
Cross-atlas Convolution for Parameterization Invariant Learning

on Textured Mesh Surface

Shiwei Li1 Zixin Luo1 Mingmin Zhen1 Yao Yao1∗

Tianwei Shen1 Tian Fang2† Long Quan1

{slibc|zluoag|mzhen|yyaoag|tshenaa|quan}@cse.ust.hk fangtian@altizure.com

1The Hong Kong University of Science and Technology
2Shenzhen Zhuke Innovation Technology (Altizure)

Abstract

We present a convolutional network architecture for di-

rect feature learning on mesh surfaces through their atlases

of texture maps. The texture map encodes the parameteriza-

tion from 3D to 2D domain, rendering not only RGB values

but also rasterized geometric features if necessary. Since

the parameterization of texture map is not pre-determined,

and depends on the surface topologies, we therefore intro-

duce a novel cross-atlas convolution to recover the origi-

nal mesh geodesic neighborhood, so as to achieve the in-

variance property to arbitrary parameterization. The pro-

posed module is integrated into classification and segmen-

tation architectures, which takes the input texture map of a

mesh, and infers the output predictions. Our method not

only shows competitive performances on classification and

segmentation public benchmarks, but also paves the way for

the broad mesh surfaces learning.

1. Introduction

The 3D mesh is one of the most popular representation

for 3D shape, which consists of an array of vertices and

an array of face indices indicating the surface geometry.

It could be augmented with texture coordinates and texture

maps to render the color appearance of the mesh.

Feature learning on textured meshes is challenging: on

the geometry side, the arrays of vertices and faces are per-

mutable. The mesh geometry by its design, could be very

adaptive: a similar shape can be meshed in very different

patterns, with irregular vertex densities and inconsistent tri-

angle qualities. On the texture side, the parameterization of

texture map could be arbitrary and still renders the same ap-

pearance, as long as the texture coordinate is in accordance

with the content in texture map.

Existing methods that can directly or indirectly op-

∗Intern at Shenzhen Zhuke Innovation Technology (Altizure)
†Corresponding author

erate on textured meshes include 1) multi-view projec-

tion [37, 11, 10], which renders the RGB(D) images from

all perspectives of the mesh. The multi-view images can

be consumed via 2D convolutional neural networks (CNNs)

and the global feature is aggregated by view pooling. How-

ever, this is only feasible for small objects [43] where oc-

clusion is not significant. When it comes to larger scenes

where occlusion and view selection are non-trivial, their

performance would degrade . 2) Volumetric models can

be easily obtained from meshes, which could be consumed

by 3D CNNs [43, 5, 25]. As mentioned in [6], the volu-

metric representation is memory-consuming and loses rich

valuable image details, thus hindering the performance. 3)

Point-based learning is a recent breakthrough [28, 30]. The

colored point cloud can be sampled from the mesh. As

the point cloud learning employs multi-layer perceptrons

rather than convolutions, it takes significantly more parame-

ters and thus the maximum number of points can be learned

is far less than image pixels under the same configuration.

4) Geometric deep learning [3] techniques can directly pro-

cess on meshes via spectral analyses [4, 8, 16, 13, 46] or

geodesic convolutions [24, 2, 26]. While their methods fo-

cus more on learning the intrinsic geometries for the dy-

namic correspondence task [1]. It’s unclear how they can

combine the texture or image for semantic feature learning.

In fact, the textured mesh is a self-contained combination

of 2D texture and 3D shape. Some recent works are aware

of this importance and perform joint learning on 2D im-

ages and 3D shapes [29, 6, 36], achieving improved perfor-

mances. However, processing on multi-view images, rather

than a single texture map, is redundant as the same 3D area

is processed by multiple times. Besides, such bundled data-

structure of 3D shape, images and camera poses is difficult

to acquire. With the popularity of 3D sensing techniques, it

would be easier and more common to obtain the standalone

textured mesh model.

To this end, we propose to perform direct learning on the

textured mesh via its texture map. The texture map can in-

6143

clude not only the color information as it usually does, but

also arbitrary geometric features as long as they are raster-

ized in the map. Each pixel in texture map becomes a gener-

ic feature vector, encoding both color and geometric infor-

mation. More importantly, the texture map is already in 2D

domain, enjoying numerous benefits: 1) it can be learned

via the standard CNNs, which can leverage the efficient de-

signs from rich previous researches. 2) The texture map ras-

terization is analogous to point sampling, and thus invariant

to the irregular meshing. 3) The hierarchy of a 2D map is

clearly defined as the image pyramid, making multi-scale

learning (e.g., for global feature extraction) easily achiev-

able. 4) The texture map inherits the geodesic neighborhood

of meshes, whereas other (volumetric or point-based) repre-

sentations discard the geodesic neighborhood information.

The practice of learning 3D meshes via 2D domain is

seen in previous methods [35, 23], but their performances

suffer from two crucial problems. The first one is distor-

tion: unlike the generic texture map parameterization that

segments the mesh to multiple atlases and pack them tightly

in the texture map [17, 48], their parameterization performs

only one cut and unfolds the mesh to a complete 2D squared

map. This inevitably introduces the distortion, which could

be unpredictably large [35]. The second problem is their

networks are not invariant to parameterization, which is fur-

ther determined by the cut on the mesh surface. To get

around, the author suggests to try multiple cuts on testing

stage [23], and select the most responsive one.

In this paper, we address two above problems. First, for

the distortion problem, we do not unfold the 3D surface on-

to a complete 2D map. Instead, we segment the mesh to

multiple atlases, project them to 2D domain and pack them

tightly inside the texture map. By doing so, each atlas finds

its best projection to minimize the distortion. Second, re-

garding the parameterization, the atlas composition in tex-

ture map is unpredictable, depending on the packing algo-

rithm. Each atlas is isolated, and thus the neighborhood is

taken apart when crossing the texture seams on mesh sur-

face. To tackle these issues, we introduce the cross-atlas

convolution – we redirect the pixel positions at atlas bound-

aries to the actual neighborhood on mesh surface, which is

done with a precomputed offset map. We have integrated

the cross-atlas convolution into the classification and seg-

mentation networks, and verified the effectiveness on public

benchmarks. Overall, our contributions are threefold:

1. We unlock a novel approach to mesh learning directly

through their atlases of texture maps.

