
Compressing Convolutional Neural Networks via

Factorized Convolutional Filters

Tuanhui Li1 Baoyuan Wu2∗ Yujiu Yang1∗ Yanbo Fan2 Yong Zhang2 Wei Liu2

1Graduate School at Shenzhen, Tsinghua University 2Tencent AI Lab

lth17@mails.tsinghua.edu.cn, wubaoyuan1987@gmail.com,yang.yujiu@sz.tsinghua.edu.cn,

{fanyanbo0124,zhangyong201303}@gmail.com, wl2223@columbia.edu

Abstract

This work studies the model compression for deep con-

volutional neural networks (CNNs) via filter pruning. The

workflow of a traditional pruning consists of three sequen-

tial stages: pre-training the original model, selecting the

pre-trained filters via ranking according to a manually de-

signed criterion (e.g., the norm of filters), and learning the

remained filters via fine-tuning. Most existing works fol-

low this pipeline and focus on designing different ranking

criteria for filter selection. However, it is difficult to con-

trol the performance due to the separation of filter selection

and filter learning. In this work, we propose to conduct fil-

ter selection and filter learning simultaneously, in a unified

model. To this end, we define a factorized convolutional

filter (FCF), consisting of a standard real-valued convolu-

tional filter and a binary scalar, as well as a dot-product op-

erator between them. We train a CNN model with factorized

convolutional filters (CNN-FCF) by updating the standard

filter using back-propagation, while updating the binary

scalar using the alternating direction method of multipli-

ers (ADMM) based optimization method. With this trained

CNN-FCF model, we only keep the standard filters corre-

sponding to the 1-valued scalars, while all other filters and

all binary scalars are discarded, to obtain a compact CNN

model. Extensive experiments on CIFAR-10 and ImageNet

demonstrate the superiority of the proposed method over

state-of-the-art filter pruning methods.

1. Introduction

Many popular deep convolutional neural networks have

emerged in recent years, e.g., VGGNet [32] and ResNet

[10], etc. These models show promising results on many

visual tasks, such as image classification [18, 36, 37, 39],

∗indicates corresponding authors. This work was done when Tuanhui

Li was an intern at Tencent AI Lab.

semantic segmentation [2, 26], object detection [6], object

tracking [22, 43] or visual reasoning [34, 42]. However,

the model sizes and computation complexities of these deep

models also grow exponentially. For example, ResNet-152

[10] contains about 60 million parameters and 11.3 billion

FLOPS, which precludes the application of these models

to mobile systems. A feasible approach to tackle this dif-

ficulty is model compression, whose goal is to reduce the

parameters while keeping the model performance as much

as possible.

Many seminal works have been developed in the liter-

ature of model compression for deep convolutional neural

networks. They can be generally partitioned to four cate-

gories, including pruning [8, 12, 21, 23, 27], low-rank fac-

torization [16, 19, 45], weight quantification [24, 25] and

compact network design [13, 28], respectively. In this work,

we focus on the pruning approach, and we refer the readers

to [4] for more details about other categories. Specifically,

we focus on the filter-level pruning (filter pruning), which

prunes the output channel of a filter tensor. A typical work-

flow of the filter pruning is demonstrated in Fig. 1 (top). It

consists of three sequential stages, including the training of

the original model, pruning filters according to a manually

designed ranking criterion, and fine-tuning the model with

remained filters. Many existing works focused on design-

ing different ranking criteria. However, most of these crite-

ria depend on the weights values themselves or the results

(e.g., the classification accuracy) of the pre-trained original

model. A typical criterion is the assumption that the filters

with small ’weight’ norms have small contributions to the

model, thus they can be pruned [21]. However, to the best of

our knowledge, we have never found a rigorous verification

of this assumption. What is more important, the manually

designed ranking criterion only depends on the pre-trained

original model, rather than the followed fine-tuning process

of the pruned model. The efficacy of the ranking criterion

3977

𝐖1𝑙𝐖1𝑙𝐖1𝑙
𝐖1𝑙

𝑣𝐶𝑙𝑙
⨀

𝐯𝑙

0.236

1.425

0.395

𝑣1𝑙
Initial convolutional filters Optimized convolutional filters

Optimized factorized convolutional filters

0.962

𝑣2𝑙𝑣3𝑙

Train

൝ 𝐯𝑙∈ 0,1 𝐶𝑙𝟏⊤𝐯𝑙 = 𝑘𝑙

score

Rank Prune

Fine-tune

Fine-tuned convolutional filters

…

Joint train Prune

Initial factorized convolutional filters Pruned convolutional filters

𝑣𝐶𝑙𝑙 = 1

𝑣1𝑙 = 1𝑣2𝑙 = 0𝑣3𝑙 = 0

𝐖𝑙 𝐖𝑙
𝐖2𝑙𝐖3𝑙
𝐖𝐶𝑙𝑙

…

𝐖1𝑙 𝐖1𝑙𝐖1𝑙𝐖1𝑙
𝐖1𝑙

𝐖𝑙
𝐖2𝑙𝐖3𝑙
𝐖𝐶𝑙𝑙

…

𝐖1𝑙 𝐖1𝑙

𝐖1𝑙

𝐖𝑙
𝐖2𝑙𝐖3𝑙
𝐖𝐶𝑙𝑙

…

𝐖2𝑙

𝐖𝐶𝑙𝑙
…

𝐖1𝑙𝐖1𝑙𝐖1𝑙
𝐖1𝑙

𝐖𝑙
𝐖2𝑙𝐖3𝑙
𝐖𝐶𝑙𝑙

…

𝐖1𝑙 ⨀
𝐯𝑙

…

𝐖1𝑙𝐖2𝑙𝐖3𝑙
𝐖1𝑙

𝐖𝑙

𝐖𝐶𝑙𝑙

…

𝐖1𝑙
𝐖𝑙

𝐖𝐶𝑙𝑙

𝐖1𝑙

…

Figure 1. Overview of the workflow of filter pruning on layer l (1 ≤ l ≤ L), where the dotted green cubes indicate the pruned filters.

(Top): Traditional pruning consists of three sequential stages: pre-training, selecting filters according to a ranking criterion, and fine-tuning.

(Bottom): Our method conducts the filter learning and filter selection jointly, through training factorized convolutional filters.

can be only measured according to the fine-tuning result. It

may take many iterations of pruning and fine-tuning to find

a good ranking criterion.

In this work, we propose to conduct filter learning and

filter selection jointly, in a unified optimization framework.

