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Abstract

Egocentric interaction recognition aims to recognize the

camera wearer’s interactions with the interactor who faces

the camera wearer in egocentric videos. In such a human-

human interaction analysis problem, it is crucial to explore

the relations between the camera wearer and the interactor.

However, most existing works directly model the interac-

tions as a whole and lack modeling the relations between

the two interacting persons. To exploit the strong relations

for egocentric interaction recognition, we introduce a dual

relation modeling framework which learns to model the re-

lations between the camera wearer and the interactor based

on the individual action representations of the two persons.

Specifically, we develop a novel interactive LSTM module,

the key component of our framework, to explicitly model

the relations between the two interacting persons based on

their individual action representations, which are collabo-

ratively learned with an interactor attention module and a

global-local motion module. Experimental results on three

egocentric interaction datasets show the effectiveness of our

method and advantage over state-of-the-arts.

1. Introduction

Egocentric interaction recognition [11, 25, 31, 35, 39]

attracts increasing attention with the popularity of wearable

cameras and broad applications including human machine

interaction [2, 18] and group events retrieval [3, 4]. Dif-

ferent from exocentric (third-person) videos, in egocentric

videos, the camera wearers are commonly invisible and the

videos are usually recorded with dynamic ego-motion (see

Figure 1). The invisibility of the camera wearer hampers ac-

tion recognition learning of the camera wearer, and the ego-

motion hinders direct motion description of the interactor,

which make egocentric interaction recognition challenging.

∗Corresponding author

(a) Invisibility of the camera wearer

(b) Ego-motion of the camera wearer

Figure 1. Illustration of camera-wearer’s invisibility and ego-

motion. (a) compares the person (in red boxes) receiving some-

thing in exocentric (left) and egocentric (right) videos from NUSF-

PID dataset [25]. (b) shows adjacent frames with obvious ego-

motion in an egocentric video from UTokyo PEV dataset [39].

An egocentric interaction comprises the actions of the

camera wearer and the interactor that influence each other

with relations. So modeling the relations between the two

interacting persons is important for interaction analysis. To

model the relations between the the two interacting per-

sons explicitly, we need to obtain individual action repre-

sentations of the two persons primarily. Therefore, we for-

mulate the egocentric interaction recognition problem into

two interconnected subtasks, individual action representa-

tion learning and dual relation modeling.

In recent years, various works attempt to recognize in-

teractions from egocentric videos. Existing methods inte-

grated motion information using statistical properties of tra-

jectories and optical flows [25, 31, 38] or utilized face ori-

entations descriptors [11] with SVM classifiers for recog-

nition. Deep neural network was also adopted to aggre-

gate short-term and long-term information for classification

[35]. However, some of them [31] aimed to recognize in-
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Figure 2. Proposed framework. Frames Ii(i = 1, ..., N) are sam-

pled from the video as input. The Feature Extraction Module ex-

tracts basic visual features of sampled frames. The Attention Mod-

ule localizes the interactor and learns appearance features. The

Motion Module estimates global and local motions for motion fea-

tures learning. The Interaction Module models the relations for

better interaction recognition based on the learned individual fea-

tures (a), (b), (c) and (d) explained in the blue box.

teractions from a static observer’s view, which is imprac-

tical for most applications. Others [11, 25, 35] directly

learned interaction as a whole through appearance and mo-

tion learning as done in common individual action analysis.

They didn’t learn individual action representations of the

interacting persons, and thus failed to model the relations

explicitly. The first-person and second-person features were

introduced to represent the actions of the camera wearer and

the interactor in [39]. But they learned the individual action

representations from multiple POV (point-of-view) videos

and still lacked explicit relation modeling.

Overview of the framework. In this paper, we focus on

the problem of recognizing human-human interactions from

single POV egocentric videos. Considering the relations

in egocentric interactions, we develop a dual relation mod-

eling framework, which integrates the two interconnected

subtasks, namely individual action representation learning

and dual relation modeling, for recognition as shown in Fig-

ure 2. Specifically, for dual relation modeling, we develop

an interaction module, termed interactive LSTM, to model

the relations between the camera wearer and the interactor

explicitly based on the learned individual action representa-

tions. For individual action representations learning, we in-

troduce an attention module and a motion module to jointly

learn action features of the two interacting persons. We fi-

nally combine these modules into an end-to-end framework

and train them with human segmentation loss, frame recon-

struction loss and classification loss as supervision. Exper-

imental results indicate the effectiveness of our method.

