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Abstract

We present a novel approach for the task of human pose

transfer, which aims at synthesizing a new image of a person

from an input image of that person and a target pose. Unlike

existing methods, we propose to estimate dense and intrin-

sic 3D appearance flow to better guide the transfer of pix-

els between poses. In particular, we wish to generate the 3D

flow from just the reference and target poses. Training a net-

work for this purpose is non-trivial, especially when the an-

notations for 3D appearance flow are scarce by nature. We

address this problem through a flow synthesis stage. This is

achieved by fitting a 3D model to the given pose pair and

project them back to the 2D plane to compute the dense ap-

pearance flow for training. The synthesized ground-truths

are then used to train a feedforward network for efficient

mapping from the input and target skeleton poses to the

3D appearance flow. With the appearance flow, we per-

form feature warping on the input image and generate a

photorealistic image of the target pose. Extensive results

on DeepFashion and Market-1501 datasets demonstrate the

effectiveness of our approach over existing methods. Our

code is available at http://mmlab.ie.cuhk.edu.

hk/projects/pose-transfer/

1. Introduction

The ability to predict what an object will look like from a

new viewpoint is fundamental to intelligence. Human pose

transfer [26] is an important instantiation of such view syn-

thesis task. Given a single view/pose of one person, the goal

is to synthesize an image of that person in arbitrary poses.

This task is of great value to a wide range of applications in

computer vision and graphics. Examples include video syn-

thesis and editing and data augmentation for problems like

person re-identification where it is hard to acquire enough

same-person images from different cameras.

Despite the rapid progress in deep generative models

like Generative Adversarial Networks (GAN) [6] and Varia-

tional Auto Encoders (VAE) [17], human image generation

between poses is still exceedingly difficult. The main chal-

lenge is to model the large variations in 2D appearance due

to the change in 3D pose. This is further compounded by

human body self-occlusion that induces ambiguities in in-

ferring unobserved pixels for the target pose. In general,

successful human pose transfer requires a good representa-

tion or disentangling of human pose and appearance, which

is non-trivial to learn from data. The ability to infer invisible

parts is also necessary. Moreover, the image visual quality

largely depends on whether the high frequency details can

be preserved, e.g. in cloth or face regions.

Most existing methods for human pose transfer [1, 5, 18,

23, 24, 27, 28, 47] employ an encoder-decoder architecture

to learn the appearance transformation from an input im-

age, guided by the input and target 2D pose encoded with

some keypoints of the human-body joints. However, such

keypoint-based representation is only able to capture rough

spatial deformations, but not fine-grained ones. As a re-

sult, distortions or unrealistic details are often produced,

especially in the presence of large pose change with non-

rigid body deformations. Recent advances either decom-

pose the overall deformation by a set of local affine trans-

formations [34], or use a more detailed pose representation

than the keypoint-based one. The latter is to enable ‘dense

appearance flow’ computation that more accurately speci-

fies how to move pixels from the input pose. Neverova et

al. [26] showed that the surface-based pose representation

via DensePose [7] serves as a better alternative. Zanfir et

al. [44] turned to fit a 3D model to both input and target

images, and then perform appearance transfer between the

corresponding vertices. The resulting appearance flow with

3D geometry supervision is more ideal, but the 3D model

fitting would incur too much burden at inference time.

In this paper, we propose a novel approach to human

pose transfer that integrates implicit reasoning about 3D ge-

ometry from 2D representations only. This allows us to

share the benefits of using 3D geometry for accurate pose

transfer but at much faster speed. Our key idea is to recover
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Figure 1: The proposed human pose transfer method with dense intrinsic 3D appearance flow generates higher quality images

in comparison to baselines. (Left) The core of our method is a flow regression module (the green box) that can transform the

reference and target poses into a 3D appearance flow map and a visibility map.

from training image pairs (along with their pose keypoints)

the underlying 3D models, which when projected back to

2D image plane can provide the ground-truth appearance

flow for us to learn from. Such dense and intrinsic appear-

ance flow implicitly encodes the 3D structures of human

body. Then we train an appearance flow generation module,

represented by the traditional feedforward network, which

directly regresses from a pair of 2D poses to the correspond-

ing appearance flow. This module helps us to bypass the ex-

pensive 3D model fitting at test time, and predict the intrin-

sic pixel-wise correspondence pretty fast without requiring

explicit access to 3D geometry.