2. Our method addresses the distortion and the variance

of parameterization problems in previous related meth-

ods [35, 23]. We also impose no restriction to the input

mesh whereas they requires genus-0 meshes.

3. Our designed model is flexible and introduces no extra

parameters: it can be trained on natural images, and

tested on texture maps using our cross-atlas modules

(see also Section 5.3).

2. Related works

Deep learning on non-Euclidean geometric 3D data is

an active and ongoing research topic. The mesh is one of

the most commonly used representations in 3D vision and

graphics, yet the irregularity of mesh makes it challenging

to learn. We survey existing approaches in three categories.

Converting to regular structures The most straightfor-

ward approach is to convert the irregular mesh to regular da-

ta structure suitable for CNN processing. This can be done

by projecting the mesh to multi-view 2D images, and then

applying 2D CNN and view pooling to aggregate the glob-

al feature [37, 11, 10]. These methods show great perfor-

mance on small object classification such as ModelNet [43],

but may degrade when it comes to self-occluded objects or

large scenes where view selection is non-trivial. Another

branch of methods convert the mesh to volumetric domain-

s, and extract deep features from volumes by 3D convolu-

tions [43, 5, 25]. The voxelization may introduce discre-

tion errors and is highly memory-consuming. Using Oc-

trees [31, 40] can alleviate the resolution problem to some

extent. Recently, some approaches combine both 2D views

and 3D volumes and achieve even better results [29, 6].

Point cloud approaches Point cloud can be easily ob-

tained by sampling on meshes. The irregular point cloud

data can be learned by PointNet [28], and its extended hier-

archical version [30]. They use combinations of multi-layer

perceptions and pooling operations to achieve permutation

invariance on the point set. Their insights also inspire sev-

eral following works on point cloud learning in terms of im-

proving the scalability and enhancing the local information

of point cloud structure [20, 36, 14, 41]. In these methods,

the neighborhood of a point is found by the radius-search

or K nearest neighbors, which does not keep the original

geodesic neighborhood on meshes. This could be a poten-

tial problem when the geodesic distance and Euclidean dis-

tance vary significantly in the mesh model.

Geometric deep learning on meshes The mesh can be

consumed by geometric deep learning techniques [3] for the

non-rigid shape correspondence task. 1) If the mesh is seen

as a graph, several works have proposed to apply the spec-

tral analysis on the eigen decomposition of the Laplacian

of mesh graph [4, 8] to establish dense correspondences be-

tween deformable shapes. A general limitation is the cross-

domain generalization issue, which is later addressed by

spectral transformers [46] to some extent. Dirac operator

is an alternative to Laplacian operator which yields better

stability in some scenarios [16]. 2) If seen as a manifold

6144

surface, the mesh can be applied with geodesic convolution-

s [24, 2, 26] on local patches, enjoying better generalization

across domains than spectral methods. These techniques

show great performance on non-rigid shape correspondence

task but the receptive field of a polar filter [24] is very small

and thus it is unclear how to extract high-level features. Be-

sides of using polar filter, a recent work [27] proposes to ap-

ply standard convolution on tangential projections of local

patches and construct the hierarchy via mesh simplification.

3) The third class of techniques apply global parameteriza-

tion to the mesh and flatten it to 2D images [35, 23]. Our

work belongs to this class, while the other two works are

the GeometryImage [35] and the “flat-torus” method [23].

These methods enjoy common benefits derived from CNNs,

but both of them unfold the mesh to a complete squared

map, which induces considerable distortions. Besides, their

methods require genus-0 input, otherwise they would crude-

ly fill all topological holes. Regarding the parameteriza-

tion, the one in GeometryImage [35] is not seamless, while

the network in “flat-torus” method [23] is not invariant to

the parameterization, depending on the cut of three chosen

points on the mesh. Our work addresses the distortion and

parameterization-dependent issues and presents a practical

approach to mesh learning.

3. Mesh learning via texture maps

This section illustrates the detailed procedure of mesh

learning in the texture map space. In Section 3.1, we de-

scribe how the input texture map is generated from a pure

mesh or a textured mesh. In Section 3.2, we introduce the

cross-atlas module to recover the connectivities of separat-

ed atlases. In Section 3.3, we present network architectures

for classification and semantic segmentation tasks.

3.1. Generating texture maps

In the preprocessing step, the input is a triangular mesh

M = {V, T}, where V = {vi} and T = {ti} correspond

to the vertices and triangles respectively. If it’s a polygon

mesh we simply triangulate the faces. The mesh can be

with or without textures. The output includes a texture map

(H × W × C) and an offset map (H × W × 2k2) for the

network input, where k is the kernel size for convolution.

