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Abstract

For Zero-Shot Learning (ZSL), the Nearest Neighbor (N-

N) search is generally conducted for classification, which

may cause unacceptable computational complexity for

large-scale datasets. To compress zero-shot classes by the

trained quantizer for efficient search, it tends to induce

large quantization error because distributions between seen

and unseen classes are different. However, as semantic

attributes of classes are available in ZSL, both seen and

unseen classes have the same distribution for one specific

property, e.g., animals have or do not have spots. Based

on this intuition, a Product Quantization Zero-Shot Learn-

ing (PQZSL) method is proposed to learn embeddings as

well as quantizers to compress visual features into compact

codes for Approximate NN (ANN) search. Particularly, vi-

sual features are projected into an orthogonal semantic s-

pace, and then the Product Quantization (PQ) is utilized to

quantize individual properties. Experimental results on five

benchmark datasets demonstrate that unseen classes are

represented by the Cartesian product of quantized proper-

ties with little quantization error. As classes in orthogonal

common space are more discriminative, the classification

based on PQZSL achieves state-of-the-art performance in

Generalized Zero-Shot Learning (GZSL) task, meanwhile,

the speed of ANN search is 10-100 times higher than tradi-

tional NN search.

1. Introduction

As deep learning-based architectures achieve many suc-

cesses [23] [40], large-scale labeled training images are

more and more important for computer vision application-

s recently. However, large-scale well-annotated datasets

∗Corresponding author: X. Lan. (xglan@mail.xjtu.edu.cn)

are difficult to be established. One of the main reasons is

that the frequencies of natural images obtained by people

follow long-tailed distributions [47]. The number of new-

ly defined visual concepts and products is growing rapid-

ly. Meanwhile, some objects are simply rare by nature

and there are little labeled samples for training. Besides,

sometimes image annotation requires options from expert-

s, which is expensive. Alternatively, Zero-Short Learning

(ZSL) has been proposed as a feasible solution [24]. Im-

ages in limited classes are used in the training phase while

the learned model aims to recognize images in totally new

classes without additional data collections. Aiming at this

goal, ZSL utilizes semantic auxiliary information such as

word descriptions and attributes to preserve inter-class asso-

ciations between seen and unseen classes [24] [10] [11] [48]

[14]. In the training phase, embeddings and compatibility

functions are learned given images and attributes of seen

classes. In the testing phase, the task of unseen class recog-

nition becomes a typical classification problem, which can

be solved by employing the Nearest Neighbor (NN) search

with learned compatibility functions.

Nowadays, as the number of obtained images and new

concepts grows rapidly, very large space and long time

are required to store and annotate images. For ZSL, to

achieve high efficiency of classification in the large-scale

dataset such as ImageNet [9] is a big challenge. Com-

pressing data into compact code is a powerful technique

for enabling efficient Approximate Nearest Neighbor (AN-

N) search. Particularly, the methods of generating compact

code can be divided into two categories, i.e., hashing-based

and quantization-based methods. Hashing learns embed-

dings mapping high-dimension vectors into binary codes,

and thus can significantly save storage space [42] [36] [26].

More importantly, in the binary space, the Euclidean dis-

tance is replaced by the Hamming distance, which can be ef-

ficiently calculated by the bit-wise XOR operation. Howev-
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Figure 1. Illustration of PQZSL. (a) Samples in two seen clusters with two properties, i.e., shape and color. (b) Product quantizer trained to

quantize individual property. The sub-codebook of shape contains two codewords, circle and square; the sub-codebook of color contains

red and blue. (c) Using Cartesian product of properties to represent new classes, i.e., bule circles and red squares.

er, there are two main disadvantages in hashing-based ANN

search. One is that the value range of Hamming distance is

limited, which may decrease the accuracy when the nearest

neighbors are sorted by Hamming distance. For example,

as vectors are compressed into 8-bits codes, distances only

vary in 8 integer values. The other one is that hashing can

only use the Symmetric Distance Computation (SDC)[19],

which has been proved to be worse than Asymmetric Dis-

tance Computation (ADC) in ANN search [19].

Quantization-based methods aim to learn a set of code-

books that contain codewords to reconstruct vectors or sub-

vectors [19] [16] [5]. In particular, original vectors are

mapped into integer codes that index codewords for recon-

struction. For ANN search, distances between the query

and codewords are pre-computed and stored in look-up ta-

bles, then they are read from these tables by their codes.