Figure 1 (left) illustrates our overall image generation

framework. Given a reference image (and its pose) and the

target pose, we first use a variant of U-Net [29] to encode

the image and target pose respectively. Then our appear-

ance flow module generates a 3D flow map from the pose

pair, and further generates a visibility map to account for the

missing pixels in the target pose due to self-occlusions. The

visibility map proves necessary for our network to synthe-

size missing pixels at the correct locations. To render the fi-

nal image in target pose, the encoded image features are first

warped through the generated flow map, and then passed

to a gating module guided by the visibility map. Finally,

our pose decoder concatenates such processed image fea-

tures to generate the image. Our U-Net-type image gener-

ator and appearance flow module are trained end-to-end so

as to optimize a combination of reconstruction, adversarial

and perceptual losses. Our approach is able to generate high

quality images on DeepFashion [20] and Market-1501 [48]

datasets, showing consistent improvements over existing

image generators based on keypoints or other pose repre-

sentations. Our method also achieves compelling quantita-

tive results.

The main contributions of this paper can be summarized

as follows:

• A feedforward appearance flow generation module is

proposed to efficiently encode the dense and intrinsic

correspondences in 3D space for human pose transfer.

• An end-to-end image generation framework is learned

to move pixels with the appearance flow map and han-

dle self-occlusions with a visibility map.

• State-of-the-art performance and high quality images

are produced on DeepFashion dataset.

2. Related Work

Deep generative image models. Recent years have seen a

breakthrough of deep generative methods for image gener-

ation, using Generative Adversarial Networks (GAN) [6],

Variational Autoencoder (VAE) [17] and so on. Among

these, GAN has drawn a great attention due to its ca-

pability of generating realistic images. Follow-up works

make GANs conditional, generating images based on ex-

tra inputs like class labels [25], natural language descrip-

tions [33, 45, 46] or images from another domain [12]

that leads to an image-to-image domain transfer frame-

work. Adversarial learning has also shown its effectiveness

in many other tasks like image super-resolution [19, 39, 40]

and texture generation [42].
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Human pose transfer. Generating human-centric images

is an important sub-area of image synthesis. Example tasks

range from generating full human body in clothing [18] to

generating human action sequences [3]. Ma et al. [23] are

the first ones to approach the task of human pose transfer,

which aims to generate a person image in a target pose if a

reference image of that person is given beforehand. The

pose comprised of 18 keypoints, is represented as a 18-

channel keypoint heatmap. Then it is concatenated with the

reference image and fed into a two-stage CNN for adversar-

ial training. Zhao et al. [47] adopted a similar coarse-to-fine

approach to generate new images, but conditioned on the

target view rather than target pose with multiple keypoints.

To better handle the non-rigid body deformation in large

pose transfer, Siarohin et al. [34] proposed Deformable

GAN to decompose the overall deformation by a set of local

affine transformations. Another line of works [5, 24, 27, 28]

focus on disentangling human appearance and pose with

weak supervision. With only single image rather than a pair

as input, these methods try to distill appearance informa-

tion in a separate embedding, sometimes with the help of

cycle-consistent penalty [27].

Geometry-based pose transfer. Some recent works inte-

grate geometric constraints of human body to improve pose

transfer. Neverova et al. [26] proposed a surface-based pose

representation on top of DensePose [7]. This allows to

map the body pixels to a meaningful UV-coordinate space,

where surface interpolation and inpainting can happen be-

fore warping back to the image space. Zanfir [44] on the

other hand, proposed to leverage 3D human model to ex-

plicitly capture the body deformations. Specifically, they fit

a 3D human model [21] to both source and target images us-

ing the method in [43], where a human body is represented

by 6890 surface vertices. Then the pixels on overlapping

vertices are directly transfered to the target image, while

the invisible vertices in source image are hallucinated using

a neural network. The main drawback of this work is that

3D model fitting is computationally expensive and is not

always accurate. Our method avoids the costly 3D model

fitting at test time, and instead learns to predict the 2D ap-

pearance flow map and visibility map defined by 3D cor-

respondences in order to guide pixel transfer. This enables

implicit reasoning about 3D geometry without requiring ac-

cess to it.