Our contributions. In summary, the main contribution of

this paper is three-fold. (1) An interactive LSTM module is

developed to model the relations between the camera wearer

and the interactor from single POV egocentric videos. (2)

An interactor attention module and a global-local motion

module are designed to jointly learn individual action rep-

resentations of the camera wearer and the interactor from

single POV egocentric video. (3) By integrating individual

action representations learning and dual relation modeling

into an end-to-end framework, our method shows its effec-

tiveness and outperforms existing state-of-the-arts on three

egocentric interaction datasets.

2. Related Work

Egocentric action recognition aims to recognize camera

wearer’s actions from first-person videos. Since the ego-

motion is a dominant characteristic of egocentric videos,

most methods used dense flow or trajectory based statisti-

cal features [1, 13, 17, 23, 24] to recognize the actions of

the camera wearer. In some object-manipulated actions,

some works extracted hands and objects descriptors for

recognition [10, 20, 28, 43], and others further explored

gaze information according to hand positions and motions

[12, 19]. Recently, deep neural networks have also been ap-

plied to egocentric action recognition. Frame-based feature

series analysis showed their promising results [16, 32, 40].

CNN networks with multiple information streams were also

trained on recognition task [22, 34]. However, these meth-

ods target on individual actions which are a bit different

from human-human interactions.

Egocentric interaction recognition specifically focuses on

first-person human-human interactions. Ryoo et al. recog-

nized what the persons in the videos are doing to the static

observer [30, 31], but it is unrealistic in most daily life sce-

narios. Some works used face orientations, individual loca-

tions descriptors and hand features to recognize interactions

[5, 11]. Others used motion information based on the mag-

nitudes or clusters of trajectories and optical flows [25, 38].

A convLSTM was utilized to aggregate features of succes-

sive frames for recognition [35]. These methods commonly

learned interaction descriptors by direct appearance or mo-

tion learning, but didn’t considered explicit relation mod-

eling with individual action representations of the camera

wearer and the interactor. Yonetani et al. learned individual

action features of the two persons but also lacked explicit

relations modeling [39].

Different from the existing methods above, our frame-

work jointly learns individual actions of the camera wearer

and the interactor from single POV egocentric videos and

further explicitly models the relations between them by an

interactive LSTM.

3. Individual Action Representation Learning

To model the relations, we first need individual action

representations of the camera wearer and the interactor.

Here, we learn interactor masks to separate the interactor

from background and learn appearance features with an at-
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Figure 3. Structure of attention module. The module takes feature

fn as input and generates attention weighted features and multi-

scale masks.

tention module. In the meanwhile, a motion module is in-

tegrated to learn motion cues, so that we can jointly learn

the individual appearance and motion features of the two

persons, which are the basis to model relations in Section 4.

For two consecutive sampled frames In−1, In ∈
R

H×W×3, we use a feature extraction module composed of

ResNet-50 [14] to extract basic features f(In−1),f(In) ∈
R

H0×W0×C , which encode the scene or human information

with multidimensional representations for further modeling

on top of them. In the following, we denote f(In−1) and

f(In) as fn−1 and fn respectively for convenience.

3.1. Attention Appearance Features Learning

Egocentric videos record the actions of the camera

wearer and the interactor simultaneously. To learn individ-

ual action features of the two persons, we wish to separate

the interactor from background based on the feature fn.

Pose-guided or CAM-guided strategy [8, 9, 27] is used

for person attention learning. Similarly, we introduce an

attention module to localize the interactor with human seg-

mentation guidance. We employ a deconvolution structure

[26] on top of the basic feature fn to generate the masks

of the interactor as shown in Figure 3. Mask M (0) ∈
R

H0×W0 serves to weight the corresponding feature maps

for attention features learning. Multi-scale masks M (k) ∈
R

Hk×Wk (k = 1, 2, 3) are applied to localize the interactor

at different scales for finer masks generation and explicit

motion estimation later in Subsection 3.2.

Mask of the Interactor. To localize the interactor, we in-

troduce a human segmentation loss to guide the learning of

our attention module. Given a reference mask MRF , the

human segmentation loss is a pixel-wise cross entropy loss:

Lseg =−

3∑

k=1

Hk∑

i=1

Wk∑

j=1

1

Hk ×Wk

[MRF
i,j logM

(k)
i,j +

(1−MRF
i,j )log(1−M

(k)
i,j )],

(1)

where k indexes the mask scales and the reference mask is

resized to the corresponding shape for calculation. Here,

the reference masks are obtained using JPPNet[21].