Mesh without textures: if a pure mesh is given (e.g.,

Fig. 1(a) in ModelNet [43]), we create the UV param-

eterization by segmenting the mesh to multiple atlases

(Fig. 1(c)), and then rasterize the geometric features to a

H×W×C texture map Fig. 1(d). Our goal is similar to pre-

vious parameterization algorithms [17, 48] aiming at how

to find the cuts for minimized atlas distortions. Specifically,

we first find a minimum set of dominant projection direc-

tions P = {Pi ∈ R
3} such that the angle between each tri-

angle normal n(ti) and its best projection vector Pti is less

(a) Input mesh (b) Dominant projection vectors

(c) UV parameterization

by bin-packing
(d) Rasterized geometric

features as texture map

256

2
5

6

Figure 1: For a pure mesh (a), we compute its dominant projec-

tions (b), and pack atlases in one UV map (c). The geometric

feature (e.g., vertex coordinate) is rasterized to a texture map (d).

than a threshold, i.e., ∠(
−−→
n(ti),

−→
Pti) < τangle. By default

τangle = 40◦. When the angle ∠(
−−→
n(ti),

−→
Pti) approaches 0◦,

the projection is exactly tangential and has minimized local

distortion [27]. After that, we cluster the projected triangles

to atlases via connected components, and pack them into

one squared map using bin-packing [15]. With this UV pa-

rameterization, we can rasterize the geometric feature of the

mesh to a H×W texture map T. Note that the pixel in tex-

ture map T(x, y) = [f1, f2, ..., fc]
T is a C-dimensional fea-

ture vector, instead of RGB values of the standard definition

of “texture maps”. The choice of geometric feature could be

intrinsic features (e.g., curvatures, heat kernel signatures) or

extrinsic properties (e.g., spatial coordinates, normals), or

even concatenating multiple of them, depending on specific

tasks. For invalid regions we simply fill zeros. The output

texture map is of size H × W × C, where H × W is the

spatial resolution and C the feature channel.

Mesh with textures: if the mesh comes with textures, we

still generate our own parameterization using above algo-

rithm. The RGB color in original texture maps is an ad-

ditional feature that can be concatenated to the geometric

feature vector T(x, y). We do not use the original parame-

terization as we need to ensure two criteria. 1) The parame-

terization should be area-preserving, which means the areas

of mesh triangles and their projected areas in 2D maps are

proportional. It ensures the receptive field of 2D convolu-

tion over the texture map corresponds to equal geodesic area

over the mesh surface (also mentioned in [35]). 2) It should

be rotation-aligned: the rotation of atlas in the original tex-

ture map could be arbitrary, making the later convolution

suffer from rotation ambiguities. In our generated texture

map, the rotation of each atlas is aligned with the negative

Z-axis (usually the gravity direction), such that the visual

content of atlases is upright.

6145

Input feature map Output feature map

p
in

p
out

p
across

Figure 2: Illustration of three situations in cross-atlas convolution:

pin (standard convolution); pacross (cross-atlas convolution with

offsets); pout(invalid pixel always = 0).

Offset maps: Unlike natural images, atlases in texture

map are discontinuous and locate unpredictably. To bridge

the atlases and apply convolution across them, we also gen-

erate the offset map of size (H × W × 2k2, k is the ker-

nel size), which encodes the neighborhood information be-

tween atlas boundaries. We will describe how to create it in

the next section together with the cross-atlas convolution.

3.2. Cross­atlas convolution via kernel offsets

The standard 2D convolution computes the output fea-

ture map Fo via the weighted sum of a k size regular patch

over every pixel p = (x, y) at the input feature map Fi:

Fo(p) =
∑

pn∈R

Fi(p+ pn) · g(pn), (1)

where g(·) is the kernel weight and R = {pn} = {(x, y) :
−k−1

2 ≤ x, y ≤ k−1
2 } enumerates neighboring locations of

the center pixel and indicates the receptive field.

This equation holds when the k×k local neighborhood is

straightforward in natural images. For texture maps where

atlases are isolated, two neighboring surface points on the

mesh can lie at two separated atlases. To recover the o-

riginal mesh geodesic neighborhood, the 2D convolution

should be able to apply across atlases.

To this end, when rasterizing the texture maps (Sec-

tion 3.1), we encode the atlas connectivity information by

generating the corresponding offset map Roffset with the

same spatial resolution H × W and channel length 2k2,

where each pixel p in the offset map has a k × k patch

indicating the offsets of x-axis and y-axis:

Roffset(p) = {(△x,△y)} (2)

= {△pn}, |Roffset(p)| = k2. (3)

The offset values Roffset(p) = {△pn} are augmented to

the standard neighboring locations R = {pn} and redirect

the pixel to another location which corresponds to the actual

mesh geodesic neighborhood, i.e., R+Roffset(p) = {p+
pn + △pn} are the geodesic neighboring locations of p.

The original equation in Eq. 1 becomes

Fo(p) =
∑

pn∈R

△pn∈Roffset (p)

Fi(p+ pn +△pn) · g(pn). (4)

The offset value can be fractional, and we use bilinear in-

terpolation to sample the pixel. As illustrated in Fig. 2, we

classify the texture map into three regions, denoted by pix-

els pin,pout,pacross.

pin : When the convolution is applied over the inner-atlas

region, the standard pixel neighborhood is correspond-

ing to the mesh geodesic neighborhood, and thus no

offset should be added: Roffset(pin) = {(0, 0)}.

pout : When applying over the out-of-atlas region, this pix-

el value is invalid and should be kept isolated in or-

der not to contaminate other pixels. We use offset

values inverse to R, i.e., Roffset(pout) = −R and

pout + pn +△pn = pout. This ensures Fo(pout) =
Fi(pout) = 0 throughout the network.

pacross : When the standard R is just across the border of

an atlas, we add the precomputed offset values to its

standard locations, so pacross+pn+△pn should just

locate at the true mesh geodesic neighborhood.

Therefore, only pixels pacross need to compute their offset

values. The pixels pacross are determined by the kernel

size: if we place a k-size filter kernel within the atlas at p

and there are some pixels of this kernel locate out of the

atlas, then p = pacross. For a 3 × 3 kernel as an example,

we compute the offsets for 1-ring atlas boundary pixels.

To compute offset values for a center pixel p regarding

its neighbor pixel p + pn lying out of atlas, we rasterize

the vertex coordinates with resolution H × W to a map,

where we can instantly query from the pixel p to the 3D

point X on mesh surface. Then we use the Fast March-

ing [38] to search the geodesic neighbor point of X along
−→
pn direction, yielding the point X′. The X′ finds its corre-

sponding texture coordinates p′ on the texture map. Finally

△p = p′ − p− pn is the offset value.