Appearance flow for view synthesis. Optical flow [9] pro-

vides dense pixel-to-pixel correspondence between two im-

ages, and has been proved useful in tasks like action recog-

nition in video [35]. Appearance flow [49] also specifies

dense correspondence often between images with different

view-points, which is closer to our setting. However, pre-

vious works mainly estimate appearance flow from simple

view transformations (e.g., a global rotation) or rigid ob-

jects (e.g., a car). Whereas our appearance flow module

deals with the articulated human body with arbitrary pose

transformation.

3. Methodology

3.1. Problem Formulation and Notations

Given a reference person image x and a target pose p,

our goal is to generate a photorealistic image x̂ for that

person but in pose p. For arbitrary pose transfer, we sim-

ply adopt the commonly-used pose representation to guide

such transfer. Specifically, we use 18 human keypoints ex-

tracted by a pose estimator [2] as in [23, 34]. The keypoints

are encoded into a 18-channel binary heatmap, where each

channel is filled with 1 within a radius of 8 pixels around

the corresponding keypoint and 0 elsewhere. During train-

ing, we consider the image pair (x1, x2) (source and target)

with their corresponding poses (p1, p2). The model takes

the triplet (x1, p1, p2) as inputs and tries to generate x̂2 with

small error versus target image x2 in pose p2.

The proposed dense intrinsic appearance flow consists of

two components, namely a flow map F(x1,x2) and a visibil-

ity map V(x1,x2) between image pair (x1, x2) to jointly rep-

resent their pixel-wise correspondence in 3D space. In the

following, we omit the subscript and brief them as F and V

for simplicity. Note F and V have the same spatial dimen-

sions as the target image x2. Assume that u′

i and ui are the

2D coordinates in images x1 and x2 that are projected from

the same 3D body point hi, F and V can be defined as:

fi =F (ui) = u′

i − ui,

vi =V (ui) = visibility(hi, x1),
(1)

where visibility(hi, x1) is a function that indicates whether

hi is invisible (due to self-occlusion or out of the image

plane) in x1. It outputs 3 discrete values (representing vis-

ible, invisible or background) which are color-coded in a

visibility map V (see an example in Fig. 3).

3.2. Overall Framework

Figure. 2 illustrates our human pose transfer framework.

Given the input image x1 and its extracted pose p1, together

with the target pose p2, the flow regression module first

predicts from (p1, p2) the intrinsic 3D appearance flow F

and visibility map V by Eq. (1). Then we use the tuple

(x1, p2, F, V ) for image generation. Note the input image

x1 and target pose p2 are likely misaligned spatially, there-

fore if we want to directly concatenate and feed them into

a single convolutional network to generate the target image,

we can suffer from sub-optimal results. Part of the reason

is that the convolutional layers (especially those low-level

ones) in one single network may have limited receptive field

to capture the large spatial displacements. Some unique net-

work architecture is introduced in [23] to address this.
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Figure 2: Overview of our human pose transfer framework. With the input image x1, its extracted pose p1, and the target

pose p2, the goal is to render a new image in pose p2. Our flow regression module first generates the intrinsic appearance

flow map F and visibility map V , which are used to warp the encoded features {cka} from reference image x1. Such warped

features {ckaw} and target pose features {ckp} can then go through a decoder Gd to produce an image x̃2. This result is further

refined by a pixel warping module to generate the final result x̂2. Our training objectives include using the PatchGAN [12]

to discriminate between (x1, p2, x2) and (x1, p2, x̂2), as well as reconstruction and perceptual losses.