Attention Features. An optimized attention module could

localize the interactor, so the mask M (0) has higher val-

ues at the positions corresponding to the interactor, which

indicates concrete appearance information of the interactor.

Then the local appearance feature describing the action of

the interactor from its appearance can be calculated with

weighted pooling as follows:

fn
l,a =

1

|M (0)|

H0∑

i=1

W0∑

j=1

M
(0)
i,j · fn

i,j,1:C , (2)

where |M (0)| =
∑H0

i=1

∑W0

j=1 M
(0)
i,j . Accordingly, the

global appearance feature, which describes the action of the

camera wearer from what is observed, is calculated using

global average pooling:

fn
g,a =

1

H0 ×W0

H0∑

i=1

W0∑

j=1

fn
i,j,1:C . (3)

The attention module learns local appearance features to

provide a concrete description instead of a global descrip-

tion of the interactor, and thus assists the relation modeling

later. Meanwhile, the interactor masks localizing the inter-

actor plays an important role in separating global and local

motion, which is employed in Subsection 3.2.

3.2. Globallocal Motion Features Learning

Motion features are vital for action analysis. To learn

individual action representations of the two interacting per-

sons, we wish to describe the ego-motion (global motion)

of the camera wearer and the local motion of the interac-

tor explicitly based on the basic features fn, fn−1 and the

interactor masks M (k)(k = 0, 1, 2, 3).

Differentiable warping scheme [15] is used for ego-

motion estimation with a frame reconstruction loss [36, 42].

Inspired by them, we design a self-supervised motion mod-

ule with the differentiable warping mechanism to jointly es-

timate the two types of motion from egocentric videos.

Global-local Motion Formulation by Reconstruction. To

separate the global and local motions in egocentric videos,

we reuse the interactor mask M (3) generated in Subsection

3.1 with the same scale as the input frames to formulate

the transformation between two adjacent frames. With the

learnable parameters T and D denoting transformation ma-

trix and dense motion field, we can formulate the transfor-

mation from homogeneous coordinates Xn to Xn−1 con-

cisely as:

X̂n−1 = T (Xn +M (3) ⊙D), (4)

where ⊙ is element-wise multiplication, Xn and Xn−1 are

homogeneous coordinates of frame In and In−1.

In Equation (4), M (3) ⊙ D is the local dense motion

field of the interactor, and T describes the ego-motion of
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Figure 4. Structure of motion module. The module takes basic

features fn, fn−1 and mask M (0) as inputs and estimates global

and local motion parameters in two branches in which global mo-

tion feature fn
g,m and local motion feature fn

l,m are extracted. ∗ in

red circle is a multiplicative patch comparison [7] to calculate the

correlations between two feature maps, which captures the relative

motions between them for dense flow estimation.

the camera wearer, so Equation (4) jointly formulates global

and local motion explicitly by point set reconstruction.

Self-supervision. To learn the parameters in Equation (4),

we use view synthesis objective [42] as supervision:

Lrec =
∑

x

|In(x)− În(x)|, (5)

where x indexes over pixel coordinates Xn. And În is the

reconstructed frame warped from frame In−1 according to

the transformed point set X̂n−1, which is employed with

the bilinear sampling mechanism [15] as

În(x) =
∑

i∈{t,b},j∈{l,r}

wijIn−1(x̂
ij), (6)

where x̂ indexes over projected coordinates X̂n−1, x̂ij is

the neighboring coordinate of x̂, wij is proportional to

the spatial proximity between x̂ij and x̂, and subject to∑
i,j w

ij = 1. In addition, we regularize the local dense

motions with a smoothness loss for robust learning [36].

With the reconstruction loss in Equation (5), we design

a motion module illustrated in Figure 4 with two branches

learning the parameters of global ego-motion and local mo-

tion in Equation (4), from which global motion feature

fn
g,m and local motion feature fn

l,m are extracted from the

embedding layers.

The motion module jointly estimates explicit motions of

the camera wearer and the interactor by reusing the interac-

tor masks, from which we learn concrete individual motion

features of the two interacting persons hence aid relation

modeling in Section 4.