When vectors are compressed into 8-bits codes, quantiza-

tion methods can learn a codebook containing 28 code-

words, thus the range of distance has 256 values. In ad-

dition, quantization methods support the ADC, where only

the database is compressed. In order to quantize zero-shot

classes, the problem is that only distributions of seen class-

es can be obtained, which may be very different from test

unseen classes. Therefore, if the codebook trained by fea-

tures in seen classes are used to quantize unseen classes, it

tends to cause large quantization error that may significantly

decrease the search accuracy.

Since attributes of classes are introduced, we assume that

there is a semantic space, where the value range of each se-

mantic property is the same in both seen and unseen class-

es. As illustrated in Figure 1 (a), a semantic space con-

tains two seen classes, varying in the color and shape. Al-

though seen classes cluster in small regions of the semantic

space, all kinds of colors and shapes are included. Based on

this intuition, we propose a Product Quantization Zero-Shot

Learning (PQZSL), which compresses large-scale database

into compact codes for efficient ANN search. To reconcile

the visual and semantic space, a common space is defined,

where dimensions of projected features are required to be

orthogonal to satisfy the independence condition of Product

Quantization (PQ). In the common space, we train a sub-

codebook to quantize specific properties. For example, two

sub-codebooks are learned from the color and shape indi-

vidually in Figure 1 (b). After sub-codebooks are generat-

ed, new classes can be quantized by Cartesian products of

sub-codewords with little errors, which is shown in Figure

1 (c). Our intuition is demonstrated by experimental results

on both synthesized dataset and ImageNet [9]. In the final

classification, ANN search is utilized to compute distances

between projected features and class-level attributes, which

comes from two different modalities. Consequently, it is d-

ifficult to train a unified codebook to simultaneously quan-

tizer features and attributes with little quantization errors.

To solve this problem, ADC search strategy is introduced,

where only the large-scale database is compressed while at-

tributes are uncompressed in the testing phase. In practical

applications, when the number of databases is much larger

than that of classes, ADC has similar efficiency but achieves

higher accuracy than SDC.

2. Related Works

In this section, we briefly review related work in zero-

shot learning, vector quantization and approximate nearest

neighbor search.

2.1. Zero-Shot Learning

In order to train a model from seen classes that can be

generalized to classify unseen classes, ZSL generally re-

quires a set of high-dimension vectors in visual space and

semantic space to describe images and their characteristic-

s, which are named features and attributes in this paper. In

the training phase, features and class-level attributes in seen

classes are obtained to learn embeddings or compatibility

functions. In the testing phase, test images are required to

be classified into the correct unseen classes identified by

their attributes via the NN search. For Generalized Zero-

Shot Learning (GZSL) [7], test images may come from ei-

ther seen or unseen classes, which is more reasonable for
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the real-world task.

To unify visual features and semantic attributes into the

same space, the first idea is mapping features to seman-

tic space[24] [2] [43] [38] [13] [34] [4], which is similar

to the multi-label classification. However, this direction of

the projection may induce the hubness problem [37], where

much features may be classified into one class in the test-

ing phase. In contrast, mapping attributes into visual space

can reduce the hubness problem, where the projected at-

tributes are regarded as centroids of classes [33] [29]. Se-

mantic Auto-Encoder (SAE) requires features and attributes

to mutually reconstruct others using the same parameters,

which can reduce the domain shift problem [22]. Moreover,

a low-rank constraint is added in [27] to preserve the intrin-

sic structure in attributes.

Another group of methods map both visual features and

semantic attributes into intermediate spaces [6] [45] [1]

[46]. In Semantic Similarity Embedding (SSE) [45], the

mixture of seen class proportions is regarded as the com-

mon space, where images belong to the same class should

have a similar mixture pattern. Preserving Semantic Rela-

tions (PSR) [3] defines a common space which preserves

semantic relations between classes. In Joint Latent Simi-

larity Embedding (JLSE) [46], features and attributes are

mapped into two separate latent spaces, and compatibility

function is learned to measure their similarities. More ex-

actly, projected class-level attributes in common space are

also named prototypes, which represent centroids of classes

in the NN search. For classification, the class label of test

sample ui is defined as

ŷ(ui) = argmin
j

d(ui, vj), (1)

where d(·, ·) is the measure of similarity, which is gener-

ally defined as the Euclidean or Cosine distance in ZSL.