Inspired by [34, 47], we choose to use a dual-path U-

Net [29] to separately model the image and pose informa-

tion. Concretely, an appearance encoder Gea and pose en-

coder Gep are employed to encode image x1 and target pose

p2 into the feature pyramids {cka}, {ckp}. Then a feature

warping module is proposed to handle the spatial misalign-

ment issue during pose transfer. This module warps the ap-

pearance features cka according to our generated flow map

F . Meanwhile, some potentially missing pixels in target

pose are also implicitly considered by including the visibil-

ity map V . Our feature warping function is defined as:

ckaw = WF (c
k
a, F, V ), (2)

where WF is the warping operation detailed in Sec. 3.4, and

ckaw denotes the warped features at feature level k. Then we

concatenate warped features {ckaw} and target pose features

{ckp} hierarchically, which are fed to the image decoder Gd

through skip connections to generate the target image x̃2.

Lastly, x̃2 is further enhanced by a pixel warping module

(Sec. 3.5) to obtain the finial output x̂2.

One of our training objectives is the adversarial loss. We

adopt the PatchGAN [12] to score the realism of synthe-

sized image patches. The input patches to the PatchGAN

discriminator is either from (x1, p2, x2) or (x1, p2, x̂2). We

found the concatenation of (x1, p2) provides good condi-

tioning for GAN training.

3.3. Flow Regression Module

Our key module for 3D appearance flow regression is

shown in Fig. 3. It is a feedforward CNN that predicts the

  
  

 

 

   

   

  

  

EPE Loss

Cross Entropy 

Loss

Figure 3: Our appearance flow regression module adopts

a U-Net architecture to predict the intrinsic 3D appearance

flow map F and visibility map V from the given pose pair

(p1, p2). This module is jointly trained with an End-Point-

Error (EPE) loss on F and a cross-entropy loss on V .

required appearance flow map F and visibility map V from

the pose pair (p1, p2). This is similar to the optical flow

prediction [4, 10], but differs in that our flow and visibility

maps aim to encode 3D dense correspondences not 2D ones

in optical flow. For accurate prediction of these two maps,

we leverage a 3D human model to synthesize their ground-

truth for training.

Ground-truth generation. For this purpose, we ran-

domly sample the same-person image pairs (x1, x2) from

the DeepFashion dataset [20]. We then fit a 3D hu-

man model [21] to both images, using the state-of-the-art

method [15]. The 3D model represents the human body

as a mesh with 6,890 vertices and 13,766 faces. After 3D

model fitting, we project them back to the 2D image plane

using an image renderer [22]. As indicated by Eq. (1), for

the projected 2D coordinate uj in image x2, we can identify

its exact belonging mesh face in 3D and hence compute the

corresponding 2D coordinate u′

j in image x1 via barycen-
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Figure 4: Example 3D appearance flow maps and visi-

bility maps: generated ground-truth (middle) and predic-

tion from our flow regression module (right). The ground-

truth rendered from 3D model fitting has occasional er-

rors, e.g., around the overlapping legs in the last row. While

our flow regression module can correct the error by predict-

ing from the given pose.

tric transformation. The resulting flow vector is computed

as fj = u′

j − uj . In addition, we can obtain the visibility

of each mesh face and thus the entire visibility map V from

the image renderer. Fig. 4 (middle) shows some examples of

the generated groundtruth flow map and visibility map. One

by-product of the 2D image projection is that we can obtain

the corresponding 2D pose from the image renderer [15].

We denote such rendered pose as p̃, and will elaborate its

use next.

Network architecture and training. Figure. 3 demon-

strates how to train the 3D appearance flow regression mod-

ule with a U-Net architecture. It takes a pose pair (p1, p2)
as input and is trained to simultaneously predict the flow

map F and visibility map V under the end-point-error

(EPE) loss and cross entropy loss, respectively. We noticed

that the 3D model fitting process will sometimes cause er-

rors, e.g., when human legs are overlapped with each other,

see Fig. 4 (middle, last row). In this case, the synthesized

flow and visibility maps {F, V } from image-based 3D fit-

ting is not consistent with the groundtruth pose (p1, p2)
anymore. Hence it is erroneous to train the flow regres-

sion from (p1, p2) to the un-matched {F, V }. Fortunately,

as mentioned before, we have pose {p̃1, p̃2} rendered from

the 2D projection process that leads to the corresponding

maps {F, V }. Therefore, we choose to perform regression

from the rendered pose (p̃1, p̃2) to {F, V }, rather than from

the potentially un-matched ground-truth pose (p1, p2). We

found such trained regressor between the rendered pose-

flow pair works surprisingly well even when the 3D model

is not fitted perfectly. Once our appearance flow regression

module finishes training, it is frozen during the training of

C +
appearance

feature 

flow   visibility   

visible part

invisible part

C
warped

feature     
STN

Gating

Conv

Concat

Add

Figure 5: The architecture of feature warping module.