Note that unlike standard convolution on natural images

can add paddings to image boundaries, the cross-atlas con-

volution has no “image boundaries” – if the mesh surface is

water-tight, every pixel in texture map can find its neighbor-

hood. If it is an open mesh and the pixel exactly corresponds

to the mesh boundary that finds no neighborhood, it simply

fills zero value (analogous to the zero padding effect).

Deconvolution In semantic segmentation tasks where the

feature map is finally up-sampled to the input resolution,

deconvolution (or transposed convolution) is a popular op-

eration [21]. Essentially, deconvolution can be decomposed

into 1) scattering pixels evenly from the sparse feature map

to the dense feature map, and 2) applying convolution over

this map. We can simply replace the convolution with the

cross-atlas version when up-sampling texture maps.

6146

Textured mesh Texture map

Pure mesh Texture map

airplane

bathtub

bed

…

0.96

0.01

0.01

…

Cross-atlas convolution

and pooling (Sec. 3.2)

…

Deconvolution layers (FCN)

…

H
1

x
 W

1
x

 C
1

H
2

x
 W

2
x

 C
2

H
n

x
 W

n
x

 C
n

reshape

Multi-layer perceptrons + row max pooling (PointNet)

(H
n

x
 W

n
)

Cn

MLP

Cm

row max

pooling
FC

Cm
Cn_class

H
n

x
 W

n
x

 C
n

H
n

-1
x

 W
n

-1
x

 C
n

-1

H
1

x
 W

1
x

 C
n

_
cl

as
s

classification

semantic segmentation

softmax

Generating texture maps (Sec. 3.1) Classification and segmentation networks (Sec. 3.3)

Convolutions and pooling

H
n

-1
x

 W
n

-1
x

 C
n

-1

skip
offset

map

Figure 3: The classification and segmentation network architectures of our method. We use 4∼19 convolutional/pooling layers, 5∼7 MLP

layers, 2∼3 FC layers and 4∼8 deconvolution layers. The concrete number of layers varies in specific tasks.

Pooling The standard pooling operation is often used to

reduce dimensions of feature maps:

Fo(po) = poolk×k(Fi(p),Fi(p+pn), ...), ∀pn ∈ R (5)

where po is the location at the lower spatial resolution out-

put feature map. The poolk×k can be max, average or sum

operation.

In cross-atlas pooling, the behavior is similar as cross-

atlas convolution by replacing the standard image pixel

neighborhood with the mesh geodesic neighborhood:

Fo(po) =poolk×k(Fi(p),Fi(p+ pn +△pn), ...),

∀pn ∈ R,△pn ∈ Roffset(p). (6)

Hierarchies For a specific H×W dimension feature map

and the kernel size k, the corresponding offset map is u-

nique. In the CNN pipeline, the spatial dimension of the

feature map may change by in-network upsampling and

downsampling. Therefore, the corresponding offset maps

for all possible feature map dimensions need to be com-

puted beforehand. Generally, we compute the hierarchy of

offset maps by rasterizing a pyramid of resolutions, where

each lower level is half in width and height of the upper

level. The offset map with larger kernel size can be reused

in the operation with smaller kernel. e.g., we can take the

central 3× 3 from 5× 5 offset locations. Note that in lower

spatial dimensions, some small atlases might disappear as

the rendering area is smaller than one pixel, but their fea-

ture information does not lose – it is absorbed by pixels in

other atlases via cross-atlas convolution.

There are some similarities between our design and the

deformable convolution [7] as they both leverage offset val-

ues to the convolution. However, our offset map is pre-

computed in order to recover the geodesic neighborhood,

while offset values in [7] are trainable for a more flexible

receptive field in objection detection problem.

3.3. Network architecture

We have integrated the cross-atlas convolution into clas-

sification and semantic segmentation architectures. The

comprehensive architecture is illustrated in Fig. 3.

Classification A generic classification network extracts

the high-level feature from the input. The common prac-

tice is to apply convolutions or pooling to reduce the spa-

tial dimension and increase the channel dimension, and then

flatten to a 1D global feature vector, followed by fully con-

nected (FC) layers and softmax, yielding the class label.

To apply classification on the (textured) mesh, we first

convert it to the H1 × W1 × C1 input feature map (Sec-

tion 3.1) and its corresponding offset map. Then, we replace

the standard convolution and pooling with our cross-atlas

version. After bypassing n layers of cross-atlas convolu-

tions, it obtains a feature map with dimensions Hn ×Wn ×
Cn. At this moment, we cannot simply flatten it to a 1D

feature vector like the standard network does, because the

spatial locations of pixels in this feature map are permutable

when atlases are packed in a different way (e.g., swap the at-

las A and B in Fig. 2). Inspired by PointNet [28], we regard

each valid pixel in the Hn ×Wn ×Cn feature map is a per-

mutable “point”. We reshape it to (Hn×Wn)×Cn×1, i.e.,

each Cn-channel pixel is expanded to one row. Then we

apply multi-layer perceptrons (MLPs) and row-wise max

pooling to obtain a m-channel 1D feature vector. Finally

fully connected layers and softmax are applied and outputs

the nclass-channel 1D feature vector indicating the proba-

bilities of classes. We use ReLU as our activation function.

The specific numbers of layers and the feature map dimen-

sion vary according to the task complexity.

Segmentation The segmentation is a pixel-wise classifi-

cation task. Its former part is similar to classification which

yields the Hn × Wn × Cn feature map via several layers

of convolution and pooling. Unlike classification which ex-

tracts the global feature in the later modules, it up-samples

6147

the feature map to an original resolution annotation map

H1 × W1 × Cnclass
. Here, we leverage the deconvolution

in FCN [21] as our up-sampling layers, and replace their

convolution with our cross-atlas version. We add three skip

connections between convolution and deconvolution layers.

