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Abstract

Multi-person pose estimation is fundamental to many

computer vision tasks and has made significant progress

in recent years. However, few previous methods explored

the problem of pose estimation in crowded scenes while

it remains challenging and inevitable in many scenarios.

Moreover, current benchmarks cannot provide an appro-

priate evaluation for such cases. In this paper, we pro-

pose a novel and efficient method to tackle the problem

of pose estimation in the crowd and a new dataset to bet-

ter evaluate algorithms. Our model consists of two key

components: joint-candidate single person pose estimation

(SPPE) and global maximum joints association. With multi-

peak prediction for each joint and global association us-

ing the graph model, our method is robust to inevitable

interference in crowded scenes and very efficient in infer-

ence. The proposed method surpasses the state-of-the-art

methods on CrowdPose dataset by 5.2 mAP and results on

MSCOCO dataset demonstrate the generalization ability

of our method. Source code and dataset are available at

https://github.com/Jeff-sjtu/CrowdPose

1. Introduction

Estimating multi-person poses in images plays an im-

portant role in the area of computer vision. It has at-

tracted tremendous interest for its wide applications in ac-

tivity understanding [14, 11], human-object interaction de-

tection [41, 37], human parsing [18, 42] etc. Some works

focus on 3D human pose estimation [33, 34, 31]. Currently,

most of the 2D methods can be roughly divided into two

categories: i) top-down approaches that firstly detect each

person and then perform single person pose estimation, or

ii) bottom-up approaches which detect each joint and then

associate them into a whole person.

†Cewu Lu is the corresponding author.
∗Cewu Lu is a member of Department of Computer Science and Engi-

neering, Shanghai Jiao Tong University, MoE Key Lab of Artificial Intelli-

gence, AI Institute, Shanghai Jiao Tong University, and SJTU-SenseTime

AI Lab.
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Figure 1. Qualitative comparison of Mask R-CNN and our Crowd-

Pose method in crowded scenes. Though current methods achieve

good performance in public benchmarks [13, 15, 20], they fail in

crowded cases. There are mainly two types of errors: i) assemble

wrong joints into a pose; ii) predict redundant poses in crowded

scenes.

To evaluate the performance of multi-person pose esti-

mation algorithms, several public benchmarks were estab-

lished, such as MSCOCO [15], MPII [13] and AI Chal-

lenger [20]. In these benchmarks, the images are usually

collected from daily life where crowded scenes appear less

frequently. As a result, most of the images in these bench-

marks have few mutual occlusion among humans. For ex-

ample, in MSCOCO dataset (persons subset), 67.01% of the

images have no overlapped person. Current methods have

obtained encouraging success on these datasets.

However, despite the good performance that current

methods have achieved on previous benchmarks, we ob-

serve an obvious degradation of their performance in

crowded cases. As shown in Figure 1, for the current state-

of-the-art methods [40, 27, 23, 26] of both bottom-up and
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Figure 2. Pipeline of our proposed method. JC SPPE uses joint-candidate loss function during training phase. In inference phase, JC SPPE

receives human proposals and generates joint candidates. Then we utilize human proposals and joint candidates to build a person-joint

graph. Finally, we associate joints with human proposals by solving the assignment problem in our graph model.
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Figure 3. State-of-the-art methods evaluation results on MSCOCO

dataset. The x-axis is the Crowd Index which we defined to mea-

sure the crowding level of an image. Compared to uncrowded

scenes, the accuracy (mAP@0.5:0.95) of state-of-the-art methods

are about 20 mAP lower in crowded cases.

top-down approaches, their performance decreases dramat-

ically as the crowd level increases (as Figure 3). Few previ-

ous methods aimed to tackle the problem of pose estimation

in crowded scene, and no public benchmark has been built

for this purpose. Meanwhile, crowded scenes are inevitable

in many scenarios.

In this paper, we propose a novel method to tackle the

problem of pose estimation in a crowd, using a global view

to address interference problem. Our method follows the

top-down framework, which first detects individual persons

and then performs single person pose estimation (SPPE).

We propose a joint-candidate SPPE and a global maximum

joints association algorithm. Different from previous meth-

ods that only predict target joints for input human proposals,

our joint-candidate SPPE outputs a list of candidate loca-

tions for each joint. The candidate list includes target and

interference joints. Then our association algorithm utilizes

these candidates to build a person-joint connection graph.

At last, we solve the joint association problem in this graph

model with a global maximum joints association algorithm.