the overall pose transfer framework. At test time, our flow

regression module generalizes well to the given pose p.

3.4. FlowGuided Feature Warping

Recall that our 3D appearance flow and visibility maps

are generated to align the reference image to the target pose

and inpaint the invisible pixels therein. We achieve this by

warping the input image features guided by our two maps.

The architecture of our feature warping module is illustrated

in Fig. 5. The inputs are the image features cka (at feature

level k) and the flow and visibility maps (Fk, Vk) resized to

match the cka dimensions. We first warp the input features cka
by the flow map Fk using a spatial transformer layer [13].

The warped features are then fed into a spatial gating layer,

which divides the feature maps into mutually exclusive re-

gions according to the visibility map Vk. Here we do not

simply filter out the invisible feature map pixels because

they may still contain useful information, like clothing style

or body shape. The gated feature maps are passed through

two convolutional layers with residual path to get the final

warped features ckaw. Our feature warping module is differ-

entiable allowing for end-to-end training.

3.5. Pixel Warping

As shown in Fig. 2, given the warped features {ckaw}, we

concatenate them with the target pose features {ckp} hierar-

chically. They are both fed to the image decoder Gd through

skip connections to render the target image x̃2. In our exper-

iments, we found high frequency details are sometimes lost

in x̃2, indicating the inefficiency of image warping only at

feature level. To this end, we propose to further enhance x̃2

at pixel level. Similarly, a pixel warping module is adopted

to warp the pixels in input image x1 to the target pose using

our 3D appearance flow.

Specifically, we warp x1 according to the full resolution

flow map F to get the warped image xw. Note xw con-

tains the required image details from input x1, but may be

distorted because of the coarse flow map and body occlu-

sions. Therefore, we train another U-Net to weigh between

the warped output xw and x̃2 at pixel- and feature-level re-

spectively. This weighting network takes xw, x̃2, F and V

as inputs and outputs a soft weighting map z with the same

resolution of xw and x2. The map z is normalized to the

range of (0, 1) with sigmoid function. Then the final output
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Figure 6: Pixel warping examples. From left to right: the

pixel warped image xw, weighting map z, feature-warped

image x̃2, final image x̂2 fused with pixel warping, and the

ground-truth target image x2.

x∗

2 is computed as a weighted sum of xw and x̃2 as:

x̂2 = z · xw + (1− z) · x̃2. (3)

Figure. 6 validates the effect of pixel warping. We can

see that pixel warping is indeed able to add some high-

frequency details that can not be recovered well by our fea-

ture warping results. The added details are simply copied

from reference image using our intrinsic appearance flow.

3.6. Loss Functions

The goal of our model is to achieve accurate human

pose transfer to an arbitrary pose, generating a photoreal-

istic pose-transferred image. This task is challenging due to

the large non-rigid deformation during pose transfer and the

complex details in human images. Previous works on con-

ditional image generation [12, 38] and human pose trans-

fer [23, 26, 34] utilize multiple loss functions to jointly su-

pervise the training process. In this work we similarly use a

combination of three loss functions, namely an adversarial

loss Ladv , an L1 reconstruction loss LL1, and a perceptual

loss Lperceptual. They are detailed as follows.

Adversarial loss. We adopt a vanilla GAN loss in the con-

ditional setting in our task, which is defined as:

Ladv(G,D) =Ex1,x2
[logD(x2|x1, p2)]

+Ex1,x2
[log(1−D(G(x1, p2)|x1, p2))].

(4)

L1 loss. Previous work [12] shows L1 loss can stabilize

the training process when a target groundtruth is available.