4. Understanding the cross-atlas convolution

In this section, we discuss three important properties of

the proposed method. 1) It is robust to irregular meshes. 2)

It is invariant to texture parameterization. 3) The receptive

field follows the mesh geodesic distance.

(a) Original mesh and

the meshing structure

(b) Reconstructed by

the 256 x 256 texture map

(d) Reconstructed by

the 1024 x 1024 texture map

Figure 4: The original mesh (a) and reconstructed meshes from

texture maps (b)(c). Our method is invariant to irregular mesh

input: applying convolution over the texture map is analogous to

applying over the vertices of reconstructed regular meshes.

Robust to irregular meshes By design, a 3D shape can

be meshed with very different vertex connectivities, but it is

undesirable that different meshing would cause inconsistent

semantic predictions. In our approach, the texture map ras-

terization in the first step can be deemed as “remeshing” –

if we connect every 4-neighborhood of vertices correspond-

ing to texture map pixels, it reconstructs a regular mesh as

shown in Fig. 4. Therefore, applying convolution over the

texture map is analogous to applying over the vertices of

these regular meshes. It is straightforward that using a high-

er resolution of texture map retains more geometric details

(e.g., bed legs in Fig. 4(c)(d)).

Invariant to parameterization When generating the tex-

ture map (Section 3.1), the parameterization is unpre-

dictable. Essentially, it has two uncertainties: 1) how at-

lases are cut and 2) how atlases are packed. Here we ex-

plain why our method is invariant to these two uncertainties.

Atlas cutting: recall that in Section 3.1, we set an an-

gle threshold τangle to tradeoff the amount of atlases and

their distortions – setting τangle too small may lead to many

fragmentary atlases, and vice versa. Despite how they are

cut, their neighborhood information is encoded in the off-

set map, informing the network to convolve across discon-

tinuous atlases. With a proper value of τangle, we can as-

sume the distortion is relatively small. Although such a s-

mall distortion of atlas still has an unpredictable variance,

it is analogous to the practice of augmenting training data

where a random mild transform is applied to training sam-

ples, which helps prevent from over-fitting.

Atlas packing: the only uncertainty in atlas packing is

their spatial locations (i.e., translations), as we have already

aligned the rotation and preserve the scale of atlas area. Our

network architectures are invariant to the translation of at-

las. Imagine that we exchange locations between atlas A

and B in Fig. 2: regarding the segmentation task, the net-

work is fully convolutional, which is translation equivalent.

Therefore, altering locations of atlas shall yield consistent

predictions if the correct offset map is given. As for classifi-

cation task, the global feature is extracted by PointNet [28],

which is by design invariant to set permutation. It extracts i-

dentical features regardless of the pixel spatial location vari-

ance in the last convolutional feature map (Hn×Wn×Cn).

Note that the rotation alignment of Z-axis only disam-

biguates X- and Y- axises rotational varieties. The in-plane

rotation perpendicular to Z-axis is still ambiguous, which is

a common problem in many previous works [25, 35, 28].

Likewise, we alleviate it by augmenting the training data

with randomly rotations along Z-axis. Some related works

use polar convolution [24, 2, 26] or angular pooling [27, 42]

to achieve fully rotational invariance, as their task is more

sensitive to geometries. We do not use them in our current

framework and leave it as a potential improvement.

32

3
2

64

6
4

1
2

8

128

center pixel

(c) The corresponding receptive

field on the textured mesh

(b) The receptive field on

512 x 512 texture map

(a) The illustration of three

range receptive fields

Figure 5: Illustration of the receptive field. If we dilate the re-

ceptive field from a center pixel on the texture map and redirect

when reaching to atlas boundaries, the field would be separated

in severel atlases (b). Its corresponding field on textured mesh is

approximately the geodesic field.

Receptive fields Although the convolution is applied over

2D texture maps, its receptive field follows the mesh

geodesic distance. This is done by using the offset map

to redirect pixel locations. Fig. 5 illustrates this behavior:

we color-code the receptive fields of 32 × 32, 64 × 64,

128×128 of a center pixel in red, blue and green respective-

ly. As we dilate a pixel to a block-wise field in the texture

map (redirecting to the offset location when reaching to at-

las boundaries), the field is actually separated in several at-

lases (Fig. 5(b)). On the contrary, its corresponding textured

mesh shows the block-wise geodesic receptive field over its

surface (Fig. 5(c)). Note that the receptive field on the mesh

is not strictly following the geodesic distance due to the dis-

tortion in atlas projections, but it is a good approximation

given the distortion is constrained by τangle in Section 3.1.

6148

5. Experiments

We implement the texture map generation (Section 3.1)

in C++, and the network (Section 3.3) using Tensorflow.

Our method is evaluated on MeshMNIST [16], Model-

Net [43] and Ruemonge2014 [32].

The network for MeshMNIST and ModelNet classifica-

tion follows the architecture in Section 3.3. We use 4(con-

v.)+5(MLP)+3(FC) layers for the MeshMNIST task, and

8(conv.)+5(MLP)+3(FC) layers for ModelNet task. Both

are optimized with 100 epochs by AdamOptimizer with

learning rate = 0.001. The batch sizes are 100 and 5 for

two task respectively.

The network for Ruemonge2014 segmentation is modi-

fied based on the fully convolutional networks (FCN) [21]

with VGG19 [34]. This network exactly corresponds to our

generic segmentation architecture in Fig. 3: the VGG part

corresponds to the cross-atlas convolution. We replace all

3 × 3 convolutions and 2 × 2 pooling in VGG and the de-

convolution in FCN with our cross-atlas version. We train

this network with 100 epochs with AdamOptimizer (learn-

ing rate = 1e-4) and 10 batch size.

5.1. MeshMNIST

The original MNIST dataset contains handwritten dig-

it images at 28 × 28 resolution (Fig. 6(a)). The MeshM-

NIST [16] converts the digit image to a triangulated mesh

by mapping the intensity to the height-field of the mesh.