Assume U = {ui}
N
i=1

and V = {vj}
T
j=1

denote features

and attributes in the testing phase respectively, where N

is the number of images and T is the number of candi-

date classes. As similarities between features and attributes

are exhaustively computed, the computational complexity

is O(D2NT ), where D is the dimension of common space.

For large-scale classification task, the complexity is very

large so that the quantization-based ANN search [19] is pro-

posed to improve the efficiency.

2.2. Vector Quantization

Vector Quantization (VQ) [25] has been widely used in

data compression and fast retrieval applications. For a D-

dimension vector ui ∈ R
D, a quantizer is a function map-

ping ui to a vector q(ui) ∈ C, where C = [c1, c2, · · · , cK ]
is the codebook that contains K D-dimension codewords

ci. Then the mapping is defined as

q(ui) = argmin
ck

||ui − ck||
2

F , (2)

where the D-dimension vector ui is compressed into a s-

calar. Given a training set U, the objective function is de-

fined as

min
N
∑

i=1

||ui − Cbi||
2

F ,

s.t. bi = {0, 1}
K
, ||bi||1 = 1,

(3)

where bi is the code (a one-hot vector) to represent sample

ui. Lloyd’s algorithm [28] iteratively updates the codebook

and codes to minimize the loss. However, the size of the

codebook in VQ rises exponentially with the length of the

code. PQ [19] is proposed to overcome this limitation.

In PQ, a vector ui is split into M sub-vectors

ui1, ui2, · · · , uiM , and then the m-th sub-codebooks is

trained to quantize corresponding sub-vectors,

qm(uim) = cmk, cmk ∈ Cm, (4)

where Cm = [cm1, cm2, · · · , cmK] is the m-th sub-

codebooks and k is the k-th codeword in Cm. And the

codebook is defined as the Cartesian product of M sub-

codebooks

C =

⎡

⎢

⎢

⎢

⎣

C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...

0 0 · · · CM

⎤

⎥

⎥

⎥

⎦

.
(5)

Let bim denote a sub-vector in bi, which indexes a code-

word in sub-codebook Cm to represent uim, thus the objec-

tive function of PQ can be defined as

min

N
∑

i=1

||ui − Cbi||
2

F ,

s.t. bi = [bT
i1, · · · , bT

iM ]T ,

bim = {0, 1}
K
, ||bim||1 = 1.

(6)

To reduce the quantization error in PQ, we can increase

the number of sub-codebooks M . However, PQ assumes

that the splits of ui are independent of others. To satisfy

this condition, a transformation that reduces correlation a-

mong dimensions in ui is learned before training the prod-

uct quantizer[16]. In this paper, we add the orthogonal re-

striction among dimensions in ui to satisfy the independent

condition, which is discussed in Section 3.1 in detail.

2.3. Approximate Nearest Neighbor Search

The quantization-based ANN search method is proved to

be an efficient way to reduce the cost of distance computa-

tion [19]. After the vectors in the database are compressed
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via the learned quantizer, there are two strategies to approx-

imate the NN search. The first way is SDC, where the sim-

ilarity distance measure in NN search can be approximated

as

d̂(u, v) = d(q(u), q(v)) = d(ck, cl), (7)

where d(ck, cl) can be pre-computed and stored in a look-

up table. The second way is ADC that can be represented

as

d̃(u, v) = d(q(u), v) = d(ck, v), (8)

where the query v is not compressed. Similar to SDC, we

first compute store d(ck, v) (k = 1, · · · ,K) in a look-up

table. After pre-computation, ANN search only requires to

look up the table for N times to compute distances between

v and U = {ui}
N
i=1

. When the time consumption of quan-

tizing v is also considered, SDC and ADC have the same

computational complexity in ANN search, which has been

proved in [19].

3. Approach

The training dataset of ZSL is defined by a series of

triplets (xsi , ysi , as
i )

Ns

i=1
∈ Xs × Ys × As, where Ns is

the number of training samples. Xs ∈ R
dx×Ns repre-

sents the set of dx dimensional visual features of images.