3.3. Egofeature and Exofeature.

For each frame pair {In−1, In}, we obtain global ap-

pearance feature fn
g,a and local appearance feature fn

l,a

from the attention module, and also global motion feature

fn
g,m and local motion feature fn

l,m from the motion mod-

ule. The global features describe overall scene context and

ego-motion of the camera wearer, which could represent the

action of the camera wearer. While the local features, ob-

tained with the interactor masks, describe the concrete ap-

pearance and motion of the interactor, which could repre-

sent the action of the interactor. Thus we obtain the individ-

ual action representations of the two interacting persons.

For further exploring the relations between the two per-

sons, we define the ego-feature fn
ego = [fn

g,a,f
n
g,m]

describing the camera wearer, and exo-feature fn
exo =

[fn
l,a,f

n
l,m] describing the interactor. With them we could

model the relations in Section 4.

4. Dual Relation Modeling by Interactive

LSTM

Given the action representations, a classifier may be

trained for recognition as done in most previous works.

However, as discussed before, a distinguishing property of

egocentric human-human interactions is the relations be-

tween the camera wearer and the interactor, which deserves

further exploration for better interaction representations.

We notice that only the ego-feature or exo-feature may

not exactly represent an interaction. For the example shown

in Figure 6, two interactions consist of similar individual

actions: the camera wearer turning his head and the interac-

tor pointing somewhere. In this case, neither the features of

any action can identify an interaction sufficiently. However,

some relations would clearly tell the differences of the two

interactions, such as the sequential orders and the motion di-

rections of the individual actions. To utilize the relations for

recognition, we develop an interaction module to model the

relations between the two persons based on the ego-feature

and exo-feature defined in Subsection 3.3.

4.1. Symmetrical Gating and Updating

To model the relations such as the synchronism or com-

plementarity between the two interacting persons, we inte-

grate their action features using LSTM structure.

We define ego-state F n
ego and exo-state F n

exo to denote

the latent states till the n-th step to encode the evolution of

the two actions, which correspond to ego-feature and exo-

feature introduced in Subsection 3.3, respectively. We wish

to mutually incorporate the action context of each interact-

ing person at each time step to explore the relations such

as the synchronism and complementarity. Thus, we uti-

lize exo-state to filter out the irrelevant parts, enhance the

relevant parts and complement the absent parts of the ego-

state. Meanwhile, the exo-state is also filtered, enhanced

and complemented by the ego-state. This symmetrical gat-

ing and updating mechanism is realized with two symmet-
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rical LSTM blocks where each block works as follows:

[in;on; gn;an] =σ(Wfn +UF n−1+

Jn−1 + b),
(7)

Jn =φ(V F n
∗ + v), (8)

cn =inan + gncn−1, (9)

F n =ontanh(cn). (10)

Here, the input gate, output gate, forget gate and update can-

didate are denoted as in, on, gn and an respectively. σ is

tanh activation function for update candidate and sigmoid

activation function for other gates. F ∗ is the latent state

from the dual block, φ is ReLU activation function, and Jn

is the modulated dual state. {W ,U ,V , b,v} are parame-

ters of each LSTM block.

It is noted that the current ego-state integrates the histor-

ical information of the ego-actions and also the exo-actions

into itself, and vice versa for exo-state. The ego-state and

exo-state describe the interaction from the view of the cam-

era weearer and the interactor respectively. In this symmet-

rical gating and updating manner, the symmetrical LSTM

blocks model the interactive relations instead of a raw com-

bination of two actions.

4.2. Explicit Relation Modelling

Besides the symmetrical LSTM blocks introduced above

for implicitly encoding the dual relations into the ego-state

and exo-state, we further explicitly model the dual relation.

To this end, we introduce relation-feature rn to explicitly

calculate the relations with a nonlinear additive operation

on the ego-state and exo-state:

rn = tanh(F n
ego + F n

exo). (11)

With the relation-feature rn at each time step, we further

model the time variant relations with another LSTM branch

to integrate the historical relations into the relation-states

Rn, which can be formulated as follows:

[in;on; gn;an] = σ(Wrn +URn−1 + b), (12)

cn = inan + gncn−1, (13)

Rn = ontanh(cn). (14)

In the equations above, the gates and parameters are simi-

larly denoted as those in the symmetrical LSTM blocks. In

Equation (14), Rn integrates historical and current relations

information to explicitly represent the relations of the two

actions at n-th time step during the interaction.