Although MeshMNIST is first used in [16] for the evalua-

tion of their generative model, we conduct a classification

experiment using the meshes.

We inversely map the height-field back to intensity

(Fig. 6(b)), segment the mesh and pack atlases in the tex-

ture map (Fig. 6(c)). The texture map and its corresponding

offset map are fed into our network to train a classifier.

(a) The original MNIST (c) The texture map of mesh(b) The MeshMNIST

Figure 6: The MNIST data sample (a) is texture mapped to a mesh

(b), and its texture map is not visually recognizable as in (c).

Conv. layers FC layers
MNIST

Acc.

MeshMNIST

Acc.

Standard conv. Standard FC 99.2% 30.8%

Standard conv MLP+MaxPool+FC 96.8% 88.6%

Cross-atlas conv. MLP+MaxPool+FC 96.8% 96.5%

Table 1: The testing accuracy of different combinations. MNIST

– normal digit images, MeshMNIST – texture maps.

Ablation study To better validate the effectiveness of

each component, we start with the standard LeNet5 on o-

riginal MNIST dataset, and then replace with our compo-

nents one by one. Table 1 shows the comparisons of using

differnet modules and dataset.

The standard LeNet5 consists of 4 conv. layers and 3 FC

layers, achieving 99.2% on the original MNIST dataset, and

30.8% if directly applied on texture maps. If we replace the

standard FC layers with the MLP+max pooling+FC mod-

ules, the accuracy drops by 2.4% on standard image, and in-

creases to 88.6% on texture maps, due to the loss of spatial

information and meanwhile achieving translational invari-

ance. If we further integrates the cross-atlas convolution

and pooling in the network, the accuracy on texture maps

increases to 96.5%.

5.2. ModelNet classification

We evaluate our approach for 3D shape classification

task on the two versions of the large scale Princeton Mod-

elNet dataset [43]: ModelNet40 and ModelNet10, which

consist of 40 and 10 classes respectively. We follow the

same experiment setting as in [43]. The vertex coordinates

are rasterized to the texture map at 256× 256 resolution for

the network input. As our texture bin-packing algorithm is

randomized, we generate the input texture map by running

multiple times to augment the training data, as well as ran-

domly rotating the model along Z-axis.

Method Input
ModelNet40

accuracy

ModelNet10

accuracy

MVCNN [37] image 90.1% -

RotationNet [11] image 97.37% 98.46%

VoxNet [25] volume 83% 92%

MVCNN+MultiRes [29] img.+vol. 91.4% -

PointNet [28] point 89.2% -

PointNet++ [30] point 91.9% -

SHR [12] mesh 68.2% 79.9%

GeometryImage[35] mesh 83.9% 88.4%

Ours mesh 87.5% 91.2%

Table 2: The overall classification accuracies of the multi-view

image, volume, point and mesh representations.

Table 2 shows the classification accuracy in testing.

We have listed representative state-of-the-art methods of

using different geometry representations, namely multi-

view images, volumes, points and meshes. Our method

achieves better results than the other two mesh-based meth-

ods [12, 35], while it is overall not as competitive as multi-

view images or point-based methods. We perceive the CAD

mesh has a signification problem that hinders the perfor-

mance of mesh-based methods: some structure in the mesh

model should have been topologically connected, but in fact

they are just overlaid together. This makes the geodesic re-

ceptive field erroneous. On the contrary, multi-view image

projection or point-based method can avert the problem.

6149

(a) Input textured mesh (b) Our result (before fusion) (c) Our result (after fusion) (d) Ground truth

Figure 7: The qualitative comparison of semantic segmentation results on the Ruemonge2014 dataset [32].

5.3. Ruemonge2014 segmentation

We evaluate the semantic segmentation performance on

the Ruemonge2014 dataset [32], which consists of 428

street images, their camera poses and reconstructed mesh-

es by multi-view stereo. The images and mesh come with

ground truth semantic labels of seven classes, namely the

window, wall, balcony, door, roof, sky and shop. The

dataset is separated into training samples and testing sam-

ples. To evaluate, the class-averaged intersection over union

(IoU) are per-triangle label accuracy are used.

To generate the textured mesh, we run the multi-view

texturing algorithm [39] using the given images and camera

poses. Then, we segment the training mesh part into 100

overlapped mesh segments, each has a 512 × 512 texture

map. Here, the RGB + height values are used in the texture

map channel.

Method
triangle

accuracy

class avg.

IoU

Riemenschneider [32] - 41.92%

Gadde [9] - 63.70%

Ours (texture) 65.90% 61.58%

Ours (texture+fusion) 74.27% 67.15%

Ours (image+fusion) 71.81% 64.84%

Ours (texure+image+fusion) 75.09% 67.91%

Table 3: The evaluation of mesh-based semantic segmentation on

the Ruemonge2014 dataset [32]

(a) Inconsistent atlas boundaries

between GT and prediction

GT

(b) Erroneous labels at texture seams

and small atlases

Prediction

Figure 8: The problem of semantic segmentation on texture maps:

the atlas boundaries are not alway consistent with ground truth (a),

leading to erroneous labels at texture seams (b).

Fig. 8 shows the testing result on one sample. We no-

tice that the predicted annotation map does not have exactly

the same atlas boundaries as the ground truth, and some s-

mall atlases are even filtered out (Fig. 8(a)). This problem

is analogous to “over-rounded” artifacts in segmentation,

whereas for texture maps the atlas may slightly dilate or

erode. This issue leads to erroneous labels at texture seams

when mapping the annotation map to the mesh (Fig. 8(b)).

Fusion in testing stage Inspired by the multi-scale testing

trick used in common semantic segmentation methods, we

conduct the testing on 50 individual and overlapped parts,

and fuse them afterwards: each triangle label is finally de-

termined by the label of majority pixels. This improves the

result significantly, from 61.58% to 67.15% IoU as shown

in Table 3. Overall, our method surpass the second place

in the Ruemonge2014 challenge benchmark [32] by a large

margin. Fig. 7 shows the qualitative results.