Therefore we also enforce an L1 constraint between the

generated image and the target image as:

LL1(G) = ||x̂2 − x2||1. (5)

Perceptual loss. The work in [14] shows that penalizing

L2-distance between feature maps extracted from two im-

ages by a pretrained CNN could encourage image structure

similarity. We adopt a VGG19 network [36] pretrained on

ImageNet [30] as the feature extractor, and use multi-level

feature maps φj to compute perceptual loss as:

Lperceptual(G) =
N∑

j=1

||φj(x̂2)− φj(x2)||
2
2. (6)

Our final loss function for image generation is a weighted

sum of above terms:

L(G) = λ1Ladv + λ2LL1 + λ3Lperceptual. (7)

4. Experiments

4.1. Dataset and Implementation Details

Dataset. We evaluate our method on DeepFashion dataset

(In-shop Clothes Retrieval Benchmark) [20], which con-

tains 52,712 in-shop clothes images and 200,000 cross-

pose/scale pairs. The images have a resolution of 256×256
pixels. Following the setting in [34], we select 89,262 pairs

for training and 12,000 pairs for testing. We perform addi-

tional experiments on Market-1501 dataset [48] and show

results in the supplementary material.

Network architecture. Our generator uses a U-Net archi-

tecture of N = 7 levels. At each feature level, the en-

coder has two cascaded residual blocks [8] followed by a

stride-2 convolution layer for downsampling, while the de-

coder has a symmetric structure of an upsampling layer fol-

lowed by two residual blocks. The upsampling layer is im-

plemented as a convolutional layer followed by pixel shuf-

fling operation [32]. There are skip connections between the

corresponding residual blocks in the encoder and decoder,

and batch normalization [11] is used after each convolu-

tional layer (except the last one). Our discriminator uses

the PatchGAN [12] network with a patch size of 70 × 70
pixels.

Training. We use the Adam optimizer [16] (β1 = 0.5,β2 =
0.999) in all experiments. We adopt a batch size of 8 and

a learning rate of 2e-4 (except for the discriminator which

uses learning rate 2e-5). In our experiments we noticed that

optimizing the image generator and the pixel warping mod-

ule separately yields better performance. Therefore we first

train the image generator for 10 epochs and freeze it af-

terwards. Then we add the pixel warping module into the

framework and train the full model for another 2 epochs. To

stabilize the training, LGAN is not used in the first 5 epochs.
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Table 1: Comparison against previous works on DeepFash-

ion dataset. † indicates the model is unsupervised (no image

pairs used in training). ∗ indicates the results are obtained

using different data splits, thus cannot be directly compared

to ours.

Model SSIM IS FashionIS
AttrRec-k(%)

k=5 k=20

UPIS [27]†∗ 0.747 2.97 - - -

DPT [26]∗ 0.796 3.71 - - -

DPIG [24]† 0.614 3.228 - - -

VUnet [5]† 0.786 3.087 - - -

PG2 [23] 0.762 3.090 2.639 13.560 30.193

DSC [34] 0.756 3.439 3.804 19.017 43.812

Ours 0.778 3.338 4.898 21.065 49.044

Real Image 1.000 3.962 6.518 24.780 61.626

4.2. Evaluation Metrics

Previous works use Structure Similarity (SSIM) [41] and

Inception Score (IS) [31] to evaluate the quality of gener-

ated images. We report these metrics too in our experi-

ments. However, SSIM is noticed to favor blurry images

which are less photorealistic [23]. While IS computed us-

ing a classifier trained on ImageNet [30] is not suitable in

the scenario where the images have a different distribution

than ImageNet images. For these reasons, we introduce two

complementary metrics described below.

Fashion inception score. Following the definition in [31],

we calculate the inception score using a fashion item clas-

sifier, which we refer as FashionIS. Specifically, we fine-

tune an Inception Model [37] on clothing type classification

task on [20], which has no domain gap to the images in our

human pose transfer experiments. We argue that Fashio-

nIS can better evaluate the image quality in our experiments

compared to the original IS.