Combining the two components above, i.e. the symmet-

rical LSTM blocks and the relation LSTM branch, our in-

teraction module is illustrated in Figure 5, which we term

interactive LSTM. It captures the evolution or synchronism

of the two actions and further explicitly models the relations
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Figure 5. Diagram of Interactive LSTM. The unrolled symmetrical

LSTM blocks mutually gate and update each other as the green

arrows depict. The unrolled relation LSTM branch is highlighted

in red. All LSTM blocks contains N time steps.

between the two actions, which provides a better represen-

tation of the interaction.

The posterior probability of an interaction category given

the final relation-state RN can be defined as

p(y|RN ) = δ(WRN + b), (15)

where W and b are parameters of classifier and δ is softmax

function. Then a cross entropy loss function is employed to

supervise parameters optimization as follow:

Lcls = −

K∑

k=1

yklog[p(yk|R
N )], (16)

where K is the number of class.

Combining the loss functions of each module above, we

train our model end-to-end with the final objective:

Lfinal = Lcls + αLseg + βLrec + γLsmooth, (17)

where α, β, γ are weights of segmentation loss, frame re-

construction loss and smooth regularization, respectively.

5. Experiments

5.1. Datasets

We evaluate our method on three egocentric human-

human interaction datasets.

UTokyo Paired Ego-Video (PEV) Dataset contains 1226

paired egocentric videos recording dyadic human-human

interactions [39]. It consists of 8 interaction categories and

was recorded by 6 subjects. We split the data into train-test

subsets based on the subject pairs as done in [39] and the

mean accuracy of the three splits is reported.

NUS First-person Interaction Dataset contains 152 first-

person videos and 133 third-person videos of both human-

human and human-object interactions [25]. We evaluate our
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Methods PEV NUS(first h-h) NUS(first) JPL

RMF[1] - - - 86.0

Ryoo and Matthies[31] - - - 89.6

Narayan et al. [25] - 74.8 77.9 96.7

Yonetani et al. [39] (single POV) 60.4 - - 75.0

convLSTM[35] (raw frames) - - 69.4 70.6

convLSTM[35] (difference of frames) - - 70.0 90.1

LRCN[6] 45.3 65.4 70.6 78.5

TRN[41] 49.3 66.7 74.7 84.2

Two-stream[33] 58.5 78.6 80.6 93.4

Our method 64.2 80.2 81.8 98.4

Yonetani et al. [39] (multiple POV) 69.2 - - -

Our method (multiple POV) 69.7 - - -
Table 1. State-of-the-art comparison (%) with existing methods. NUS(first h-h) denotes the first-person human-human interaction subset

of NUS dataset and NUS(first) denotes the first-person subset. It is notable that only PEV dataset provides multiple POV videos so that no

multiple POV result of other datasets is reported.

method on first-person human-human interaction subset to

verify the effectiveness of our method. To further test our

method in human-object interaction cases, we also evaluate

on the first-person subset. Random train-test split scheme is

adopted and the mean accuracy is reported.

JPL First-Person Interaction Dataset consists of 84

videos of humans interacting with a humanoid model with

a camera mounted on its head [31]. It consists of 7 different

interactions. We validate our method’s effectiveness in this

static observer setting and report the mean accuracy over

random train-test splits.

5.2. Implementation Details

Network Details. In the motion module, we set 5 as the

maximum displacement for the multiplicative patch com-

parisons. In the interaction module, we reduce the size of

ego-feature and exo-feature to 256 and set 256 as the hidden

size of LSTM blocks. 20 equidistant frames are sampled as

input as done in [35].

Data Augmentation. We adopt several data augmentation

techniques to ease overfitting due to the absence of large

amount of training data. (1) Scale jittering [37]. We fix the

size of sampled frames as 160×320 and randomly crop a

region, then resize it to 128×256 as input. (2) Each video

is horizontally flipped randomly. (3) We adjust the hue and

saturation in HSV color space of each video randomly. (4)

At every sampling of a video, we randomly translate the

frame index to obtain various samples of the same video.