To this end, we design a novel type of filter, dubbed fac-

torized convolutional filter (FCF). As shown in Fig. 1 (bot-

tom), a FCF consists of a standard convolutional filter Wl
i

(l is the layer index and i is the filter index), and a bi-

nary scalar vli ∈ {0, 1}, as well as a dot-product operator

between them. After training the CNN model with fac-

torized convolutional filters (CNN-FCF), the standard fil-

ters corresponding to 0-valued binary scalars and all binary

scalars in other FCFs are directly abandoned, to construct

a compact CNN model (see the green filters in Fig. 1 (bot-

tom)). However, due to the binarity of vli, the standard back-

propagation with gradient descent algorithm cannot be di-

rectly adopted to train CNN-FCF. To tackle this difficulty,

inspired by the general integer programming framework,

i.e., ℓp-Box ADMM [38], the binary vector vl (including

all binary scalars in layer l) is equivalently reformulated as

a continuous vector, being subjected to the intersected con-

straint space between the box constraint and the ℓ2-sphere

constraint. Consequently, we propose a novel training al-

gorithm for CNN-FCF by inserting the alternating direction

method of multipliers (ADMM) [3] algorithm into the back-

propagation framework. Specifically, Wl is updated by the

standard gradient descent algorithm, while vl is updated by

the ADMM algorithm. We compress the popular ResNet

models with different layers on two benchmark datasets, in-

cluding CIFAR-10 [17] and ImageNet LSVRC-2012 [31]

(ImageNet for clarity). Experimental results verify the com-

petitive performance of the proposed method, compared to

the state-of-the-art filter pruning methods.

The main contributions of this work are three-fold. (1)

We propose to conduct filter learning and filter selection

jointly in a unified optimization framework, through train-

ing CNNs with factorized convolutional filters. (2) We pro-

pose a novel algorithm to train CNN-FCF by inserting the

ADMM algorithm into the standard gradient-based back-

propagation framework. (3) Extensive experiments on pop-

ular ResNet models and benchmark datasets demonstrate

the efficacy of the proposed method.

2. Related Work

In this section, we briefly review the pruning-based com-

pressing approach, which can be generally partitioned to

two levels, including weight-level and filter-level pruning.

Weight-level pruning (weight pruning for clarity) is an

unstructured pruning method that prunes some entries in

each filter. It was firstly proposed in optimal brain dam-

age [20] and optimal brain surgeon [9], which pruned the

weights according to the second order derivatives of the loss

function. Recently, Han et al. [8] proposed to remove the

weights with small values below the threshold. Guo et al.

[7] proposed an interactive method, which is composed of

pruning and splicing. Zhang et al. [44] formulated the prun-

ing problem into a non-convex optimization problem and

combined the weights with cardinality constraints. How-

ever, weight pruning can only produce a sparse network.

Consequently, the memory and computational cost of the

compressed model are not significantly reduced.

Filter-level pruning (filter pruning for clarity) is a struc-

tured pruning method that prunes the whole channel of fil-

ters. Thus, it can reduce more parameters and computation

costs than the weight pruning method. (1) Some works cal-

culate the importance score for each filter according to a

manually designed evaluation criterion. A commonly used

metric is the norm of filters [11, 21], based on the assump-

3978

tion that filters with small norms do not contribute much

to the model performance. Similar to filter norm, Hu et al.

[14] proposed to rank the filters with the average percentage

of zeros of the corresponding output feature maps. Yu et al.

[41] proposed to obtain the importance score of other layers

via back-propagating the filter scores of the final response

layer. (2) Regularization constraints are also usually used in

many studies for pruning. Some studies introduced group

lasso with filters to directly derive sparse filters [1, 35].

Liu et al. [40] and Ye et al. [23] imposed ℓ1 constraint

to the scaling factors of BN layers, and the magnitudes of

these scaling factors are used as the filter scores. Huang

et al. [15] introduced the scaling factors with a ℓ1 regular-

ization for the selection of different micro-structures such

as residual blocks. (3) Some works proposed to minimize

the reconstruction error between the original model and the

pruned model. He et al. [12] formulated the reconstruc-

tion error using lasso regression to retain the representative

filters. Luo et al. [27] proposed to minimize the reconstruc-

tion error based on greedy search. Inspired by optimal brain

damage, Dong et al. [5] performed Taylor expansion on the

reconstruction error function, and determined the parame-

ter importance according to the second order derivatives.

Zhuang et al. [46] proposed to seek discriminative chan-

nels by minimizing both reconstruction error loss and addi-

tional loss. The main commonality of above related works

is that the filter selection is somewhat separated with filter

learning. In contrast, the proposed method conducts filter

selection and filter learning simultaneously.

3. Model Compression

3.1. Convolutional Filter

Given training dataset consists of N samples

{xi,yi}
N
i=1, with xi being input feature and yi being

ground-truth label of xi. Considering a CNN model with L

layers, we use Wl ∈ R
Cl

×N l
×W l

×Hl

to represent the fil-

ters of the l-th convolutional layer, where (Cl, N l,W l, H l)
are the number of output channels, the number of input

channels, the width of kernel and the height of kernel,

respectively. The convolutional operation of layer l is

formulated as

Rl
out = Conv(Rl

in,W
l), (1)

where Conv denotes the convolutional operation. Rl
in ∈

R
N×N l

×W l
in×Hl

in and Rl
out ∈ R

N×Cl
×W l

out×Hl
out indicate

the input and output responses of layer l, respectively.

3.2. Factorized Convolutional Filter

To facilitate the filter selection, we propose a novel filter,

dubbed factorized convolutional filter (FCF), by associating

a binary scalar vli ∈ {0, 1} to each filter Wl
i ∈ R

N l
×W l

×Hl

(l is layer index and i is filter index), through a dot-product

operator. It is formulated as follows:

Rl
out = Conv(Rl

in,W
l ⊙ vl), (2)

where vl = [. . . ; vli; . . .] ∈ {0, 1}
Cl

and Wl ⊙ vl =

[. . . ;Wl
i⊙ vl

i; . . .] ∈ R
Cl

×N l
×W l

×Hl

, with Wl
i⊙ vl

i indi-

cating that vli is multiplied to every element in Wl
i.