Ys ∈ R
L×Ns denotes class labels, where each column is

a one-hot vector. Moreover, in ZSL, only L classes are

available in training, which are regarded as seen classes.

As ∈ R
da×Ns is the da-dim semantic representation such

as attributes, which is the augment of class-level attributes

A, i.e., As = AYs. In this paper, features and attributes are

projected into a common space. f(xs
i ) and g(asi ) indicate

the visual embedding and semantic embedding, respective-

ly. In the testing phase, visual and semantic samples of un-

seen classes are given, i.e., (xt
i, at

i)
Nt

i=1
∈ Xt×At. Similar to

seen classes, Xt and At contain Nt features and attributes,

respectively. Moreover, ZSL requires that As ∩ At = ∅.

The NN search is employed to predict the label ŷ of a sam-

ple xt
i, which can be defined in Eq. (1). Then, embeddings

are learned for efficient zero-shot classification.

3.1. Product Quantization Zero-Shot Learning

Our method structure an orthogonal common space,

where each dimension is independent to others. In the com-

mon space, a codebook (like C in Eq. (5)) is trained, where

each sub-codebook is trained to represent corresponding

dimensions. Then visual and semantic embeddings are

learned to project features and attributes into the common

space. By this way, the final objective function contains

a loss containing three parts: quantization loss, visual em-

bedding loss, and semantic embedding loss, meanwhile all

parameters are optimized simultaneously. In the test phase,

projected features are compressed into compact codes vi-

a the codebook while a projected attribute is regarded as a
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Figure 2. Visualization of distributions of seen and unseen classes

in dataset Animal with Attributes (AwA). (a) 2-D t-SNE result of

features. (b) Two properties class-level attributes: size and speed

of animals

query v in Eq. (8). Asymmetric distances between features

and attributes are computed via Eq. (8) for classification.

3.1.1 Product Quantization

Distributions of visual features in seen and unseen class-

es are different in zero-shot classification problem, which

can be demonstrated by the t-SNE result [30] of features in

Animal with Attributes (AwA) dataset [24] [44] shown in

Figure 2 (a). Therefore, if the vector quantizer is trained

using seen classes, it tends to cause large quantization error

when codewords are utilized to represent unseen classes. S-

ince attributes of classes can be obtained, the value range

of each property of seen and unseen classes is similar. For

example, properties “big” and “fast” of 50 kind animals in

AwA dataset are shown in Figure 2 (b), which describe the

size and speed with continuous value. For every single di-

mension, the value of both seen and unseen classes vary in

the same range. This means each property can be complete-

ly seen in the training phase.

In fact, if the learned model is required to recognize all

unseen objects in ZSL, seen classes must contains as much

range as possible of properties. For example, if all training

samples are animals, the model definitely cannot know air-

plane (just like ancient people). Therefore, we think the as-

sumption of diversity of training classes is existed in all ZSL

problem. Based on this observation, we assume that there

is an orthogonal common space where dimensions are re-

quired to be independent of others. Compared to the seman-

tic space of class-level attributes, the orthogonal common s-

pace achieves two advantages. First, projected features can

be split into independent sub-vectors and quantized individ-

ually. Second, assume the visual embedding f consists of a

family functions f1, f2, · · · , each of them projects features

into one dimension. The independence among dimensions

in common space makes f simpler and more discriminative

because functions will not confuse others, which is pointed

in [18] and [21].
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As discussed above, the quantization loss is defined as

Lq =

Ns
∑

i=1

‖f(xs
i )− Cbi‖

2

F = ‖f(Xs)− CB‖
2

F ,

s.t. f(Xs)f(Xs)
T = I.

(9)

Here f(Xs) maps each column in Xs one by one. B =
[b1, b2, · · · , bNs

] represents the set of codes of features. In

quantization method, Eq. (9) is generally optimized by it-

eratively update C and B. After sub-codebooks are trained,

the Cartesian product of sub-codewords can represent un-

seen classes in the common space with little quantization

error for ANN search.

3.1.2 Embedding Learning

In ZSL, the visual embedding f is learned to project fea-

tures into different class centers, which is similar to the clas-

sifier. In this paper, the center loss [17] is introduced,

Le1 =

Ns
∑

i=1

∥

∥f(xs
i )− zys

i

∥

∥

2

F
= ‖f(Xs)− Zs‖

2

F ,

s.t. f(Xs)f(Xs)
T = I.