Training setup. The whole network is hard to converge

if we train all the parameters together. Hence, we sepa-

rate the training process into two stages. At the first stage,

we initialize feature extraction module with ImageNet [29]

pretrained parameters and train attention module, motion

module and interaction module successively while freezing

other parameters. At the second stage, the three modules are

finetuned together in an end-to-end manner. We use Adam

optimizer with initial learning rate 0.0001 to train our model

using TensorFlow on Tesla M40, and decrease the learning

rate when the loss saturates. To deal with overfitting, we

further employ large-ratio dropout, high weight regulariza-

tion and early stop strategies during training.

5.3. Comparison to the Stateoftheart Methods

We compare our method with state-of-the-arts and the

results are shown in Table 1. The first part lists the meth-

ods using hand-crafted features. The second part presents

some deep learning based action analysis methods (reim-

plemented by us except convLSTM). The third part reports

the results of our method and the fourth part compares the

performance using multiple POV videos on PEV dataset.

As shown, our method outperforms existing methods.

Most previous methods directly learn interaction repre-

sentations without relation modeling, while ours explicitly

models the relations between the two interacting persons.

The results show that relation modeling is useful for inter-

action recognition.

Among the compared deep learning methods, we ob-

tain clear improvement over convLSTM[35], LRCN[6] and

TRN[41], since they mainly capture the temporal changes

of appearance features, but ours further explicitly captures

motions and models the relation between the two interacting

persons. Two-stream network [33] with the same backbone

CNN as ours integrates both appearance and motion fea-

tures but obtains inferior performance to ours, perhaps due

to the lack of relation modeling.

On PEV dataset, Yonetani et al. [39] achieves 69.2% of

accuracy with paired videos, certainly surpassing others us-

ing single POV video. We use our interactive LSTM to fuse

the features from paired videos since there also exist some

relations between the actions recorded by the paired videos.
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Features PEV NUS(first h-h)

Ego-features 55.2 67.9

Exo-features 53.1 76.1

Concat(no relation) 60.8 77.9

Interaction with sym. blocks 62.7 78.1

Interaction with rel. branch 63.0 79.0

Interaction with both 64.2 80.2
Table 2. Recognition accuracy comparison (%) about interacion.

Concat(no relation) means concatenation of ego-features and exo-

features without any relation modeling. Interaction with sym.

blocks means only symmetrical LSTM blocks are used. Interac-

tion with rel. branch means only relation LSTM branch is used.

Interaction with both means both components are used.

We achieve comparable result (69.7%) which further proves

the relation modeling ability of our interactive LSTM.

In terms of inference time, our framework takes around

0.15 seconds per video with 20 sampled frames, which is

still towards real time. TRN[41] takes 0.04 seconds per

video but it has clear lower recognition performance than

ours. Although Two-stream[33] obtains slightly inferior

performance to ours, it takes 0.9 seconds per video since

it spends much more time on extracting optical flows.

5.4. Further Analysis

5.4.1 Study on Interaction Module.

Table 2 compares recognition performance about inter-

action. It shows that our interactive LSTM clearly im-

proves the performance, since it models the relations and

also drives feature learning of other modules. On differ-

ent datasets, the relation modeling obtains different per-

formance gains. We obtain clearer improvements on PEV

dataset since it contains more samples dependent on rela-

tions. While in NUS(first h-h) dataset, most samples have

weaker relations between the two interacting persons.

As discussed in Section 4, the main differences between

the two interaction samples shown in Figure 6 might be the

sequential orders and motion directions. We further com-

pare the recognition results on them of different methods.

It is observed that both two-stream[33] and simple con-

catenation cannot sufficiently model the two interactions.

While with explicit relation modeling, the two interactions

are correctly distinguished, which indicates that our inter-

active LSTM models the relations to distinguish confusing

samples for better interaction recognition.

5.4.2 Study on Attention Module.

We compare recognition accuracy of different appearance

features in Table 3. It is observed that local appearance

features slightly improve the performance since it provides

concrete descriptions of the interactor instead of general or

(a) Interaction category: none

(b) Interaction category: attention

Figure 6. Comparison of recognition results of two interaction

samples. w/o relation means concatenation of two action features

without any relation modelling is used for recognition. The bar

graphs on the right present the probabilities of each category.

overall features, which are more related to the interaction.

Furthermore, relation modeling performs better than con-

catenation since it enhances the features through symmetri-

cal gating or updating and relation modeling.