3.3. Training CNNs with Factorized Convolutional
Filters

Joint training. In this section, we present how to con-

duct filter learning and filter selection jointly, based on

the factorized convolutional filters. Let W = {Wl}Ll=1
,

v = {vl}Ll=1
, we denote f(xi;W,v) as the output proba-

bility of a CNN model with factorized convolutional filters

(CNN-FCF). Then, the objective function of training CNN-

FCF is formulated as follows:

argmin
W,v

1

N

N
∑

i=1

ℓ
(

yi, f(xi;W,v)
)

s.t. 1⊤vl = kl, vl ∈ {0, 1}
Cl

, ∀ l ∈ {1, 2, ..., L},

(3)

where kl ∈ {1, 2, . . . , Cl} denotes the number of remained

filters in layer l after pruning. The loss function ℓ can be

specified by any loss function that could be used to train

standard CNNs. In our experiments for image classification,

we adopt the cross entropy loss. Due to the binary constraint

on v, Problem (3) cannot be directly optimized by contin-

uous optimization algorithm (e.g., the gradient-based back-

propagation algorithm). Thus, we propose a novel continu-

ous optimization algorithm, dubbed back-propagation with

ADMM, as detailed in Section 4.

Filter pruning. Given a trained CNN-FCF model through

optimizing Problem (3), one can obtain 1) a compact CNN

model by pruning the filters Wl
i corresponding to zero-

valued vli in each layer (see Fig. 1 (bottom)), or 2) a sparse

CNN model by setting zeros to the filters Wl
i correspond-

ing to the zero-valued vli. The choice of this two types of

models depends on the model architecture and the pruning

strategy, which will be detailed in Section 5.2.

4. Optimization

4.1. Continuous Reformulation

To tackle the binary constraint in Problem (3), we firstly

transform the binary constraint to continuous constraints us-

ing the following technique proposed in [38], as follows:

vl ∈ {0, 1}
Cl

⇔ vl ∈ Sb ∩ vl ∈ Sp, (4)

where Sb = [0, 1]
Cl

denotes a box constraint, and Sp =
{

vl : ‖vl − 1

2
‖22 = Cl

4

}

indicates a ℓ2-sphere constraint.

Furthermore, following the ℓp-Box ADMM algorithm [38],

we introduce two additional variables to split the continuous

constraints, so that they can be satisfied alternatively. Con-

sequently, Problem (3) can be equivalently reformulated as

3979

the following continuous problem:

argmin
W,v,z1,z2

1

N

N
∑

i=1

ℓ
(

yi, f(xi;W,v)
)

(5)

s.t. vl = zl1, vl = zl2, 1⊤zl1 = kl,

zl1 ∈ Sb, zl2 ∈ Sp, ∀ l ∈ {1, 2, ..., L},

where z1 = {zl1}
L
l=1

and z2 = {zl2}
L
l=1

. For clarity, here-

after we shorten 1

N

∑N
i=1

ℓ
(

yi, f(xi;W,v)
)

as L(W,v).

4.2. Back­propagation with ADMM

Although Problem (5) is continuous, the back-

propagation algorithm with the standard gradient-based op-

timizer (e.g., stochastic gradient descent (SGD) [30]) can’t

be directly used to optimize the constrained problem. We

propose a new algorithm by inserting the ADMM algo-

rithm into the standard back-propagation training frame-

work. Specifically, considering layer l, the parameters are

updated by the following alternative steps:

• Given the fixed vl, the parameter Wl can be updated

using gradient-based optimizer (see Section 4.2.1);

• Given the fixed Wl, the variables vl, zl1, z
l
2 are up-

dated by the ADMM algorithm (see Section 4.2.2).

This algorithm is outlined in Algorithm 1. To facilitate the

following derivations of the proposed algorithm, we decom-

pose the output function f(xi;W,v) with respect to the

parameters of layer l, as follows:


















f(xi;W,v) = f1

(

Rl
out; {W

j}Lj=l+1, {v
j}Lj=l+1

)

,

Rl
out = Conv(Rl

in,W
l ⊙ vl),

Rl
in = f2

(

xi; {W
j}l−1

j=1
, {vj}l−1

j=1

)

,

(6)

where Rl
in and Rl

out denote the input and output response

of layer l, respectively.

4.2.1 Given vl, Solving Wl Using Gradient Descent

Wl can be updated using the standard gradient descent,

Wl = Wl − ηW
∂L(W,v)

∂Wl
, (7)

where ηW denotes the learning rate. Using the chain rule

and the decomposition in Eq. (6), we have














∂L(W,v)

∂Wl
=

∂L

∂f1
×

∂f1

∂Rl
out

×
∂Rl

out

Wl
,

∂Rl
out

Wl
=

∂Rl
out

∂Wl ⊙ vl
×

∂Wl ⊙ vl

∂Wl
=

∂Rl
out

∂Wl ⊙ vl
×Vl,

where Vl is expanded from vl, and has the same shape as

Wl. All the terms can be easily computed as did in training

standard CNNs.

Algorithm 1 Back-propagation with ADMM

Input: Training data {xi,yi}
N
i=1 and initial Wl,vl, ∀ l ∈

{1, 2, ..., L}.

Output: Ŵl.

1: while not converged do

2: for l = 1 to L do

3: Given vl, update Wl using gradient descent (see

Section 4.2.1);

4: Given Wl, update vl using ADMM (see Section

4.2.2).

5: end for

6: end while

7: if vl
i = 1 then

8: Ŵl
i = Wl

i (l is layer index and i is filter index).

9: end if

10: return Ŵl

4.2.2 Given Wl, Solving vl Using ADMM

With the fixed Wl and parameters of all other layers, Prob-

lem (5) with respect to vl, zl1, z
l
2 can be solved by the alter-

nating direction method of multipliers (ADMM) [3] algo-

rithm. Following the standard ADMM procedure, we firstly

present the augmented Lagrangian function, as follows:

L(Wl,vl, zl1, z
l
2,u

l
1,u

l
2) = L(W,v) (8)

+ h1(z
l
1) + h2(z

l
2) + (ul

1)
⊤(vl − zl1)

+ (ul
2)

⊤(vl − zl2) +
ρl

2

[

‖vl − zl1‖
2
2 + ‖v

l − zl2‖
2
2

]

,

where h1(z
l
1) = I(zl1 ∈ Sb ∩ {z

l
1 : 1⊤zl1 = kl}) and

h2(z
l
2) = I(zl2 ∈ Sp) are indicator functions. I(a) = 0

if a is true, otherwise I(a) = ∞. ul
1,u

l
2 ∈ R

Cl

are dual

variables, and ρl > 0 is a penalty parameter. Then, in the

following, we iteratively update (zl1, z
l
2,v

l) by minimizing

the Lagrangian during each training iteration, and update

(ul
1,u

l
2) by gradient ascent.