Moreover, the computational complexity of our graph op-

timization algorithm is the same as the conventional NMS

algorithm.

To better evaluate human pose estimation algorithms in

crowded scenes and promote the development in this area,

we collect a dataset of crowded human poses. We define

a Crowd Index to measure the crowding level of an im-

age. Images in our dataset have a uniform distribution of

Crowd Index among [0, 1], which means only an algorithm

that performs well on both uncrowded and crowded scenes

can achieve a high score in our dataset.

To sum up, the contributions of this paper are as fol-

lows: i) we propose a novel method to tackle the crowded

problem of pose estimation; ii) we collect a new dataset

of crowded human poses to better evaluate algorithms in

crowded scenes. We conduct experiments on our pro-

posed method. When using a same ResNet-101 based net-

work backbone, our method surpasses all the state-of-the-

art methods by 5.2 mAP on our dataset. Moreover, we re-

place the SPPE and post-processing steps in the state-of-

the-art method with our module and brings 0.8 mAP im-

provement on MSCOCO dataset. That is, our method can

generally work in non-crowded scenes.

2. Related Work

2.1. 2D Pose Estimation Dataset

Pioneer works on 2D human pose estimation dataset on

RGB images involve LSP [4], FashionPose [9], PASCAL

Person Layout [6], J-HMDB [12], etc. These datasets have

contributed to encouraging progress of human pose estima-

tion. However, they only evaluate for single person pose

estimation. With the improvement of algorithms, more

researchers focus on multi-person pose estimation prob-

lems, and several datasets are established, e.g., MPII [13],

MSCOCO [15], AI Challenger [20]. In spite of the preva-

lence of these datasets, they suffer from a low-density

problem, which makes the current model overfitted to un-

crowded scenes. The performance of the state-of-the-art
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methods decreases as the number of human increases.

2.2. Multi­Person Pose Estimation

Part-Based Framework Representative works on the

part-based framework [26, 38, 35, 31] are reviewed. Part-

based methods detect joints and associate them into a whole

person. The state-of-the-art part-based methods are mainly

different on their association methods. Cao et al. [26] asso-

ciate joints with a part affinity field and greedy algorithm.

Zanfir et al. [31] propose a limb scoring network to esti-

mate the connection likelihood of joints and group people

by binary integer programming. Papandreou et al. [38] de-

tect individual joints and predict relative displacements for

association. Kocabas et al. [35] propose a multi-task model

and assign joints to detected persons by a pose residual net-

work. The joint detectors in part-based approached are rel-

atively vulnerable because they only consider small local

regions and output smaller response heatmaps.

Two-Step Framework Our work follows the two-step

approach. A two-step approach first detects human pro-

posals [16, 24] and then performs single person pose es-

timation [19, 22]. The state-of-the-art two-step meth-

ods [21, 40, 27, 23] achieve significantly higher scores than

the part-based methods. However, the two-step approaches

highly depend on human detection results, and it fails in

crowded scenes [30]. When people stay close to each other

in a crowd, it is improbable to crop a bounding box that only

contains one person. Some works [5, 8, 39, 25] in human

tracking area use temporal information to fix wrong detec-

tion with CNN or RNN [3, 32] module. As a supplement to

them, we propose a novel and efficient method that signif-

icantly increases pose estimation performance in crowded

scenes, which is robust to human detection results.

3. Our Method

The pipeline of our proposed method is illustrated in

Figure 2. Human bounding box proposals obtained by hu-

man detector are fed into joint-candidate (JC) single person

pose estimator (SPPE). JC SPPE locates the joint candidates

with different response scores on the heatmap (Sec. 3.1).

Then our joint association algorithm takes these results and

builds a person-joint connection graph (Sec. 3.2). Finally,

we solve the graph matching problem to find the best joint

association result with a global maximum joints association

algorithm (Sec. 3.3).

3.1. Joint­Candidates SPPE

Joint-candidate SPPE receives a human proposal im-

age and outputs a group of heatmaps to indicate human

joint locations. Though a human proposal should indicates

only one human instance, in the crowded scenarios, we in-

evitably need to handle a large number of joints from other

human instances. Previous works [40, 21, 27] use SPPE

to suppress interference joints. However, SPPE fails in

crowded scenes because their receptive fields are limited by

the input human proposals. To address this problem, we

propose joint-candidate SPPE with a novel loss designed in

a more global view.