Train on images, test on textured meshes With cross-

atlas convolution, the network can be trained and tested on

texture maps with corresponding offset maps. One may

wonder if the network can also be trained on natural im-

ages and tested on texture maps – we can regard the natural

image as a single-atlas “texture map” with zero offsets. To

validate, we take street view images (augmented with the

height value) and the ground truth given in the dataset for

training. The testing accuracy turns out decent, achieving

71.81% triangle label accuracy and 64.84% IoU. If we com-

bine images and texture maps for training, the result is by

0.76% marginally better than only training on texture maps.

This shows our method is flexible in terms of the training

data – it can be trained on natural images and tested on tex-

ture maps of meshes as long as they have the same content.

6. Conclusion

We have proposed a parameterization invariant approach

to textured mesh learning. The key to this method is

the cross-atlas operations which recover the mesh geodesic

neighborhood although it applies on 2D domain. An in-

teresting future research would be adding the 3D objec-

t proposal on textured meshes and bridge the gap be-

tween semantic understanding and large-scale 3D recon-

struction [22, 33, 47, 49, 44, 45, 19, 18], to potentially en-

able a fully automatic pipeline of reconstruction and seman-

tic understanding in large-scale 3D scenes.

Acknowledgment. This work is supported by Hong Kong

RGC GRF 16203518, T22-603/15N, ITC PSKL12EG02.

We thank the support of Google Cloud Platform.

6150

References

[1] F. Bogo, J. Romero, M. Loper, and M. J. Black. FAUST:

Dataset and evaluation for 3D mesh registration. In Proceed-

ings IEEE Conf. on Computer Vision and Pattern Recogni-

tion (CVPR), Piscataway, NJ, USA, June 2014. IEEE. 1

[2] D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein. Learn-

ing shape correspondence with anisotropic convolutional

neural networks. In Advances in Neural Information Pro-

cessing Systems, pages 3189–3197, 2016. 1, 3, 6

[3] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-

dergheynst. Geometric deep learning: going beyond eu-

clidean data. IEEE Signal Processing Magazine, 34(4):18–

42, 2017. 1, 2

[4] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral

networks and locally connected networks on graphs. arXiv

preprint arXiv:1312.6203, 2013. 1, 2

[5] A. Dai, A. X. Chang, M. Savva, M. Halber, T. A. Funkhouse-

r, and M. Nießner. Scannet: Richly-annotated 3d reconstruc-

tions of indoor scenes. In CVPR, volume 2, page 10, 2017.

1, 2

[6] A. Dai and M. Nießner. 3dmv: Joint 3d-multi-view predic-

tion for 3d semantic scene segmentation. In Proceedings

of the European Conference on Computer Vision (ECCV),

2018. 1, 2

[7] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and

Y. Wei. Deformable convolutional networks. CoRR, ab-

s/1703.06211, 1(2):3, 2017. 5

[8] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolu-

tional neural networks on graphs with fast localized spectral

filtering. In Advances in Neural Information Processing Sys-

tems, pages 3844–3852, 2016. 1, 2

[9] R. Gadde, V. Jampani, R. Marlet, and P. V. Gehler. Efficient

2d and 3d facade segmentation using auto-context. IEEE

transactions on pattern analysis and machine intelligence,

40(5):1273–1280, 2018. 8

[10] E. Kalogerakis, M. Averkiou, S. Maji, and S. Chaudhuri. 3d

shape segmentation with projective convolutional networks.

In Proc. CVPR, volume 1, page 8, 2017. 1, 2

[11] A. Kanezaki, Y. Matsushita, and Y. Nishida. Rotationnet:

Joint object categorization and pose estimation using multi-

views from unsupervised viewpoints. In Proc. 2018 IEEE

Conf. on Computer Vision and Pattern Recognition, pages

5010–5019, 2018. 1, 2, 7

[12] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation

invariant spherical harmonic representation of 3 d shape de-

scriptors. In Symposium on geometry processing, volume 6,

pages 156–164, 2003. 7

[13] T. N. Kipf and M. Welling. Semi-supervised classification

with graph convolutional networks. arXiv preprint arX-

iv:1609.02907, 2016. 1

[14] R. Klokov and V. Lempitsky. Escape from cells: Deep kd-

networks for the recognition of 3d point cloud models. In

Computer Vision (ICCV), 2017 IEEE International Confer-

ence on, pages 863–872. IEEE, 2017. 2

[15] R. E. Korf. A new algorithm for optimal bin packing. In

AAAI/IAAI, pages 731–736, 2002. 3

[16] I. Kostrikov, Z. Jiang, D. Panozzo, D. Zorin, and B. Joan.

Surface networks. In 2018 IEEE Conference on Computer

Vision and Pattern Recognition, CVPR 2018, 2018. 1, 2, 7

[17] B. Lévy, S. Petitjean, N. Ray, and J. Maillot. Least squares

conformal maps for automatic texture atlas generation. In

ACM transactions on graphics (TOG), volume 21, pages

362–371. ACM, 2002. 2, 3

[18] S. Li, S. Y. Siu, T. Fang, and L. Quan. Efficient multi-

view surface refinement with adaptive resolution control. In

European Conference on Computer Vision, pages 349–364.