(10)

Here zys

i
represents the center of projected features of

class indexed by ysi in common space. In the training

phase, visual embedding maps features into L centers Z =
[z1, z2, · · · , zL], which represent L seen classes. Then Zs

in Eq. (10) is the augment of Z by class labels Ys, i.e.,

Zs = ZYs.

In Eq. (9), the orthogonal constraint makes f difficult

to be optimized. Therefore, we relaxed this constraint by

letting dimensions in the class center be orthogonal. And

then the objective function Eq. (10) can be modified to

Le1 = ‖f(Xs)− Zs‖
2

F ,

s.t. Zs = ZYs, ZZT = I.
(11)

The semantic embedding maps class-level attributes in-

to class centers in the common space. In order to preserve

semantic inter-class associations among class centers while

avoiding the domain shift problem, the auto-encoder frame-

work is introduced like [22], i.e.

Le2 =

Ns
∑

i=1

∥

∥as
i − g−1(g(as

i ))
∥

∥

2

F
,

s.t. zsi = g(asi ),

(12)

where g−1(·) is a decoder to reconstruct attributes. Accord-

ing to SAE [22]. The constraint in Le2 can be relaxed and

the compact form is represented as

Le2 =
∥

∥As − g−1(Zs)
∥

∥

2

F
+ λ ‖Zs − g(As)‖

2

F . (13)

To train a codebook for ZSL, Le1 and Le2 respectively guar-

antee the independence and semantics in projected points.

Hence, the objective function of PQZSL is

L = Lq + αLe1 + βLe2. (14)

3.2. Optimization

In this paper, both visual and semantic embeddings are

defined as linear matrixes. Similar to SAE, the same projec-

tion matrix is simultaneously used for encoder and decoder.

The objective function is deduced as

min
P,Q,C,B,Zs,Z

‖PXs − CB‖
2

F + α ‖PXs − Zs‖
2

F +

β
∥

∥

∥
As − QT Zs

∥

∥

∥

2

F
+ αλ ‖QAs − Zs‖

2

F ,

s.t. Zs = ZYs, ZZT = I.

(15)

3.2.1 Parameter Updating

To optimize this function, embeddings, codebook, codes

and class centers are updated iteratively.

Update P: Fixing all parameters except P, and let the

derivative with respect to P be 0, the visual embedding is

updated by

P = (CB + αZs)X
T
s [(1 + α)(XsXT

s )]
−1. (16)

Update Q: To learn the semantic embedding Q, the other

parameters are fixed. Let the derivative with respect to Q be

0, a Sylvester Equation [39] is obtained,

βZsZT
s Q + λQAsAT

s = (β + λ)ZsAT
s , (17)

which can be solved in a single line in Matlab or Python 1.

In fact, divide both sides of Eq. (17) by β, there is only one

hyper-parameter that influence Q.

Update C: In PQ, sub-codebooks can be optimized inde-

pendently. Let P = [PT
1
, · · · ,PT

M ]T , the sub-codebook Cm

refers to

‖PmXs − CmBm‖
2

F , (18)

where Bm = [b1m, b2m, · · · , bNsm]. Similar to Eq. (16),

Cm can be updated by

Cm = (PmXBT
m)(BmBT

m)−1. (19)

Update B: Given a sample xs
i , its code bim of each sub-

codebook Cm is also independent. We update bim by ex-

haustively search sub-codewords in Cm, which achieves the

minimal quantization error in ‖Pmxsi − Cm‖
2

F .

Update Zs: When Zs is updated, we relax the constraint

1For example, Matlab can use sylvester() or lyap() function.
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Zs = ZYs by adding an additional term ‖Zs − ZYs‖
2

F ,

and the objective function can be re-written as

α ‖PXs − Zs‖
2

F + β
∥

∥

∥
As − QT Zs

∥

∥

∥

2

F

+λ ‖QAs − Zs‖
2

F + γ ‖Zs − ZYs‖
2

F .
(20)

Let the derivative with respect to Zs be 0, it can be updated

by

Zs =
[

(α+ λ+ γ) I + βQQT
]

−1

[(β + λ)QAs + αPXs + γZYs] .
(21)

here I is an identity matrix with the same size as QQT . To

guarantee the independence among dimensions in Zs, we

set γ ≫ α, β, λ.