Clothing attribute retaining rate. The human pose trans-

fer model should be able to preserve the appearance details

in the reference image, like the clothing attributes like color,

texture, fabric and style. To evaluate the model performance

from this aspect, we train a clothing attribute recognition

model on DeepFashion [20] to recognize clothing attributes

from the generated images. Since the groundtruth attribute

label of the test image is available, we directly use the top-k

recall rate as the metric, denoted as AttrRec-k.

4.3. Quantitative Results

We compare our proposed method against recent works

in Table. 1. For SSIM and IS we directly use the results

reported in the original papers. We calculate their Fashio-

nIS and AttRec-k results using the images generated by the

publicly released codes and models. Note that the data splits

used in [26, 27] are different from our setting, thus these re-

sults are not directly comparable. The results show that our

Reference

Image

NIPS 2017

PG2 [23]

CVPR 2018

DSC [33]
Ours

Target

Image

Target

Pose

Figure 7: Qualitative comparison between our method and

previous works.

proposed method outperforms others in terms of both Fash-

ionIS and AttrRec-k metrics by a significant margin. This

proves that our method can generate more realistic images

with better preserved details. In terms of SSIM and IS, we

also achieve compelling results compared to the state-of-

the-art methods.

4.4. Qualitative Results

We further visualize some qualitative results in Fig. 7 to

show the effectiveness of our proposed method. Because of

the introduced 3D intrinsic appearance flow and visibility

map, the large spatial displacements and deformations are

successfully recovered by our method during pose transfer.

We can see that our model generates realistic human image

in arbitrary poses and is able to restore detailed appearance

attributes like clothing textures.

4.5. User Study

We conduct a user study with 30 users to compare the

visual results from our method and the state-of-the-art base-

line [34]. The user study consists of two tests. The first one

is a ”real or fake” test, following the protocol in [23, 34].
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Table 2: User study (%) on DeepFashion. R2G indicates the

percentage of real images rated as fake, and G2R means the

opposite. ’Judged as better’ indicates the wining percentage

in the comparison test.

Model R2G G2R Judged as better

DSC [34] 9.55 9.24 9.47

Ours 10.01 31.71 90.53

For each method, we show the user 55 real images and 55

fake images in an random order. Each image is shown for

1 second and user will determine whether it is real or fake.

The first 10 images are for practice and are ignored when

computing results. The second one is a comparison test, in

which we show the user 55 image pairs, generated by our

method and baseline respectively with the same reference

image and target pose, and the user is asked to pick one im-

age with better quality from each pair. The reference image

is also shown to make the user aware of the groundtruth ap-

pearance. Similar to the first test, the first 5 pairs are for

practice. All samples in user study is randomly selected

from our test set and shown with full resolution. The results

in Table. 2 show that our method generates images with con-

sistently better quality than the baseline, which are confused

with real images more often by human judeges.

4.6. Ablation Study

In this section we perform ablation study to further an-

alyze the impact of each component in our model. We

first describe the variants obtained by incrementally remov-

ing components form the full framework. All variants are

trained using the same protocol described in Sec. 4.1.

w/o. dual encoder. This is similar to PG2 [23] that has a U-

Net architecture with single encoder and no flow regression

module. x1 and p2 are concatenated before being fed into

the model.

w/o. flow. This model has a dual-path U-Net architecture

but without feature warping module. Appearance features

{cka} and pose features {ckp} are directly concatenated at

corresponding level before sent into the decoder.

w/o. visibility. This model adopts dual-path U-Net gen-

erator with a simplified feature warping module, where the

gating layer and the first convolution layer in Fig. 5 are re-

placed with a normal residual block that is unaware of the

visibility map V .

Table 3: Ablation study.

Model SSIM IS FashionIS
AttrRec-k(%)

k=5 k=20

w/o. dual encoder 0.780 3.173 3.927 19.085 43.377

w/o. flow 0.783 3.319 4.119 19.716 44.656

w/o. visibility 0.778 3.260 4.491 20.297 46.591

w/o. pixel warping 0.776 3.281 4.800 20.942 48.391

Full 0.778 3.338 4.898 21.065 49.044

Reference Image Target Image Full w/o. pixel warping w/o. visibility w/o. flow w/o. dual encoder

Figure 8: Visualization of ablation study

w/o. pixel warping. This model uses the full generators in

Fig. 2 without pixel warping module.