Springer, 2016. 8

[19] S. Li, Y. Yao, T. Fang, and L. Quan. Reconstructing thin

structures of manifold surfaces by integrating spatial curves.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2887–2896, 2018. 8

[20] Y. Li, R. Bu, M. Sun, and B. Chen. Pointcnn. arXiv preprint

arXiv:1801.07791, 2018. 2

[21] J. Long, E. Shelhamer, and T. Darrell. Fully convolution-

al networks for semantic segmentation. In Proceedings of

the IEEE conference on computer vision and pattern recog-

nition, pages 3431–3440, 2015. 4, 6, 7

[22] Z. Luo, T. Shen, L. Zhou, S. Zhu, R. Zhang, Y. Yao, T. Fang,

and L. Quan. Geodesc: Learning local descriptors by inte-

grating geometry constraints. In Proceedings of the Euro-

pean Conference on Computer Vision (ECCV), pages 168–

183, 2018. 8

[23] H. Maron, M. Galun, N. Aigerman, M. Trope, N. Dym,

E. Yumer, V. G. Kim, and Y. Lipman. Convolutional neural

networks on surfaces via seamless toric covers. ACM Trans.

Graph, 36(4):71, 2017. 2, 3

[24] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst.

Geodesic convolutional neural networks on riemannian man-

ifolds. In Proceedings of the IEEE international conference

on computer vision workshops, pages 37–45, 2015. 1, 3, 6

[25] D. Maturana and S. Scherer. Voxnet: A 3d convolutional

neural network for real-time object recognition. In Intelligent

Robots and Systems (IROS), 2015 IEEE/RSJ International

Conference on, pages 922–928. IEEE, 2015. 1, 2, 6, 7

[26] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and

M. M. Bronstein. Geometric deep learning on graphs and

manifolds using mixture model cnns. In Proc. CVPR, vol-

ume 1, page 3, 2017. 1, 3, 6

[27] H. Pan, S. Liu, Y. Liu, and X. Tong. Convolutional neural

networks on 3d surfaces using parallel frames. arXiv preprint

arXiv:1808.04952, 2018. 3, 6

[28] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation.

Proc. Computer Vision and Pattern Recognition (CVPR),

IEEE, 1(2):4, 2017. 1, 2, 5, 6, 7

[29] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J.

Guibas. Volumetric and multi-view cnns for object classifi-

cation on 3d data. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 5648–5656,

2016. 1, 2, 7

[30] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hi-

erarchical feature learning on point sets in a metric space. In

Advances in Neural Information Processing Systems, pages

5099–5108, 2017. 1, 2, 7

6151

[31] G. Riegler, A. O. Ulusoy, and A. Geiger. Octnet: Learn-

ing deep 3d representations at high resolutions. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, volume 3, 2017. 2

[32] H. Riemenschneider, A. Bódis-Szomorú, J. Weissenberg,

and L. Van Gool. Learning where to classify in multi-view

semantic segmentation. In European Conference on Com-

puter Vision, pages 516–532. Springer, 2014. 7, 8

[33] T. Shen, S. Zhu, T. Fang, R. Zhang, and L. Quan. Graph-

based consistent matching for structure-from-motion. In

European Conference on Computer Vision, pages 139–155.

Springer, 2016. 8

[34] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014. 7

[35] A. Sinha, J. Bai, and K. Ramani. Deep learning 3d shape

surfaces using geometry images. In European Conference

on Computer Vision, pages 223–240. Springer, 2016. 2, 3, 6,

7

[36] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M.-H.

Yang, and J. Kautz. SPLATNet: Sparse lattice networks for

point cloud processing. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

2530–2539, 2018. 1, 2

[37] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-

view convolutional neural networks for 3d shape recognition.

In Proceedings of the IEEE international conference on com-

puter vision, pages 945–953, 2015. 1, 2, 7

[38] V. Surazhsky, T. Surazhsky, D. Kirsanov, S. J. Gortler, and

H. Hoppe. Fast exact and approximate geodesics on meshes.

In ACM transactions on graphics (TOG), volume 24, pages

553–560. Acm, 2005. 4

[39] M. Waechter, N. Moehrle, and M. Goesele. Let there be col-

or! large-scale texturing of 3d reconstructions. In European

Conference on Computer Vision, pages 836–850. Springer,

2014. 8

[40] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong.

O-cnn: Octree-based convolutional neural networks for 3d

shape analysis. ACM Transactions on Graphics (TOG),

36(4):72, 2017. 2

[41] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and

J. M. Solomon. Dynamic graph cnn for learning on point

clouds. arXiv preprint arXiv:1801.07829, 2018. 2

[42] D. E. Worrall, S. J. Garbin, D. Turmukhambetov, and G. J.

Brostow. Harmonic networks: Deep translation and rotation

equivariance. In Proc. IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR), volume 2, 2017. 6

[43] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3d shapenets: A deep representation for volumetric

shapes. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 1912–1920, 2015. 1,

2, 3, 7

[44] Y. Yao, S. Li, S. Zhu, H. Deng, T. Fang, and L. Quan. Rela-

tive camera refinement for accurate dense reconstruction. In

2017 International Conference on 3D Vision (3DV), pages

185–194. IEEE, 2017. 8

[45] Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan. Mvsnet: Depth

inference for unstructured multi-view stereo. In Proceedings

of the European Conference on Computer Vision (ECCV),

pages 767–783, 2018. 8

[46] L. Yi, H. Su, X. Guo, and L. J. Guibas. Syncspeccnn: Syn-

chronized spectral cnn for 3d shape segmentation. In CVPR,

pages 6584–6592, 2017. 1, 2

[47] R. Zhang, S. Zhu, T. Fang, and L. Quan. Distributed very

large scale bundle adjustment by global camera consensus.

In Proceedings of the IEEE International Conference on

Computer Vision, pages 29–38, 2017. 8

[48] K. Zhou, J. Synder, B. Guo, and H.-Y. Shum. Iso-charts:

stretch-driven mesh parameterization using spectral analy-

sis. In Proceedings of the 2004 Eurographics/ACM SIG-

GRAPH symposium on Geometry processing, pages 45–54.

ACM, 2004. 2, 3

[49] S. Zhu, R. Zhang, L. Zhou, T. Shen, T. Fang, P. Tan, and

L. Quan. Very large-scale global sfm by distributed mo-

tion averaging. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4568–

4577, 2018. 8

6152