3.1.1 Loss Design

For the ith human proposal, we input its region Ri into our

SPPE network and get the output heatmap Pi. There are

two types of joints in Ri, that is, the joints belong to the

ith person, and the joints belong to other human instances

(not the ith person). We name them as target joints and

interference joints respectively.

We adopt heatmap in our loss module, which is widely

used in many areas [29, 28] for its pixel-wise supervision

and fully convolution structure. Our goal is to enhance

target joints response and suppress interference joints re-

sponse. However, we don’t suppress them directly since in-

terference joints for the current proposal can be regarded as

target joints for other proposals. Thus, we can leverage in-

terference joints to estimate human poses with other human

proposals in a global manner. Therefore, to utilize those

two kinds of joint candidates, we output them with different

intensities.

Heatmap Loss For the kth joint in the ith person, we

denote the target joint heatmap as Tk
i , consisting of a 2D

Gaussian G(pk
i |σ), centered at the target joint location pk

i ,

with standard deviation σ.

For interference joints, we denote them as a set Ωk
i . The

heatmap of interference joints is denoted as Ck
i , consisting

of a Gaussian mixture distribution
∑

p∈Ωk

i

G(p|σ).

Our proposed loss is defined as,

Lossi =
1

K

K∑

k=1

MSE[Pk
i ,Tk

i + µCk
i ] (1)

where µ is an attenuation factor ranged in [0,1]. As afore-

mentioned, interference joints will be useful in indicating

joints of other human instances. Therefore, we should con-

sider it in a global view by cross-validation. Finally, we

have µ = 0.5, which fits our intuition: interference joints

should be attenuated but not over-suppressed. The conven-

tional heatmap loss function can be regarded as our special

case where µ = 0.

3.1.2 Discussion

A conventional SPPE depends on a high-quality human de-

tection result. Its tasks are locating and identifying target

joints according to the given human proposal. If SPPE mis-

takes interference joints for target joints, it will be an un-

recoverable error. Missing joints cannot be restored in the

post-processing step like pose-NMS.
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Our proposed joints candidate loss is aimed to tackle this

limitation. This loss function encourages JC SPPE network

to predict multi-peak heatmaps and sets all the possible

joints as candidates. In crowded scenes, while conventional

SPPE is hard to identify target joints, JC SPPE can still pre-

dict a list of joint candidates and guarantee high recall. We

leave the association problem to the next procedure, where

we have more global information from other JC SPPEs (on

other human proposals) to solve it.

3.2. Person­Joint Graph

Due to our joint-candidate mechanism and redundant hu-

man proposals from human detector, joint candidates are

numerically much greater than the actual joint numbers. To

reduce redundant joints, we build a person-joint graph and

apply a maximum person-joint matching algorithm to con-

struct the final human poses.

Response HeatmapsInput Human Proposals

Same
Right leg

Same
Right Knee

Wrong Detected Pose

Right head
Right legLefft knee

Right knee

Figure 4. In crowded scenes, human proposals are highly over-

lapped. Overlapped human proposals tend to predict same actual

joint. In this example, if we directly connect the highest response

to build final poses, two human proposals will locate same right

knee and right leg. Our proposed association algorithm can solve

this problem by globally best matching.

3.2.1 Joint Node Building

Since highly overlapped human proposals tend to predict

the same actual joint (as Figure 4), we first group these can-

didates that represent the same actual joint as one joint node.

Thanks to the high-quality joint prediction, candidate

joints that indicate the same joint are always close to each

other. Thus, we can group them using the following crite-

rion: given two candidate joints located at pk1 and pk2 with

control deviation δk, we label them as the same group, if

||p
(k)
1 − p

(k)
2 ||2 ≤ min{uk

1 , u
k
2}δ

(k), (2)

where uk
1 and uk

2 are the Gaussian response size of two

joints on heatmaps, determined by the Gaussian response

deviation. δ(k) is the parameter for controlling deviation

of the kth joint, which we directly adopt from MSCOCO

keypoint dataset [15]. The reason why we use min{u1, u2}

rather than a constant threshold is to guarantee that, only

if p1 and p2 fall into each others’ control domain (radii are

uk
1δ

k, uk
2δ

k) simultaneously, we group them together. One

node represents a group of joints that cluster together by the

above criterion.