Update Z: To optimize Z, we solve the objective function

‖Zs − ZYs‖
2

F , s.t. ZZT = I. (22)

Notice that there is no constraint in the number of dimen-

sions in common space. To solve Eq. (22), we restrict Z to

be a square matrix with size L× L. It can be easily proved

that if rows of Z are orthogonal, and then columns of Z are

also orthogonal [15], i.e., ZT Z = ZZT = I. According to

[16], Eq. (22) has a closed-form solution. Firstly, we ap-

ply Singular Value Decomposition to YsZT
s = RSWT , and

Z = WRT .

3.2.2 Hyper-parameters and Initialization

There are many hyper-parameters in Eq. (15). However, C,

B and Z only present in one term thus are not influenced by

hyper-parameters. As we set γ ≫ α, β, λ to satisfy the in-

dependence constraint, Zs is also slightly influenced by all

the hyper-parameters. More importantly, when updating P

and Q, they are only depended on α and λ respectively. By

this means, we individually consider these parameters based

on the performance in cross-validation in training data. For

ImageNet [9], γ = 104, α = 300, λ = 10 and β = 1. The

hyper-parameters in other datasets can be obtained in same

way.

To initialize parameters, we generate a real orthogonal

matrix Z by orthogonalizing a random matrix and let Zs =
ZY. Q can be calculated by solving Eq. (17). The visual

embedding is initialized without considering quantization

loss, i.e., P = ZsXT
s (XsXT

s )
−1, and then Lloyd’s method

is utilized to compute C and B given PXs.

3.3. ANN Search-based Classification

In the testing phase, the ADC strategy is employed. The

main reason is that asymmetric distance estimation is more

accurate than symmetric distance. Moreover, it is difficult

to train the unified codebook to quantize projected features

and attributes, because there is a bias between the projec-

tions from two different modalities. Following ADC strate-

gy, visual features are firstly projected into common space

by Ut = PXt, which are further quantized as q(Ut) = CB

and stored. Semantic attributes are also projected into com-

mon space, where Vt = QAt is regarded as the set of un-

compressed queries. Then the ANN-based classification is

conducted by using Eqs. (1) and (8). Specifically, when

d(·, ·) is the Euclidean distance, Eq. (8) can be re-written as

d̃(u, v) =

√

‖q(u)‖
2
+ ‖v‖

2
− 2q(u)

T
v

=

√

√

√

√

M
∑

m=1

‖qm(um)‖
2
+ ‖vm‖

2
− 2qm(um)

T
vm.

(23)

When d(·, ·) is defined as cosine distance, Eq. (8) be-

comes

d̃(u, v) = 1−
2q(u)

T
v

‖q(u)‖
2
‖v‖

2

= 1−

M
∑

m=1

qm(um)
T

vm

M
∑

m=1

‖qm(um)‖
2

M
∑

m=1

‖vm‖
2

.

(24)

Notice that each-codebook contains K=256 codewords,

thus qm(um) only has 256 possible values. In Eqs. (23)

and (24), terms qm(um)
T

vm and ‖qm(um)‖
2

F also has 256

values that can be pre-computed and stored in look-up ta-

bles, and then the computational complexity is independent

from the size of database.

3.4. Computational Complexity Analysis

Assume N features are required classified into T class-

es, then the computational complexity is O(D2NT ) when

the final classification is conducted in the D-dim common

space. As ADC strategy is introduced, the computational

complexity to establish tables is O(D2KT ). The time of

table lookup is O(MNT ), where M is the number of sub-

codebooks. Let D = δM, 1 � δ � D, the ratio of the

complexity of NN and ANN search can be represented as

O(D2NT )

O(D2KT ) +O(MNT )

=
O(δDMNT )

O(δDMKT ) +O(MNT )

=
O(δDN)

O(δDK) +O(N)
.

(25)

where K is generally fixed to 256, which is smaller than the

number of features N . D is the dimension of uncompressed
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vectors. δ is depended on M , which is a hyper-parameter

influencing the quantization error and search speed. In the

large-scale datasets, N ≫ DK, thus the time consump-

tion can be significantly reduced according to Eq. (25). For

medium-scale datasets, the main cost of ANN is establish-

ing look-up tables. And the ratio of the speed of ANN and

NN search is depended on the size of the database.