Update (zl1, z
l
2): They are updated by solving the following

sub-problems:

{

zl1 = argmin
zl
1
∈Sc

1

2
‖zl1‖

2
2 − (vl +

u
l
1

ρl)
⊤zl1,

zl2 = argmin
zl
1
∈Sp

1

2
‖zl2‖

2
2 − (vl +

u
l
2

ρl)
⊤zl2,

(9)

where Sc = Sb ∩ {z
l
1 : 1⊤zl1 = kl}. The first sub-problem

is a standard quadratic program (QP) problem, which can

be globally optimized by any off-the-shelf QP solver. In our

experiments, we adopt the OSQP solver [33]. The second

sub-problem can be globally optimized by projecting the

solution of the unconstrained problem onto the ℓ2-sphere

(i.e., Sp), as presented in [38].

Update vl: Due to the loss term L(W,v), the sub-problem

3980

with respect to vl doesn’t have a closed form solution. In-

stead, we adopt the gradient descent algorithm, as follows:

vl = vl − ηv
∂L(Wl,vl, zl1, z

l
2,u

l
1,u

l
2)

∂vl
, (10)

where,











































∂L

∂vl
=

∂L(W,v)

∂vl
+

∂C

∂vl
,

∂L(W,v)

∂vl
=

∂L

∂f1
×

∂f1

∂Rl
out

×
∂Rl

out

vl
,

∂Rl
out

vl
=

∂Rl
out

∂Wl ⊙ vl
×

∂Wl ⊙ vl

∂vl
=

∂Rl
out

∂Wl ⊙ vl
×Wl,

∂C

∂vl
= ul

1 + ul
2 + ρl(2vl − zl1 − zl2).

Update (ul
1,u

l
2):

{

ul
1 = ul

1 + ρl(vl − zl1),

ul
2 = ul

2 + ρl(vl − zl2).
(11)

Besides, to accelerate the convergence process, we increase

ρl by µl after each iteration, i.e., ρl ← µlρl, and set an

upper bound ρlmax to avoid early stopping. They will be

specified in experiments.

4.2.3 Complexity Analysis

Here we analyze the computational complexity

of layer l in Algorithm 1. The complexity of

the forward Rl
out = Conv(Rl

in,W
l ⊙ vl) (see

Eq. 2) is O(NClN lW lH lW l
inH

l
in). The complex-

ity of the backward
∂Rl

out

Wl (see Section 4.2.1) is

O(NClN lW l
outH

l
outW

lH l). They are same with the

complexities of forward and backward pass in standard

convolutional layer. The additional complexity is mainly

from the QP solver for zl1, which is O((Cl)3). Considering

the performance enhancement from the joint training, we

believe that such an extra training cost is acceptable.

5. Experiments

5.1. Experimental Settings

Dataset. Our experiments are conducted on two bench-

mark datasets, including CIFAR-10 [17] and ImageNet

[31]. CIFAR-10 has 50k training images and 10k validation

images, which is annotated by 10 classes. ImageNet con-

tains 1.28 million training images and 50k validation im-

ages of 1000 classes.

Models and compared methods. We evaluate the pro-

posed method on the ResNet [10] architecture with different

layers. On CIFAR-10, we compress ResNet-20, ResNet-

32, ResNet-56 and ResNet-110, comparing with state-of-

the-art methods, inlcuding SNLI [40], SFP [11], Pruning

[21], NISP [41]. On ImageNet, we compress ResNet-34

and ResNet-50 to compare with NISP [41], SFP [11], Prun-

ing [21], ThiNet [27], SSS [15] and Channel Pruning [12].

Evaluation metrics. We adopt three metrics to evaluate

the compressed model, including Params.↓%, FLOPs↓%,

and Acc.↓%. Params.↓% denotes the ratio of pruned pa-

rameters from the original model. FLOPs↓% represents the

ratio of decreased computational cost compared to the orig-

inal model. Acc.↓% indicates the reduced accuracy com-

pared to the accuracy of the orginal model. A better com-

pressing performance corresponds the higher Params.↓%
and FLOPs↓%, while the lower Acc.↓%.

Implementation details. In the first stage, the joint train-

ing process of W and v using the proposed algorithm of

back-propagation with ADMM for at most 30 epochs. The

learning rates of ηW (see Eq. 7) and ηv (see Eq. 10) are

initialized as 0.1, and they are divided by 10 after every 10

epochs. In terms of the hyper-parameters of the ADMM

part (see Section 4.2.2), we adopt same settings for all lay-

ers. Specifically, for l-th layer, vl is initialized as 1 to in-

clude all filters at the very beginning, (ul
1,u

l
2, z

l
1, z

l
2) are

initialized as 0. On ImageNet, ρl is initialized as 0.001;

µl, ρlmax and the batch-size are set as 1.001, 6 and 256, re-

spectively. On CIFAR-10, ρl is initialized as 0.01; µl, ρlmax

and the batch-size are set as 1.01, 6 and 128, respectively.

Besides the maximum number of epochs (i.e., 30), we also

set another stopping criterion, i.e., ‖vl − zl1‖
2
2 6 10−4 and

‖vl− zl2‖
2
2 6 10−4, ∀ l ∈ {1, 2, . . . , L}. Then, we binarize

vl to exactly 0 or 1. Theoretically speaking, if vl converges

exactly to 0 or 1, the trained CNN-FCF model will be the

output. However, due to the numerical reason, there are still

small changes on vl after binarization, i.e., Wl
i⊙|1−vli| or

Wl
i⊙|v

l
i−0|. In Section 5.5, we will study the influence of

these small differences. To alleviate the potential influence

of these small differences, we also conduct fine-tuning on

the compact CNN model in the second stage. In the fine-

tuning process, we adopt SGD with 0.9 momentum, and the

intial learning rate is 0.01. The weight decay factor is set as

0.0001. On ImageNet, we fine-tune for 90 epochs with the

batch-size 256, and the learning rate is divided by 10 every

30 epochs. On CIFAR-10, we fine-tune for 150 epochs with

the batch-size 128, and the learning rate is divided by 10

every 60 epochs. All experiments are implemented using

PyTorch [29].

5.2. Pruning Strategies and Pruning Ratios

Pruning strategies. In the experiments, we find that many

existing filter pruning works (e.g., [21], [41]) not only prune

the output channels of the parameter tensor, but also prune

the input channels. Compared to the pruning only on the

output channels, this strategy can remove useless parame-

ters and reduce unnecessary computations, leading to higher

Param.↓% and FLOPs↓%. In the following, we present

brief definitions of these two pruning strategies.