Now, by building a joint group as one node, we have joint

node set J = {vkj : for k ∈ {1, . . . ,K}, j ∈ {1, . . . , Nk}},

where Nk is the number of joint nodes of body part k, vkj is

the jth node of body part k. The total number of joint nodes

in J is
∑

k Nk.

3.2.2 Person Node Building

Person nodes represent the human proposals detected by hu-

man detector. We denote person node set as H = {hi : ∀i ∈
{1 . . .M}}, where hi is the ith person node, and M is the

number of detected human proposals.

Ideally, a qualified human proposal tightly bounds a hu-

man instance. However, in crowded scenes, this condi-

tion is not always satisfied. The human detector will pro-

duce many redundant proposals, including truncated and

incompact bounding boxes. We will eliminate these low-

quality person nodes during global person-joint matching

in Sec. 3.3.

3.2.3 Person-Joint Edge

After obtaining the node of both joints and persons, we con-

nect them to construct our person-joint graph. For each per-

son node hi, JC-SPPE will predict several candidate results

of joints. If one of these candidates contributes to the joint

node vkj , we build an edge eki,j between them. The weight

of eki,j is the response score of that candidate joint, which is

denoted as wk
i,j . In this way, we can construct the edge set

E = {eki,j : ∀i, j, k}.

The person-joints graph can then be written as:

G = ((H,J ), E). (3)

3.3. Globally Optimizing Association

From now on, our goal of estimating human poses in

the crowd is transformed into solving the above person-joint

graph and maximizing the total edge weights. We have our

objective function as:

max
d

G =max
d

∑

i,j,k

w
(k)
i,j · d

(k)
i,j (4)

s.t.
∑

j

d
(k)
i,j ≤ 1,

∀k ∈ {1, . . . ,K},

∀i ∈ {1, . . . ,M}
(5)

∑

i

d
(k)
i,j ≤ 1,

∀k ∈ {1, . . . ,K},

∀j ∈ {1, . . . , Nk}
(6)

d
(k)
i,j ∈ {0, 1}, ∀i, j, k (7)
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where d
(k)
i,j indicates whether we keep the edge eki,j in our

final graph or not. The constraints of Eq. 5 and 6 enforce

that each human proposal can only match at most one kth

joint.

Note that G can be decomposed into K sub-graph Gk =
((H,J (k)), E(k)), where Gk is the sub-graph the only con-

sist of the kth kind of joints. Thus, our objective function

can be formulated as

max
d

G = max
d

∑

i,j,k

w
(k)
i,j · d

(k)
i,j (8)

=
K∑

k=1

(max
d(k)

∑

i,j

w
(k)
i,j · d

(k)
i,j ) (9)

=

K∑

k=1

max
d(k)

Gk. (10)

As shown in Eq. 10, solving the global assignment prob-

lem in person-joint graph G is mathematically equivalent to

solving its sub-graph Gk separately. Gk is a bipartite graph

that composed of person subset and the kth joint subset. For

each sub-graph, the updated Kuhn-Munkres algorithm [1] is

applied to get the optimized result. By addressing each Gk

respectively, we obtain the final result set R.

Given the graph matching result, if d
(k)
i,j = 1 the

weighted center of vkj is assigned to the ith human proposal

as its kth joint. Here, weighted center means the linear com-

bination of candidate joints coordinate in vkj and the weights

are their heatmap response scores. In this way, the pose of

each human proposal can be constructed. The person nodes

that can not match any joint will be removed.

Computational Complexity The inference speed of pose

estimation is essential in many applications. We prove that

our global association algorithm is as efficient as common

greedy NMS algorithms.

As the hereditary property identified by White and

Whiteley [2], a graph G is (k, l)−sparse if every nonempty

sub-graph X has at most k|X| − l edges, where |X| is the

number of vertices in sub-graph X and 0 ≤ l < 2k.

Consider the sub-graph G(k) = ((H,J (k)), E(k)). It rep-

resents the connection between human proposals and the

kth type of joints. According to our statistics (Fig. 5), ev-

ery human bounding box covers four persons at most in

crowded scenes. Therefore, one person node builds connec-

tion edges to 4 joints at most. In other words, our person-

joint sub-graph G(k) is (4, 0)− sparse since

|E(k)| ≤ 4|G(k)| − 0. (11)

Due to the sparsity of our person-joint graph, we can

solve the association problem efficiently. We transform E(k)

into an adjacency matrix Mek (unconnected nodes refer to

0). According to the work of Carpaneto et al. [1], this lin-

ear assignment problem for the sparse matrix can be solved

in O(n2), i.e., O((|H| + |J (k)|)2). Since we have elimi-

nated the redundant joints and there is a one-to-one corre-

spondence between joints and persons, the expectation of

|J (k)| is equal to |H|. Thus we have O((|H|+ |J (k)|)2) =
O(|H|2). Such computation complexity is the same as the

complexity of conventional greedy NMS algorithms.

