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Abstract

Recent advances in image super-resolution (SR) ex-

plored the power of deep learning to achieve a better re-

construction performance. However, the feedback mecha-

nism, which commonly exists in human visual system, has

not been fully exploited in existing deep learning based

image SR methods. In this paper, we propose an image

super-resolution feedback network (SRFBN) to refine low-

level representations with high-level information. Specifi-

cally, we use hidden states in a recurrent neural network

(RNN) with constraints to achieve such feedback manner.

A feedback block is designed to handle the feedback con-

nections and to generate powerful high-level representa-

tions. The proposed SRFBN comes with a strong early re-

construction ability and can create the final high-resolution

image step by step. In addition, we introduce a curricu-

lum learning strategy to make the network well suitable

for more complicated tasks, where the low-resolution im-

ages are corrupted by multiple types of degradation. Ex-

tensive experimental results demonstrate the superiority of

the proposed SRFBN in comparison with the state-of-the-

art methods. Code is avaliable at https://github.

com/Paper99/SRFBN_CVPR19.

1. Introduction

Image super-resolution (SR) is a low-level computer vi-

sion task, which aims to reconstruct a high-resolution (HR)

image from its low-resolution (LR) counterpart. It is in-

herently ill-posed since multiple HR images may result

in an identical LR image. To address this problem, nu-

merous image SR methods have been proposed, includ-

ing interpolation-based methods[45], reconstruction-based

methods[42], and learning-based methods [33, 26, 34, 15,

29, 6, 18].

Since Dong et al. [6] firstly introduced a shallow Convo-

lutional Neural Network (CNN) to implement image SR,

deep learning based methods have attracted extensive at-
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Figure 1. The illustrations of the feedback mechanism in the pro-

posed network. Blue arrows represent the feedback connections.

(a) Feedback via the hidden state at one iteration. The feedback

block (FB) receives the information of the input Fin and hidden

state from last iteration F
t−1

out
, and then passes its hidden state F t

out

to the next iteration and output. (b) The principle of our feedback

scheme.

tention in recent years due to their superior reconstruction

performance. The benefits of deep learning based methods

mainly come from its two key factors, i.e., depth and skip

connections (residual or dense) [18, 36, 31, 11, 47, 46, 37].

The first one provides a powerful capability to represent and

establish a more complex LR-HR mapping, while preserv-

ing more contextual information with larger receptive fields.

The second factor can efficiently alleviate the gradient van-

ishing/exploding problems caused by simply stacking more

layers to deepen networks.

As the depth of networks grows, the number of parame-

ters increases. A large-capacity network will occupy huge
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storage resources and suffer from the overfitting problem.

To reduce network parameters, the recurrent structure is

often employed. Recent studies [22, 10] have shown that

many networks with recurrent structure (e.g. DRCN [19]

and DRRN [31]) can be extrapolated as a single-state Re-

current Neural Network (RNN). Similar to most conven-

tional deep learning based methods, these networks with

recurrent structure can share the information in a feedfor-

ward manner. However, the feedforward manner makes it

impossible for previous layers to access useful information

from the following layers, even though skip connections are

employed.

In cognition theory, feedback connections which link

the cortical visual areas can transmit response signals from

higher-order areas to lower-order areas [17, 9]. Motivated

by this phenomenon, recent studies [30, 40] have applied

the feedback mechanism to network architectures. The

feedback mechanism in these architectures works in a top-

down manner, carrying high-level information back to pre-

vious layers and refining low-level encoded information.

In this paper, we propose a novel network for image SR,

namely the Super-Resolution Feedback Network (SRFBN),

in order to refine low-level information using high-level one

through feedback connections. The proposed SRFBN is

essentially an RNN with a feedback block (FB), which is

specifically designed for image SR tasks. The FB is con-

structed by multiple sets of up- and down-sampling layers

with dense skip connections to generate powerful high-level

representations. Inspired by [40], we use the output of the

FB, i.e., a hidden state in an unfolded RNN, to achieve the

feedback manner (see Fig. 1(a)). The hidden state at each

iteration flows into the next iteration to modulate the input.

To ensure the hidden state contains the information of the

HR image, we connect the loss to each iteration during the

training process. The principle of our feedback scheme is

that the information of a coarse SR image can facilitate an

LR image to reconstruct a better SR image (see Fig. 1(b)).

Furthermore, we design a curriculum for the case, in which

the LR image is generated by a complex degradation model.

For each LR image, its target HR images for consecutive

iterations are arranged from easy to hard based on the re-

covery difficulty. Such curriculum learning strategy well

assists our proposed SRFBN in handling complex degrada-

tion models. Experimental results demonstrate the superi-

ority of our proposed SRFBN against other state-of-the-art

methods.

In summary, our main contributions are as follows:

• Proposing an image super-resolution feedback net-

work (SRFBN), which employs a feedback mecha-

nism. High-level information is provided in top-down

feedback flows through feedback connections. Mean-

while, such recurrent structure with feedback connec-

tions provides strong early reconstruction ability, and

requires only few parameters.