Full. This is the full framework as shown in Fig. 2.

Table. 3 and Fig. 8 show the quantitative and qualitative

results of the ablation study. We can observe that all mod-

els perform well on generating correct body poses, realis-

tic faces and plausible color style, which yield high SSIM

scores. However, our proposed flow guided feature warping

significantly improves the capability of preserving detailed

appearance attributes like clothing layout and complex tex-

tures, which also leads a large increase of FashionIS and

AttrRec-k. The pixel warping module further helps to han-

dle some special clothing patterns that are not well recon-

structed by the convolutional generator.

5. Conclusion

In this paper we propose a new human pose transfer

method with implicit reasoning about 3D geometry of hu-

man body. We generate the intrinsic appearance flow map

and visibility map leveraging the 3D human model, so as to

learn how to move pixels and hallucinate invisible ones in

the target pose. A feedforward neural network is trained to

rapidly predict both maps, which are used to warp and gate

image features respectively for high-fidelity image genera-

tion. Both qualitative and quantitative results on the Deep-

Fashion dataset show that our method is able to synthesize

human images in arbitrary pose with realistic details and

preserved attributes. Our approach also significantly out-

performs existing pose- or keypoint-based image generators

and other alternatives.
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[7] Riza Alp Güler, Natalia Neverova, and Iasonas Kokkinos.

Densepose: Dense human pose estimation in the wild. In

CVPR, 2018. 1, 3

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. In ECCV,

2016. 6

[9] Berthold KP Horn and Brian G Schunck. Determining opti-

cal flow. Artificial intelligence, 17(1-3):185–203, 1981. 3

[10] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,

Alexey Dosovitskiy, and Thomas Brox. Flownet 2.0: Evolu-

tion of optical flow estimation with deep networks. In CVPR,

2017. 4

[11] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. arXiv preprint arXiv:1502.03167, 2015. 6

[12] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. In CVPR, 2017. 2, 4, 6

[13] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.

Spatial transformer networks. In NIPS, 2015. 5

[14] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

ECCV, 2016. 6

[15] Angjoo Kanazawa, Michael J Black, David W Jacobs, and

Jitendra Malik. End-to-end recovery of human shape and

pose. In CVPR, 2018. 4, 5

[16] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[17] Diederik P Kingma and Max Welling. Auto-encoding varia-

tional bayes. arXiv preprint arXiv:1312.6114, 2013. 1, 2

[18] Christoph Lassner, Gerard Pons-Moll, and Peter V Gehler.

A generative model of people in clothing. In ICCV, 2017. 1,

3

[19] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,

Andrew Cunningham, Alejandro Acosta, Andrew P Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-

realistic single image super-resolution using a generative ad-

versarial network. In CVPR, 2017. 2

[20] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou

Tang. Deepfashion: Powering robust clothes recognition and

retrieval with rich annotations. In CVPR, 2016. 2, 4, 6, 7

[21] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard

Pons-Moll, and Michael J Black. Smpl: A skinned multi-

person linear model. ACM TOG, 34(6):248, 2015. 3, 4

[22] Matthew M Loper and Michael J Black. Opendr: An approx-

imate differentiable renderer. In ECCV, 2014. 4

[23] Liqian Ma, Xu Jia, Qianru Sun, Bernt Schiele, Tinne Tuyte-

laars, and Luc Van Gool. Pose guided person image genera-

tion. In NIPS, 2017. 1, 3, 6, 7, 8

[24] Liqian Ma, Qianru Sun, Stamatios Georgoulis, Luc

Van Gool, Bernt Schiele, and Mario Fritz. Disentangled per-

son image generation. In CVPR, 2018. 1, 3, 7

[25] Mehdi Mirza and Simon Osindero. Conditional generative

adversarial nets. arXiv preprint arXiv:1411.1784, 2014. 2

[26] Natalia Neverova, Rıza Alp Güler, and Iasonas Kokkinos.
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