0 2 4 6
Connecting joints number to per node

0%

10%

20%

30%

40%

Figure 5. Instance-Joint connection distribution. The x-axis denote

the number of human bounding boxes that cover a same joint. This

statistical result is based on the ground truth annotations.

3.4. Discussion
Our method adopts the graph-based approach to asso-

ciate joints with human proposals in a globally optimal

manner. Human proposals compete with each other for

joint nodes. In this way, unqualified human proposals with-

out dominant human instance would fail to be assigned any

joints, since their joint response scores are all relatively

low due to missing dominant human instance. Therefore,

many redundant and poor human proposals are rejected. In

comparison to our approach, conventional NMS is a greedy

and instance-based algorithm, which is less effective. Al-

though [10, 17, 27] proposed pose-NMS to utilize pose in-

formation, their algorithms are based on instances and can-

not tackle the missing joints and wrong assembling prob-

lem. Our globally optimizing association method can deal

with such situations well.

4. CrowdPose Dataset
In this section, we introduce another contribution of

our paper, namely, CrowdPose dataset, including crowded

scenes definition, data collection process, and the dataset

statistics.

4.1. Crowding Level Definition
To build a dataset of crowded human pose, we need to

define a Crowd Index first, which measure the crowding

level in a given image.

Intuitively, the number of persons in an image seems to

be a good measurement. However, the principal obstacle to
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Figure 6. CrowdIndex distributions of current popular datasets

and our dataset. Three public datasets are dominated by un-

crowded images. Meanwhile, our CrowdPose dataset has a near

uniform distribution.

solving crowded cases is not caused by the number of per-

sons, but rather by occlusion in a crowd. Therefore, we need

a new Crowd Index to indicate crowding level. In the bound-

ing box of the ith human instance, we denote the number of

joints that belonging to the ith person and other (not ith)

persons as Na
i and N b

i respectively. N b
i /N

a
i is the crowd

ratio of the ith human instance. Our Crowd Index is derived

by averaging the crowd ratio of all persons in an image:

Crowd Index =
1

n

n∑

i=1

N b
i

Na
i

, (12)

where n indicates the total number of persons in the image.

We evaluate the Crowd Index distribution of three public

benchmarks: MSCOCO (person subset), MPII and AI Chal-

lenger. As shown in Figure 6, uncrowded scenes dominate

these benchmarks, which leads the SOTA methods only fo-

cus on these simple cases and ignore the crowded ones.

4.2. Data Collection
To set up a benchmark that covers various scenes and

encourages models to adapt to different kinds of situations,

we wish our benchmark covers not only crowded cases but

also simple daily life scenes. To achieve that, we first ana-

lyze three public benchmarks [15, 13, 20] and divide their

images into 20 groups according to Crowd Index, ranging

from 0 to 1. The step among different groups is 0.05. Then

we sample 30,000 images uniformly from these groups in

total.

4.3. Image Annotation
Although these images have been annotated, their label

formats are not fully aligned. In terms of annotated joints

number, MSCOCO has 17 keypoints, while MPII has 16

and AI Challenger annotates 14 keypoints. Meanwhile, hu-

man annotators are easier to make mistakes in the crowded

cases. Thus, we re-annotate these images by the following

steps.

• We annotate 14 keypoints and full-body bounding

boxes for persons in 30,000 images.

• We analyze the Crowd Index for 30,000 images again

with new annotations, and select 20,000 high-quality

images.

• We further crop each person in the images, and then

annotate the interference keypoints in each box.

We use cross annotation, which means at least two anno-

tators annotate each image. If these two annotations have a

large deviation, we regard them as mistakes and re-annotate

this image. Finally, we take the average value of each key-

point location to ensure the annotation quality.

4.4. Dataset Statistics

Dataset Size In total, our dataset consists of 20,000 im-

ages, containing about 80,000 persons. The training, vali-

dation and testing subset are split in proportional to 5:1:4.