3981

• Single-channel pruning. As shown in Fig. 2 (top),

single-channel pruning only prunes the output chan-

nels in Wl and Wl+1.

• Pair-channel pruning. However, as shown in Fig. 2

(bottom), when a filter in Wl is pruned, the corre-

sponding response in Rl
out will be removed (see the

green dashed part of Rl
out in Fig. 2). Consequently,

the filter at the input channel of Wl+1 that corresponds

to this removed response should also be removed (see

the cube with green dashed lines in Fig. 2 (bottom)).

Remark. As most existing works change the model archi-

tecture via pruning the filters before fine-tuning, they have

to adopt the pair-channel pruning strategy to match the out-

put channel of Wl and the input channel of Wl+1. Be-

sides, if there is a short-cut connection (e.g., ResNet), then

the last layer in each block cannot be pruned in many exist-

ing works. Besides, as most entries in the pruned filters are

likely to be non-zero, the fine-tuning is always required to

recover the performance after pruning.

In contrast, as we don’t change the model architecture

when training CNN-FCF, all above limitations don’t exist

in our method. Our pruning method is much more flexi-

ble than existing works. The training process of CNN-FCF

can be seen as the single-channel pruning strategy. How-

ever, given a trained CNN-FCF model, we can also adopt

the pair-channel pruning strategy to set filters’ parameters

w.r.t. the pruned input channels to 0 for each layer. Given

a trained CNN-FCF model, we can obtain a compact or

sparse CNN models depending on the original model struc-

tures: 1) If there is no short-cut, we can directly prune the

filter Wl
i corresponding to zero-valued vli to obtain a com-

pact CNN model. One further point should be pointed out

is that if there is a batch-normalization (BN) layer (e.g.,

ResNet), then the mean and variance values of BN will be

modified after pruning, leading to the change of responses.

Thus, it also requires fine-tuning to resume the model per-

formance, as did in most existing works. 2) If there is a

short-cut and we also perform filter pruning (i.e., set a prun-

ing ratio using the cardinality constraint) for the last layer

in each block, then we cannot directly prune the filters as

did above. The reason is that the remained filters in two

layers connected by the short-cut cannot be aligned. In-

stead, we obtain a sparse CNN model, by setting zeros to

the convolutional filters corresponding to zero-valued vli.

When using this sparse CNN model for inference, we de-

sign a squeeze-convolution-expand procedure. Specifically,

for each sparse convolutional tensor, we firstly squeeze it

by removing zero-valued filters to obtain a small dense ten-

sor, then conduct convolution using this small tensor, finally

expand the obtained feature map to the original shape by

filling zeros. In practice, the computational costs of the

squeeze and expand steps are negligible compared to the

convolution step.

𝐖𝑙 𝐑𝑜𝑢𝑡𝑙 𝐖𝑙+1
𝐶𝑙

𝑁𝑙

𝐶𝑙 𝐶𝑙+1
𝑁𝑙+1(= 𝐶𝑙)

…

…

…

…

Figure 2. (Top): Single-channel pruning only prunes the output

channels of Wl and W
l+1. (Bottom): Pair-channel pruning not

only prunes the output channels of Wl+1, but also prunes its input

channels corresponding to the pruned output channels in W
l.

Model Method Params.↓% FLOPs↓% Ref.%1 Acc.↓%

SNLI [40] 37.22 –2 92.00 1.10

SFP [11] – 42.20 92.20 1.37

ResNet-20
CNN-FCF 42.75 41.60 92.20 1.07

SNLI [40] 67.83 – 92.00 3.20

CNN-FCF 68.44 68.91 92.20 2.67

SFP [11] – 41.50 92.63 0.55

ResNet-32 CNN-FCF 42.71 42.21 92.43 0.25

CNN-FCF 69.46 70.21 92.43 1.69

Pruning-A [21] 9.40 10.40 93.04 -0.06

Pruning-B [21] 13.70 27.60 93.04 -0.02

ResNet-56
SFP [11] – 41.10 93.59 -0.19

NISP [41] 42.60 43.61 – 0.03

CNN-FCF 43.09 42.78 93.14 -0.243

CNN-FCF 69.74 70.90 93.14 1.22

Pruning-A [21] 2.30 15.90 93.53 0.02

Pruning-B [21] 32.40 38.60 93.53 0.23

ResNet-110
SFP [11] – 40.80 93.68 -0.18

NISP [41] 43.25 43.78 – 0.18

CNN-FCF 43.19 43.08 93.58 -0.09

CNN-FCF 69.51 70.81 93.58 0.62

1 Ref. denotes the accuracy of the pre-trained original model.
2 – means that the metric value is not reported in the compared method.
3 Negative value means the pruned model accuracy is higher than the Ref.

Table 1. Comparison results on CIFAR-10.

Pruning ratios. We also notice that some existing works

(e.g., ThiNet [27] and NISP [41]) adopted the same pruning

ratio for all pruned convolutional layers, especially when

there is short-cut in the model (e.g., ResNet). However, we

believe that different layers of one CNN model have dif-

ferent contributions to the model performance. Thus, the

ratios of parameter redundancy of different layers should

be different. We will evaluate the influence of the same or

different pruning ratios in experiments (see Section 5.4).

5.3. Comparisons with State­of­the­art Methods

In this section, to compare with state-of-the-art meth-

ods (e.g., ThiNet [27] and NISP [41]), our method which

denoted as CNN-FCF also adopts the pair-channel pruning

strategy and same pruning ratios for all layers.