Figure 7 visualizes some learned masks. (See more ex-

amples in supplementary material.) As shown, the attention

module learns to localize the interactor with the JPPNet ref-

erence masks as supervision. With additional classification

loss, it could localize some objects around the interactor and

strongly related to the interactions such as the hat in the ex-

ample, which leads to around 2% accuracy boost for local

appearance features. This shows the advantage of using the

designed attention module in our framework over using the

JPPNet masks directly in this recognition task. In addition,

with only the classification loss, our attention module fails

to localize the interactor at all, indicating the necessity of

reference masks for interactor localization.

The attention module is an indispensible part of our

framework for individual action representation learning. It

not only learns concrete appearance features, but also sev-

ers to separate the global and local motion for explicit mo-

tion features learning. Without attention module, our frame-

work could only capture the global appearance and motion

cues, and fails to model the relations between the camera

wearer and the interactor, which leads to 9.0% and 12.3%
accuracy degradation on PEV and NUS(first h-h) dataset,

demonstrating the importance of attention module.

5.4.3 Study on Motion Module.

We show accuracy comparisons of different motion features

in Table 4. It is seen that two-stream (flow) is a power-

ful method, but it is computational inefficient. Our method

explicitly captures motions of the camera wearer and in-
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Features PEV NUS(first h-h)

Two-stream[33](RGB) 40.7 63.8

Global appearance 40.7 63.8

Local appearance 43.2 65.1

Concat(no relation) 44.2 66.8

Interaction 45.9 68.2
Table 3. Recognition accuracy comparison (%) using appearance

features. Concat(no relation) means simple concatenation of

global and local appearance features. Interaction means relations

modeling is used with global and local appearance features.

(a) Frame (b) JPPNet mask

(c) Mask (d) Mask

Figure 7. Example of learned mask with different supervision. (a)

is original frame; (b) is the JPPNet mask; (c) is the learned mask

trained with only human segmentation loss; (d) is the learned mask

trained with human segmentation loss and classification loss.

teractor and reaches comparable results with two-stream

(flow), which indicates the effectiveness of our motion mod-

ule. Furthermore, our method could achieve higher accu-

racy with relation modeling. On different datasets, global

motion and local motion contribute differently to recogni-

tion, probably because global motion is important to distin-

guish interactions such as positive and negtive response on

PEV dataset, but such interactions highly relevant to global

motion are not included in NUS(first h-h) dataset.

In Figure 8, we show the reconstructed frame and local

dense motion field. (See more examples in supplementary

material.) From the reconstructed frame, it is seen that the

the slight head motion to the right is captured, which leaves

a strip on the left highlighted in blue. The local dense mo-

tion field shows the motion of the interactor reaching out the

hand towards the right. This example shows that the motion

module could learn the global and local motion jointly.

Our motion module explicitly estimates global and local

motions of the camera wearer and the interactor individu-

ally, which is important for relation modeling. Without the

motion module, our method fails to capture motion infor-

mation and can only use appearance features, which leads

to 18.3% and 12.0% accuracy drop on PEV and NUS(first

h-h) dataset, showing the necessity of motion modeling.

Features PEV NUS(first h-h)

Two-stream[33](flow) 54.0 73.2

Global motion 51.9 52.3

Local motion 51.0 69.6

Concat(no relation) 53.2 73.4

Interaction 56.6 75.0
Table 4. Recognition accuracy comparison (%) using motion fea-

tures. Concat(no relation) means simple concatenation of global

and local motion features. Interaction means relations modeling is

used with global and local motion features.

(a) Frame In−1 (b) Frame In

(c) Local dense motion (d) Global motion

Figure 8. Illustration of global and local motion. (a) and (b) are

two consecutive sampled frames. (c) Local dense motion shows

the amplitudes of the horizontal motion vectors in the interactor

mask, the amplitudes to the right are proportional to the brightness

of the motion field. The motion vectors outside the interacor mask

is discarded. (d) Global motion shows the slight head motion to

the right, which reflects on the strip highlighted in blue.

6. Conclusion

In this paper, we propose to learn individual action rep-

resentations and model the relations of the camera wearer

and the interactor for egocentric interaction recognition. We

construct a dual relation modeling framework by develop-

ing a novel interactive LSTM to explicitly model the rela-

tions. In addition, an attention module and a motion module

are designed to jointly model the individual actions of the

two persons for helping modeling the relations. Our dual re-

lation modeling framework shows promising results in the

experiments. In the future, we would extend our method to

handle more complex scenarios such as multi-person inter-

actions, which are not considered in this paper.
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