Crowd Index Distribution The Crowd Index distribution

of CrowdPose is shown in Figure 6 (d). Unlike the other

datasets, CrowdPose has a uniform distribution of Crowd

Index. Note that we do not simply force CrowdPose to reach

high Crowd Index. If a model is only trained on crowded

scenes, it may degrade its performance on uncrowded cases

due to the bias of training set. Uniform distribution can

promote a model to adapt to various scenes.

Average IoU We further calculate the average intersec-

tion over union(IoU) of human bounding boxes. It turns out

that CrowdPose has an average bounding box IoU of 0.27,

while MSCOCO, MPII, and AI Challenger have 0.06, 0.11

and 0.12 respectively.

5. Experiments
In this section, we first introduce datasets and settings

for evaluation. Then we report our results and comparisons

with state-of-the-art methods, and finally conduct ablation

studies on components in our method.

5.1. Datasets
CrowdPose Our proposed CrowdPose dataset contains

20,000 images in total and 80,000 human instances. Its

Crowd Index satisfies uniform distribution in [0, 1]. Crowd-

Pose dataset aims to promote performance in crowded cases

and make models generalize to different scenarios.

MSCOCO Keypoints We also evaluate our method on

the MSCOCO Keypoints dataset [15]. It contains over

150,000 instances for training and 80,000 instances for test-

ing. The persons in this dataset overlap less frequently than

CrowdPose, and it has a Crowd Index centralized near zero.
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Figure 7. Qualitative results of our models predictions is presented. Different person poses are painted in different colors to achieve better

visualization.

Method mAP @0.5:0.95 mAP@0.5 mAP @0.75 mAR @0.5:0.95 mAR @0.5 mAR @0.75

Mask R-CNN [23] 57.2 83.5 60.3 65.9 89.5 69.4

AlphaPose [27] 61.0 81.3 66.0 67.6 86.7 71.8

Xiao et al. [40] 60.8 81.4 65.7 67.3 86.3 71.8

Ours 66.0 84.2 71.5 72.7 89.5 77.5

Table 1. Results on CrowdPose test set.

Method APEasy APMedium APHard FPS

OpenPose [36] 62.7 48.7 32.3 5.3

Mask R-CNN [23] 69.4 57.9 45.8 2.9

AlphaPose [27] 71.2 61.4 51.1 10.9

Xiao et al. [40] 71.4 61.2 51.2 -

Ours 75.5 66.3 57.4 10.1

Table 2. Results on CrowdPose test set. Test set is divided into

three part and we report the results respectively. FPS column re-

ports the runtime speed on the whole test set.

5.2. Evaluation Metric

We follow the evaluation metric of MSCOCO, using

average precision (AP) and average recall (AR) to evalu-

ate the result. Object keypoint similarity (OKS) plays the

same role as the IoU to adopt AP/AR for keypoints detec-

tion. We consider mAP, averaged over multiple OKS val-

ues (.50:.05:.95), as our primary metric. Moreover, we di-

vide the CrowdPose dataset into three crowding levels by

Crowd Index: easy (0-0.1), medium (0.1-0.8) and hard (0.8-

1), to better evaluate our model performance in different

crowded scenarios. We use the same keypoint standard de-

viations as MSCOCO when calculating OKS in all experi-

ments.

5.3. Implementation Details

Our method follows the two-step framework. Since

human detector and pose estimation network are not

what we focus on, we simply adopt the human detector

(YoloV3 [43]) and pose estimation network provided by Al-

phaPose [27] which is a state-of-the-art two-step method.

During the training step, we adopt rotation (±30), scaling

(±30%) and flipping data augmentation. The input reso-

lution is 320 × 256 and the output heatmap resolution is

80× 64. The learning rate is set to 1× 10−4 and 1× 10−5

after 80 epochs. Mini-batch size is set to 64, and RM-

Sprop [7] optimizer is used. During testing, the detected hu-

man bounding boxes are first extended by 30% along both

the height and width directions and then forwarded through

the Joint-candidate SPPE. The locations of joint candidates

are obtained from the averaged output heatmaps of original

and flipped input image. We conduct our experiments on

two Nvidia 1080Ti GPUs. Our whole framework is imple-

mented in PyTorch.