Results on CIFAR-10. As shown in Table 1, we compress

ResNet-20, ResNet-32, ResNet-56 and ResNet-110 with

two pruning ratios, including 43% and 69%. On ResNet-

20, at the pruning ratio of about 43%, our method gives

the smallest accuracy loss (i.e., 1.07% Acc.↓%). In con-

3982

Model Method Params.↓% FLOPs↓% Top1

Ref.%

Top1↓% Top5

Ref.%

Top5↓%

Pruning [21] 10.80 24.20 73.23 1.06 – –

NISP [41] 27.14 27.32 – 0.28 – -

CNN-FCF 27.05 26.83 73.30 -0.25 91.42 -0.08

ResNet-34

SFP [11] – 41.10 73.92 2.09 91.62 1.29

NISP [41] 43.68 43.76 – 0.92 – –

CNN-FCF 42.19 41.38 73.30 0.51 91.42 0.47

CNN-FCF 55.80 54.87 73.30 1.97 91.42 1.22

CNN-FCF 67.24 66.05 73.30 3.59 91.42 2.11

SSS [15] 27.06 31.08 76.12 1.94 92.86 0.95

NISP [41] 27.12 27.31 – 0.21 – –

CNN-FCF 26.70 29.24 76.15 -0.35 92.87 -0.26

ThiNet [27] 33.72 36.79 75.30 1.27 92.20 0.09

ResNet-50

SFP [11] – 41.80 76.15 1.54 92.87 0.81

NISP [41] 43.82 44.01 – 0.89 – –

Channel pruning [12] – 50.00 – – 92.20 1.40

CNN-FCF 42.41 46.05 76.15 0.47 92.87 0.19

CNN-FCF 52.52 57.10 76.15 1.60 92.87 0.69

CNN-FCF 61.01 66.17 76.15 2.62 92.87 1.37

Table 2. Comparison results on ImageNet. “Top1 Ref.%” denotes

the top1 accuracy of the original model.

trast, SNLI [40] gives the slightly higher accuracy loss (i.e.,

1.1% Acc.↓%), while the pruned ratio of parameters is less

than ours, i.e., 37.22 vs. 42.75 of Params.↓%. The pruned

ratio of parameters by SFP [11] is similar with ours, but its

accuracy loss is higher, i.e., 1.37 vs. 1.07 of Acc.↓%. At

the pruning ratio of about 69%, SNLI also performs worse

than our method, with the higher accuracy loss, i.e., 3.2
vs. 2.67 of Acc.↓%. On other ResNet models with dif-

ferent layers, our method also show very competitive per-

formance, compared to other methods. Moreover, when

comparing the compressing performance of our method on

ResNet models with different layers, an interesting obser-

vation is that the accuracy loss decreases along with the in-

creasing of the number of layers, at the same pruning ratio.

Specifically, at the pruning ratio of about 43%, the values

of Acc.↓% of our method are 1.07, 0.25,−0.24,−0.09, on

ResNet models with 20, 32, 56 and 110 layers, respectively;

at the pruning ratio of about 69%, the corresponding values

are 2.67, 1.69, 1.22, 0.62. It demonstrates that the ResNet

models with deeper layers have the larger redundancy on

the image classification task on CIFAR-10.

Results on ImageNet. As shown in Table 2, we compress

ResNet-34 and ResNet-50 with four pruning ratios, includ-

ing about 27%, 43%, 55%, 67%. We present the losses on

both top1 and top5 accuracy. On ResNet-34, at the prun-

ing ratio of about 27%, the Top1↓% value of our method is

−0.25, while that of NISP [41] is 0.28. At the pruning ratio

of about 43%, Param.↓% and FLOPs↓% of our method are

slightly lower than NISP, but our Top1↓% is also lower than

that of NISP, i.e., 0.51 vs. 0.92. At the pruning ratios of

about 55% and 67%, the values of Top1↓% of our method

are only 1.97 and 3.59, respectively; the values of Top5↓%
of our method are only 1.22 and 2.11, respectively. On

ResNet-50, our method also shows very competitive per-

formance, compared to state-of-the-art methods. Moreover,

similar to the results on CIFAR-10, we observe that there is

also a large proportion of redundant parameters in ResNet,

even for the image classification task on ImageNet.

5.4. Analysis of Pruning Strategies and Ratios

As demonstrated in Section 5.2, here we evaluate the in-

fluence if we allocate distinct pruning ratios for different

layers. Inspired by [21, 23], we try a simple allocation of

pruning ratios as follows: (1) Calculating the score of each

filter using the ℓ1-norm, i.e., sli = |Wl
i|1; (2) Storing all

filter scores sli to a vector s, and sorting s in an ascending

order; (3) Assume that the overall pruning ratio is p, then

the number of filters to be pruned is Np = p|s|. We set

the Np-th value of s as a global threshold, denoted as sp;

(4) Counting the number of sli exceeding sp in each layer,

which is recorded as kli (see Problem (3)). For comparison,

we also evaluate the identical ratio for all layers. After train-

ing the CNN-FCF with same or distinct pruning ratios, we

can choose single-channel or pair-channel pruning strategy

before fine-tuning. Thus, there are four settings, including

identical-ratio with single-channel, identical-ratio with pair-

channel, distinct-ratio with single-channel and distinct-ratio

with pair-channel, respectively. The results are shown in Ta-

ble 3. Given the same level of Params.↓% on same dataset

and model, the accuracy loss of distinct ratios is always

much lower than that of identical ratio. It demonstrates

that distinct ratios obtain much better compressing perfor-

mance. However, the FLOPs↓% value of distinct ratios is

always lower than that of identical ratio. The reason is that

in the setting of distinct ratios, the ratio allocation strategy

described above assigns more pruning ratios to the higher

layers (i.e., closer to the output layer), where the #FLOPs is

smaller than that of the lower layers, as the corresponding

feature maps become smaller. In the future, we will explore

other allocation strategies to achieve more reductions of

#FLOPs. In comparison between single-channel and pair-

channel pruning, given the same level of Params.↓%, the

same dataset and model, pair-channel pruning always gives

lower accuracy loss. The reason is that there are some use-

less parameters in the single-channel pruning. In summary,

the setting of training the CNN-FCF model with distinct

pruning ratio, and with the pair-channel pruning strategy

for fine-tuning, obtains the best compressing performance.