4. Experiments

The proposed method is mainly evaluated in large-

scale dataset ImageNet 21K dataset and four medium-scale

datasets, where classification in the generalized zero-shot

task is tested. Moreover, details about product quantization

are shown, including quantization error and search efficien-

cy. For fair comparison, are features and settings are same

as that in [44], which provides a standard of ZSL and GZSL

task.

4.1. Datasets and Evaluation

The large-scale dataset ImageNet [9] contains 21,841

classes with more than 10 million images collected from the

real-world, where 1K seen classes containing 1.2 million

images are employed to learn embeddings. There are dif-

ferent splits for the test. 2-hops/3-hops refers to test classes

belonging to 2/3 tree hops away from 1K train classes in the

WordNet hierarchy[6], which contains 1,509/7,678 unseen

classes. Classes that contain the top 500/1K/5K maximum

images as well as top 500/1K/5K minimum images are al-

so used for test splits respectively. Finally, all 20K classes

are tested, which is very challenging. Four medium-scale

datasets are Attribute Pascal and Yahoo (aPY) [12], Animal-

s with Attributes (AWA) [44], Caltech-UCSD-Birds (CUB)

[41] and SUN attributes (SUN) [32]. To split the dataset for

training and testing, we follow the same settings with [44],

where unseen classes are not included in the sets of deep

neural network training. Hence, these unseen classes are

really “unknown” for the trained model2.

As quantization method is used, the quantization loss and

its influence on accuracy are shown. And the time consump-

tion of ANN search is evaluated to show the improvement

of classification efficiency. To evaluate the accuracy of clas-

sification, the average of per-class precision (AP) is mea-

sured. In GZSL task where features come from either seen

classes or unseen classes, ‘tr’ represents AP of test features

which belong to seen classes. In contrast, ‘ts’ is the AP

that unseen features are classified into all classes. ‘H’ is the

harmonic mean of tr and ts.

4.2. Main Results

We first train product quantizer in a synthesized dataset

to demonstrate the effectiveness in representing zero-shot

2All image feautures and standard splites are published here:

http://www.mpi-inf.mpg.de/zsl-benchmark
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VS. quantization loss under different M. (b) Ratio of time con-

sumption of 2/3 hops classes under different M.

classes. In detailed, we sample 4000 2-D vectors from a

Gaussian Mixture Model, which has 9 clusters. Vectors

drawn from 4 clusters are treated as seen classes, while oth-

ers are unseen. The comparison between VQ and PQ is

shown in Figure 3, where 9 codewords are trained. If VQ is

directly used, it tends to minimize the quantization loss of

known classes, which cause over-fitting when unseen class-

es are introduced. Since the information in each dimension

is completely obtained from seen classes, the sub-codebook

can accurately represent both seen and unseen classes.

To present the relationship between classification accu-

racy and quantization loss, we vary the number of sub-

codebooks to adjust the loss. GZSL performance (ts) in

2/3 hops under different quantization loss are evaluated in

Figure 4 (a). When quantization loss is larger than 0.05

(M = 10), the ts accuracy decreases rapidly. In Figure 4

(b), the ratio of time consumption of ANN and NN search

via the different number of sub-codebooks is compared.

The efficiency of ANN is 10-100 times higher than that of

NN search in the same common space. According to the

requirement of accuracy, we can set M from 10 to 50.

Finally, the overall results of PQZSL are compared with

state-of-the-art baselines. The GZSL accuracy on ImageNet

is evaluated in Table 1. To quantize projected features, we

train 50 sub-codebooks where each of them contains 256

codewords. In this way, one visual feature is compressed
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Table 1. Generalized Zero-Shot Learning comparisons on ImageNet dataset. We measure Top-10 accuracy in %.