For comparison with current state-of-the-art meth-

ods [23, 40, 27] on CrowdPose dataset, we retrain them

based on the configuration provided by the authors. To

be fair, we use ResNet-101 as backbone for all SPPE net-

works and use the same human detector for [40]. For Mask

R-CNN we also use the FPN-based ResNet-101 backbone.
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Method mAP @0.5:0.95 mAR @0.5:0.95

Mask R-CNN [23] 64.8 71.1

AlphaPose [27] 70.1 74.4

Xiao et al. [40] 69.8 74.1

Ours 70.9 76.4

Table 3. Results on MSCOCO test-dev set. We compare the state-

of-the-art methods with same detection backbone.

Method mAP mAR

Ours (SPPE++Association) 66.0 72.7

(a) w/o joint-candidate Loss 61.7 68.7

(b)
Greedy NMS 49.1 63.1

Parametric Pose-NMS [27] 64.2 71.1

Table 4. Results on CrowdPose test set. mAP and mAR are the

average value over multiple OKS values (0.50:0.05:0.95). “w/o X”

means without X module in our pipeline. “Greedy NMS” means a

conventional NMS method based on proposal scores and IoU.

Same training batch size is used for a fair comparison.

5.4. Results

CrowdPose Quantitative results on CrowdPose test set

are given in Table 1. Our method achieves 5.2 mAP higher

than state-of-the-art methods. It demonstrates the effec-

tiveness of our proposed method to tackle the problem of

pose estimation in crowded scenes. To further evaluate

our method in crowded scenes, we report the results on

three crowding level in Table 2, i.e., uncrowded, medium

crowded and extremely crowded. Notably, our method im-

proves 4.1 mAP in uncrowded scenes, while achieves 4.9

and 6.2 mAP higher in medium crowded and extremely

crowded scenes separately. This result demonstrates that

our method has superior performance in crowded scenes.

We present some qualitative results in Figure 7. More re-

sults will be given in supplementary file.

MSCOCO We also evaluate our method on MSCOCO

dataset to show the generalization ability of our method and

results are given in Table 3. Without bells and whistles,

our method achieves 70.9 mAP on COCO test-dev set. It

brings 0.8 mAP improvements over AlphaPose [27] given

the same human detector and SPPE network, which proves

that our method can perform general improvement on pose

estimation problem. Note that for [40], the results reported

in their paper use a strong human detector which is not

open-sourced. To make a fair comparison, we report the

results using YOLOV3 as human detector.

Inference Speed The runtime speed of fully open-

sourced method is tested and shown in Table 2. We obtain

the FPS results by averaging the inference time on the test

set. To achieve the best performance, we use the most ac-

curate configuration for OpenPose [36], which has an input

resolution of 1024×736. As shown in the table, our method

achieves 10.1 FPS on the test set, which is slightly slower

than AlphaPose [27] but faster than other methods. It proves

that our method works the most accurate yet very efficient

in crowded cases.

5.5. Ablation Studies

We study different components of our method on Crowd-

Pose test set, as reported in Table 4.

Joints Candidate Loss We first evaluate the effective-

ness of our joint-candidate loss. In this experiment, we re-

place our joint-candidate loss with mean square loss, which

is widely used in state-of-the-art pose estimation methods.

The experimental result is shown in Table 4(a). The fi-

nal mAP drops from 66.0% to 61.7%. It proves that our

loss function can encourage SPPE to predict more possible

joints and resist interference.

Globally Optimizing Association Next, we compare our

association algorithm to several NMS algorithms, includ-

ing bounding box NMS, poseNMS [10, 17] and parametric

poseNMS [27]. The experimental results are shown in Ta-

ble 4(b). We can see that our association algorithm greatly

outperforms previous methods. We note that these NMS al-

gorithms are all instance-based. They eliminate redundancy

on instance level. Instance-based elimination is not the best

solution for pose estimation problem. Because of the com-

plexity of human pose, we need to reduce redundancy on

joints level. Meanwhile, all the NMS algorithms are greedy

algorithms essentially. Therefore, their results may be not

the global optimum. Our association algorithm can give the

global optimal result while running as efficient as previous

NMS algorithm.

6. Conclusion

In this paper, we propose a novel method to tackle

the occlusion problem of pose estimation. By building a

person-joint graph based on the outputs of our joint can-

didates SPPE, we transform the pose estimation problem

into a graph matching problem and optimize the results in

a global manner. To better evaluate the model performance

in crowded scenes, we set up a CrowdPose dataset with a

normal distribution of Crowd Index. Our proposed method

significantly outperforms the state-of-the-art methods in

CrowdPose dataset. Experiments on MSCOCO dataset also

demonstrate that our method can generalize to different sce-

narios.
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