5.5. Analysis of Different Compressing Stages

In this section, we analyze the influence of different

stages of a compression procedure of the proposed method,

including the joint optimization of W and v in the CNN-

FCF model, pruning the filter corresponding to the 0-valued

vli, and fine-tuning. Besides, we also compare with two

baselines, including pruning the pre-trained CNN model

randomly (denoted as Random in Table 4 and Fig. 3), and

pruning using the ranking (i.e., ranking the filters in each

layer using the ℓ1 norm in descent order, and pruning the

lower-ranked filters with a pre-defined ratio. This setting

is denoted as Ranking in Table 4 and Fig. 3). We evalu-

ate above methods for compressing the ResNet-56 model

3983

(a) single-channel pruning

Dataset Model Params.↓% FLOPs↓% Top1↓% Top5↓%

ResNet56-I 43.18 43.15 0.42 –

CIFAR-10
ResNet56-D 42.66 32.02 -0.14 –

ResNet56-I 69.14 71.09 2.33 –

ResNet56-D 70.17 53.08 0.75 –

ResNet34-I 27.33 26.96 0.59 0.36

ImageNet
ResNet34-D 27.23 16.31 -0.03 0.16

ResNet34-I 42.42 42.13 2.25 1.40

ResNet34-D 43.71 22.88 0.87 0.50

(b) pair-channel pruning

Dataset Model Params.↓% FLOPs↓% Top1↓% Top5↓%

ResNet56-I 43.09 42.78 -0.24 –

CIFAR-10
ResNet56-D 41.97 33.99 -0.16 –

ResNet56-I 69.74 70.90 1.22 –

ResNet56-D 69.57 55.67 0.64 –

ResNet34-I 27.05 26.83 -0.25 -0.08

ImageNet
ResNet34-D 27.38 22.21 -0.28 -0.08

ResNet34-I 42.19 41.38 0.51 0.47

ResNet34-D 43.72 28.42 0.39 0.28

Table 3. Results of CNN-FCF with identical and distinct prun-

ing ratios. ResNet56-I denotes pruning ResNet-56 using identical

pruning ratio for each layer, while ResNet56-D indicates distinct

ratios for different layers.

Method Ref.%1 Optim.%2 Pruning%3 Fine-tuning%4

Random 93.14 – 10.00 91.14

Ranking 93.14 – 10.00 92.09

CNN-FCF-S 93.14 91.92 91.44 92.35

CNN-FCF-P 93.14 92.36 30.17 92.89

1 Ref.% indicates the accuracy of the original model.
2 Optim.% denotes the accuracy of the optimized CNN-FCF

model.
3 Pruning% denotes the accuracy after pruning.
4 Fine-tuning% denotes the accuracy after fine-tuning.

Table 4. Compressing Performance of ResNet-56 on CIFAR-10,

with the pruning ratio of 45% parameters.

on CIFAR-10, with the overall pruning ratio of 45% param-

eters and the identical pruning ratio of all layers. The joint

optimization of CNN-FCF takes at most 150 epochs. As

shown in Table 4, all methods starts from the same check-

point of ResNet-56, of which the accuracy is 93.14%. In

terms of the Random method, after pruning 45% parame-

ters from the pre-trained model, the accuracy drops to 10%;

after fine-tuning, the accuracy resumes to 91.14%. In terms

of the Ranking method, the accuracy also drops to 10% after

pruning, and it achieves 92.09% after fine-tuning. It demon-

strates that the fine-tuning is crucial for these two baselines,

and Ranking keeps better filters than Random. CNN-FCF-

S denotes our method with single-channel pruning. After

the joint optimization of W and v in CNN-FCF, the accu-

racy achieves 91.92%, which is very close to 93.14% of the

pre-trained CNN model. After the single-channel pruning,

there is a slight drop of accuracy, i.e., 0.48%. As analyzed

in Implementation details of Section 5.1, it is due to the nu-

merical difference between the converged v and the bina-

rized v. After fine-tuning, the accuracy resumes to 92.35%.

CNN-FCF-P denotes our method with pair-channel prun-

0 5 20 40 60 80 100 120 140
epoch

0.80
0.82
0.84
0.86
0.88
0.90
0.92

ac
cu
ra
cy

Random
Ranking
CNN-FCF-S
CNN-FCF-P

Figure 3. The accuracy curves of fine-tuning of four methods.

As the accuracies of all methods excluding CNN-FCF-S are small

in the first 5 epochs, we ignore them to highlight the accuracy

differences in final epochs. Please refer to Section 5.5 for details.

ing. After the joint optimization, the accuracy achieves

92.36%, which is higher than that of CNN-FCF-S. The rea-

son is that although the overall pruning ratios are same

(i.e., 45%), the filter cardinality (i.e., kl) of CNN-FCF-P

is larger than that of CNN-FCF-S, as it will prune more pa-

rameters in the pruning stage. However, after pair-channel

pruning, the accuracy significantly drops to 30.17%. The

reason is that the pruning on the input channels of filters

significantly changes the trained CNN-FCF model. But the

accuracy achieves 92.89% after fine-tuning, which is high-

est among all compared methods. We also show the fine-

tuning curves of above four methods in Fig. 3. The above

comparisons demonstrate that: (1) The proposed compress-

ing method based on CNN-FCF performs better than base-

lines; (2) The joint training based on CNN-FCF produces

a very good compressed model, even without fine-tuning;

(3) When adopting the pair-channel pruning strategy, fine-

tuning is useful to resume the model performance.

6. Conclusion

This work presented a novel model compression method

for deep CNNs, of which the core idea is conducting filter

learning and filter selection jointly. To this end, we defined

a novel type of filters, dubbed factorized convolutional filter

(FCF), consisting of a standard convolutional filter and a bi-

nary scalar, as well as a dot-product operator between them.

To train a CNN model with FCF, we proposed to insert the

ADMM algorithm into the back-propagation framework via

gradient descent. Given a trained CNN-FCF model, a com-

pact or a sparse standard CNN model can be obtained by

only keeping the standard filters corresponding to the 1-

valued scalars. Experiments on compressing ResNet mod-

els demonstrate the superiority of the proposed method over

state-of-the-art filter pruning methods.

Acknowledgement The involvements of Yujiu Yang and

Tuanhui Li in this work were supported in part by

the National Key Research and Development Program

of China (No.2018YFB1601102), and Shenzhen special

fund for the strategic development of emerging industries

(No.JCYJ20170412170118573).

3984

References

[1] Jose M Alvarez and Mathieu Salzmann. Learning the num-

ber of neurons in deep networks. In Advances in Neural In-

formation Processing Systems, pages 2270–2278, 2016. 3

[2] Linchao Bao, Baoyuan Wu, and Wei Liu. Cnn in mrf: Video

object segmentation via inference in a cnn-based higher-

order spatio-temporal mrf. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

5977–5986, 2018. 1

[3] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato,

Jonathan Eckstein, et al. Distributed optimization and sta-

tistical learning via the alternating direction method of mul-

tipliers. Foundations and Trends R© in Machine learning,

3(1):1–122, 2011. 2, 4

[4] Jian Cheng, Pei-song Wang, Gang Li, Qing-hao Hu, and

Han-qing Lu. Recent advances in efficient computation

of deep convolutional neural networks. Frontiers of Infor-

mation Technology & Electronic Engineering, 19(1):64–77,

2018. 1

[5] Xin Dong, Shangyu Chen, and Sinno Pan. Learning to

prune deep neural networks via layer-wise optimal brain sur-

geon. In Advances in Neural Information Processing Sys-

tems, pages 4857–4867, 2017. 3

[6] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In Proceedings of IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

580–587, 2014. 1

[7] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic net-

work surgery for efficient dnns. In Advances in Neural In-

formation Processing Systems, pages 1379–1387, 2016. 2

[8] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. In International

Conference on Learning Representations, 2016. 1, 2

[9] Babak Hassibi and David G Stork. Second order derivatives

for network pruning: Optimal brain surgeon. In Advances

in Neural Information Processing Systems, pages 164–171,

1993. 2

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of IEEE Conference on Computer Vision and Pattern

Recognition, pages 770–778, 2016. 1, 5

[11] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi

Yang. Soft filter pruning for accelerating deep convolutional

neural networks. International Joint Conferences on Artifi-

cial Intelligence, 2018. 2, 5, 6, 7

[12] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In Proceedings

of IEEE International Conference on Computer Vision, 2017.