Hierarchy Most populated Least populated All

Method 2-hops 3-hops 500 1K 5K 500 1K 5K 20K

CONSE [31] 0.86 7.14 23.47 18.38 9.92 0.00 0.00 0.66 3.43

CMT [38] 7.80 2.77 9.65 7.73 3.83 3.37 2.71 1.45 1.25

LATEM [43] 16.99 6.28 23.61 18.65 8.73 8.73 7.60 3.50 2.71

ALE [1] 17.79 6.34 24.93 19.37 9.12 10.38 8.46 3.63 2.77

DEVISE [13] 17.59 6.28 24.66 19.11 8.99 10.11 8.26 3.63 2.71

SJE [2] 17.46 6.21 23.61 18.45 8.79 9.85 8.00 3.50 2.71

ESZSL [35] 19.24 6.81 26.52 20.56 9.72 9.12 7.73 3.76 3.10

SYNC [6] 14.55 5.62 16.33 13.82 7.87 2.77 2.44 1.78 2.64

SAE [22] 13.55 4.82 20.76 16.60 7.60 3.43 2.57 1.58 2.24

PQZSL 21.80 7.41 29.30 23.75 11.3 9.42 7.87 3.72 3.45

Table 2. Generalized Zero-Shot Learning results on SUN, CUB, AWA and aPY. We measure the AP of Top-1 accuracy in %.

SUN CUB AWA aPY

Method ts tr H ts tr H ts tr H ts tr H

CMT [38] 8.7 28.0 13.3 4.7 60.1 8.7 8.7 89.0 15.9 10.9 74.2 19.0

SSE [45] 2.1 36.4 4.0 8.5 46.9 14.4 8.1 82.5 14.8 0.2 78.9 0.4

LATEM [43] 14.7 28.8 19.5 15.2 57.3 24.0 11.5 77.3 20.0 0.1 73.0 0.2

ALE [1] 21.8 33.1 26.3 23.7 62.8 34.4 14.0 81.8 23.9 4.6 73.7 8.7

DEVISE [13] 16.9 27.4 20.9 23.8 53.0 32.8 17.1 74.7 27.8 4.9 76.9 9.2

SJE [2] 14.7 30.5 19.8 23.5 59.2 33.6 8.0 73.9 14.4 3.7 55.7 6.9

ESZSL [35] 11.0 27.9 15.8 12.6 63.8 21.0 5.9 77.8 11.0 2.4 70.1 4.6

SYNC [6] 7.9 43.3 13.4 11.5 70.9 19.8 10.0 90.5 18.0 7.4 66.3 13.3

SAE [22] 17.8 32.0 22.8 18.8 58.5 29.0 16.7 82.5 27.8 12.3 72.5 20.9

LESAE [27] 21.9 34.7 26.9 24.3 53.0 33.3 21.8 70.6 33.3 12.7 56.1 20.1

PSR [3] 20.8 37.2 26.7 24.6 54.3 33.9 20.7 73.8 32.3 13.5 51.4 21.4

SP-ANE[8] 24.9 38.6 30.3 34.7 70.6 46.6 23.3 90.9 37.1 13.7 63.4 22.6

CDL [20] 21.5 34.7 26.5 23.5 55.2 32.9 28.1 73.5 40.6 19.8 48.6 28.1

PQZSL 35.1 35.3 35.2 43.2 51.4 46.9 31.7 70.9 43.8 27.9 64.1 38.8

into a 50-Bytes code and the compression ratio is about 160.

Compared with plenty of baselines, PQZSL achieves the

best performance in most splits. The comparison demon-

strates that compact codes can be used for replacing orig-

inal features for zero-shot classification. Results in Table

2 show our advantages in the other four datasets. Accord-

ing to the dimension of common space in different datasets,

the M is set to 30, 129, 10 and 5 for CUB, SUN, AWA

and aPY respectively. Compared to other baselines, our ap-

proach obtains highest ts and H values in all the datasets.

As we define the orthogonal semantic space, class centers

are more discriminative. This is the main reason to achieve

improvement. More importantly, the product quantization

can quantize unseen classes with little errors, which slight-

ly decreases the search accuracy.

5. Conclusions

In this paper, we propose a novel Product Quantization

Zero-Shot Learning method, which learns product quantiz-

er from seen classes to quantize unseen classes. In this

way, the database can be compressed and stored as com-

pact codes for efficient nearest neighbor search, which is

helpful to large-scale classification. Given visual features

and semantic attributes, the quantizer as well as embed-

dings, are learned iteratively. Experimental results in syn-

thesized datasets demonstrate that codebook can well repre-

sent unseen classes. More importantly, the search speed is

improved when ANN search is employed. The proposed

method also achieves the state-of-the-art performance in

GZSL in ImageNet and four medium-scale datasets.
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