% top-5 ac-

curacy. Notably, based on the RGB modality only, our

model outperforms the ensemble result of multiple modal-

ities (i.e. RGB, optical flow and audio) in [17] by a large

margin. With an ensemble of multiple models and modal-

ities, we achieve 52.91% average accuracy on the test set,

which won the 1st place in the Moments in Time Challenge

2018.

On the Kinetics dataset, CoST achieves state-of-the-art

performance. As shown in Table 6, CoST has a clear

advantage over C3D [7] and its variants, e.g. I3D [2],

R(2+1)D [25] and S3D-G [32]. Compared with NL

I3D [30], which is a strong baseline, CoST is also superior

at various temporal resolutions.

4.5. Importance of Different Views

By investigating the magnitude of the learned coeffi-

cients, we are able to quantify the contribution of different

views. Specifically, for each CoST layer, the mean coeffi-

cient of each view is computed on the validation set. The

mean coefficient of the H-W view measures the importance

of appearance feature, while those of the T -W and T -H
views measure the importance of temporal motion cues.

The overall importance of each view can be measured

by averaging the mean coefficients of all CoST layers. On

Moments in Time, the mean coefficients of the H-W , T -W
and T -H views are 0.67, 0.14 and 0.19 respectively. While

on Kinetics they are 0.77, 0.08 and 0.15. Hence, spatial

feature plays a major role on both datasets. And the Mo-

ments in Time dataset depends more on temporal feature to

discriminate different actions than Kinetics.

Figure 8 shows the coefficient distribution among the

three views in all CoST layers of the ResNet-50 based

CoST. From shallow layer to deep layer, a clear trend is

observed on both datasets. That is, the contribution of spa-

tial feature declines, while that of temporal feature rises. In

other words, the closer to top of a network, the more impor-

tant the temporal feature is, suggesting that the model tends

to learn temporal feature based on high-level spatial feature.

This also verifies the conclusion in [32] that temporal rep-

resentation learning on high-level semantic features is more

useful than low-level features.

Furthermore, we analyze the importance of spatial and

temporal features for each action category on the Moments
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interviewing

handcuffing

buying

Figure 7. Left: actions for which temporal feature matters. Right: actions for which temporal feature is less important.
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Figure 8. Distribution of the mean coefficient among the three

views in CoST layers of various depths.

in Time dataset. We sum up the mean coefficients of tem-

poral related views and sort all categories by it. As shown

in Figure 7, for actions such as erupting, storming, over-

flowing, combusting and landing, temporal motion infor-

mation is very important. On the contrary, for actions such

as baptizing, handcuffing / arresting, interviewing, buying

and paying, temporal feature is less important. These ac-

tions can either be easily recognized by appearance, or the

temporal evolutions are not very helpful for classification.

For example, for buying and interviewing various motion

patterns exist within the same category and they may be

easily confused between different actions, which makes the

motion cues not discriminative.

In summary, with the proposed CoST, we are able to

quantitatively analyze the importance of spatial and tempo-

ral features. In particular, we observe that the bottom layers

of the network focus more on spatial feature learning, while

the top layers attend more to temporal feature aggregation.

Besides, some actions are easier to recognize based on the

underlying objects and their interactions (e.g. geometric re-

lation) rather than motion cues. This indicates that the cur-

rent spatiotemporal feature learning approaches may not be

optimal, and we expect more efforts on this problem.

5. Discussion

For video analysis, how to encode spatiotemporal fea-

tures effectively and efficiently is still an open question. In

this work, we propose to use weight-shared 2D convolutions

for simultaneous spatial and temporal feature encoding. Al-

though we empirically verify that weight sharing brings per-

formance gain, one big question behind is whether the tem-

poral dimension T can be cast as a normal spatial dimension

(like depth) or not. Intuitively, spatial appearance feature

and temporal motion cue belong to two different modalities

of information. What motivates us to learn them collabo-

ratively is the visualization of different views as shown in

Figure 1. Interestingly, our positive results indicate that at

least to some extent, they share similar characteristics and

can be jointly learned using a single network with identi-

cal network architecture and shared convolution kernels. In

physics, according to Minkowski spacetime [16], the three-

dimensional space and one-dimensional time can be unified

as a four-dimensional continuum. Our finding might be ex-

plained and supported by the spacetime model in the context

of feature representation learning.

6. Conclusion

Feature learning from 3D volumetric data is the ma-

jor challenge for action recognition in videos. In this pa-

per, we propose a novel feature learning operation, which

learns spatiotemporal features collaboratively from multi-

ple views. It can be easily used as a drop-in replacement for

C2D and C3D. Experiments on large-scale benchmarks val-

idate the superiority of the proposed architecture over exist-

ing methods. Based on the learned coefficients of different

views, we are able to take a peek at the individual contri-

bution of spatial and temporal features for classification. A

systematic analysis indicates some promising directions on

the design of algorithm, which we will leave as future work.
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