1, 3, 5, 7

[13] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 1

[14] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung

Tang. Network trimming: A data-driven neuron pruning ap-

proach towards efficient deep architectures. arXiv preprint

arXiv:1607.03250, 2016. 3

[15] Zehao Huang and Naiyan Wang. Data-driven sparse struc-

ture selection for deep neural networks. arXiv preprint

arXiv:1707.01213, 2017. 3, 5, 7

[16] Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim

Choi, Lu Yang, and Dongjun Shin. Compression of deep

convolutional neural networks for fast and low power mobile

applications. arXiv preprint arXiv:1511.06530, 2015. 1

[17] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Technical report, Cite-

seer, 2009. 2, 5

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 1097–1105, 2012. 1

[19] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Os-

eledets, and Victor Lempitsky. Speeding-up convolutional

neural networks using fine-tuned cp-decomposition. arXiv

preprint arXiv:1412.6553, 2014. 1

[20] Yann LeCun, John S Denker, and Sara A Solla. Optimal

brain damage. In Advances in Neural Information Process-

ing Systems, pages 598–605, 1990. 2

[21] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. In In-

ternational Conference on Learning Representations, 2017.

1, 2, 5, 6, 7

[22] Xin Li, Chao Ma, Baoyuan Wu, Zhenyu He, and Ming-

Hsuan Yang. Target-aware deep tracking. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, 2019. 1

[23] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,

Shoumeng Yan, and Changshui Zhang. Learning efficient

convolutional networks through network slimming. In Pro-

ceedings of IEEE International Conference on Computer Vi-

sion, pages 2755–2763, 2017. 1, 3, 7

[24] Zechun Liu, Wenhan Luo, Baoyuan Wu, Xin Yang, Wei

Liu, and Kwang-Ting Cheng. Bi-real net: Binarizing deep

network towards real-network performance. arXiv preprint

arXiv:1811.01335, 2018. 1

[25] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,

and Kwang-Ting Cheng. Bi-real net: Enhancing the perfor-

mance of 1-bit cnns with improved representational capabil-

ity and advanced training algorithm. In Proceedings of the

European Conference on Computer Vision, pages 722–737,

2018. 1

[26] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 3431–3440, 2015. 1

[27] Jian-Hao Luo, Hao Zhang, Hong-Yu Zhou, Chen-Wei Xie,

Jianxin Wu, and Weiyao Lin. Thinet: Pruning cnn filters

for a thinner net. IEEE transactions on pattern analysis and

machine intelligence, 2018. 1, 3, 5, 6, 7

3985

[28] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn archi-

tecture design. Proceedings of the European Conference on

Computer Vision, 2018. 1

[29] Adam Paszke, Sam Gross, Soumith Chintala, and Gregory

Chanan. Pytorch: Tensors and dynamic neural networks in

python with strong gpu acceleration, 2017. 5

[30] Herbert Robbins and Sutton Monro. A stochastic approxi-

mation method. In Herbert Robbins Selected Papers, pages

102–109. Springer, 1985. 4

[31] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015. 2, 5

[32] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In In-

ternational Conference on Learning Representations, 2015.

1

[33] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S.

Boyd. OSQP: An operator splitting solver for quadratic pro-

grams. ArXiv e-prints, Nov. 2017. 4

[34] Kaihua Tang, Hanwang Zhang, Baoyuan Wu, Wenhan Luo,

and Wei Liu. Learning to compose dynamic tree structures

for visual contexts. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2019. 1

[35] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and

Hai Li. Learning structured sparsity in deep neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 2074–2082, 2016. 3

[36] Baoyuan Wu, Weidong Chen, Yanbo Fan, Yong Zhang,

Jinlong Hou, Junzhou Huang, Wei Liu, and Tong Zhang.

Tencent ml-images: A large-scale multi-label image

database for visual representation learning. arXiv preprint

arXiv:1901.01703, 2019. 1

[37] Baoyuan Wu, Weidong Chen, Peng Sun, Wei Liu, Bernard

Ghanem, and Siwei Lyu. Tagging like humans: Diverse and

distinct image annotation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

7967–7975, 2018. 1

[38] Baoyuan Wu and Bernard Ghanem. lp-box admm: A versa-

tile framework for integer programming. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 2018. 2, 3, 4

[39] Baoyuan Wu, Fan Jia, Wei Liu, and Bernard Ghanem. Di-

verse image annotation. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

2559–2567, 2017. 1

[40] Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethink-

ing the smaller-norm-less-informative assumption in channel

pruning of convolution layers. In International Conference

on Learning Representations, 2018. 3, 5, 6, 7

[41] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I

Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin, and

Larry S Davis. Nisp: Pruning networks using neuron impor-

tance score propagation. In Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition, 2018. 3, 5, 6,

7

[42] Hanwang Zhang, Zawlin Kyaw, Shih-Fu Chang, and Tat-

Seng Chua. Visual translation embedding network for visual

relation detection. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5532–

5540, 2017. 1

[43] Tianzhu Zhang, Bernard Ghanem, Si Liu, and Narendra

Ahuja. Robust visual tracking via multi-task sparse learn-

ing. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2042–2049, 2012. 1

[44] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wu-

jie Wen, Makan Fardad, and Yanzhi Wang. A systematic

dnn weight pruning framework using alternating direction

method of multipliers. In Proceedings of the European Con-

ference on Computer Vision, 2018. 2

[45] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun.

Accelerating very deep convolutional networks for classifi-

cation and detection. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 38(10):1943–1955, 2016. 1

[46] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,

Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.

Discrimination-aware channel pruning for deep neural net-

works. In Advances in Neural Information Processing Sys-

tems, 2018. 3

3986