• Proposing a feedback block (FB), which not only ef-

ficiently handles feedback information flows, but also

enriches high-level representations via up- and down-

sampling layers, and dense skip connections.

• Proposing a curriculum-based training strategy for the

proposed SRFBN, in which HR images with increas-

ing reconstruction difficulty are fed into the network as

targets for consecutive iterations. This strategy enables

the network to learn complex degradation models step

by step, while the same strategy is impossible to settle

for those methods with only one-step prediction.

2. Related Work

2.1. Deep learning based image super­resolution

Deep learning has shown its superior performance in var-

ious computer vision tasks including image SR. Dong et

al. [7] firstly introduced a three-layer CNN in image SR to

learn a complex LR-HR mapping. Kim et al. [18] increased

the depth of CNN to 20 layers for more contextual infor-

mation usage in LR images. In [18], a skip connection was

employed to overcome the difficulty of optimization when

the network became deeper. Recent studies have adopted

different kind of skip connections to achieve remarkable im-

provement in image SR. SRResNet[21] and EDSR[23] ap-

plied residual skip connections from [13]. SRDenseNet[36]

applied dense skip connections from [14]. Zhang et al. [47]

combined local/global residual and dense skip connections

in their RDN. Since the skip connections in these net-

work architectures use or combine hierarchical features in

a bottom-up way, the low-level features can only receive

the information from previous layers, lacking enough con-

textual information due to the limitation of small receptive

fields. These low-level features are reused in the follow-

ing layers, and thus further restrict the reconstruction abil-

ity of the network. To fix this issue, we propose a super-

resolution feedback network (SRFBN), in which high-level

information flows through feedback connections in a top-

down manner to correct low-level features using more con-

textual information.

Meanwhile, with the help of skip connections, neural

networks go deeper and hold more parameters. Such large-

capacity networks occupy huge amount of storage resources

and suffer from overfitting. To effectively reduce network

parameters and gain better generalization power, the recur-

rent structure was employed[19, 31, 32]. Particularly, the

recurrent structure plays an important role to realize the

feedback process in the proposed SRFBN (see Fig. 1(b)).

2.2. Feedback mechanism

The feedback mechanism allows the network to carry a

notion of output to correct previous states. Recently, the
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Figure 2. The architecture of our proposed super-resolution feedback network (SRFBN). Blue arrows represent feedback connections.

Green arrows represent global residual skip connections.

feedback mechanism has been adopted by many network

architectures for various vision tasks[5, 4, 40, 11, 10, 28].

For image SR, a few studies also showed efforts to intro-

duce the feedback mechanism. Based on back-projection,

Haris et al. [11] designed up- and down-projection units to

achieve iterative error feedback. Han et al. [10] applied a

delayed feedback mechanism which transmits the informa-

tion between two recurrent states in a dual-state RNN. How-

ever, the flow of information from the LR image to the final

SR image is still feedforward in their network architectures

unlike ours.

The most relevant work to ours is [40], which transfers

the hidden state with high-level information to the informa-

tion of an input image to realize feedback in an convolu-

tional recurrent neural network. However, it aims at solving

high-level vision tasks, e.g. classification. To fit a feedback

mechanism in image SR, we elaborately design a feedback

block (FB) as the basic module in our SRFBN, instead of

using ConvLSTM as in [40]. The information in our FB ef-

ficiently flows across hierarchical layers through dense skip

connections. Experimental results indicate our FB has supe-

rior reconstruction performance than ConvLSTM1 and thus

is more suitable for image SR tasks.

2.3. Curriculum learning

Curriculum learning[2], which gradually increases the

difficulty of the learned target, is well known as an ef-

ficient strategy to improve the training procedure. Early

work of curriculum learning mainly focuses on a single

task. Pentina et al. [27] extended curriculum learning to

multiple tasks in a sequential manner. Gao et al. [8] utilized

curriculum learning to solve the fixation problem in image

restoration. Since their network is limited to a one-time pre-

diction, they enforce a curriculum through feeding different

training data in terms of the complexity of tasks as epoch in-

creases during the training process. In the context of image

1Further analysis can be found in our supplementary material.

SR, Wang et al. [38] designed a curriculum for the pyramid

structure, which gradually blends a new level of the pyra-

mid in previously trained networks to upscale an LR image

to a bigger size.

While previous works focus on a single degradation pro-

cess, we enforce a curriculum to the case, where the LR

image is corrupted by multiple types of degradation. The

curriculum containing easy-to-hard decisions can be settled

for one query to gradually restore the corrupted LR image.

3. Feedback Network for Image SR

Two requirements are contained in a feedback system:

(1) iterativeness and (2) rerouting the output of the system

to correct the input in each loop. Such iterative cause-and-

effect process helps to achieve the principle of our feedback

scheme for image SR: high-level information can guide an

LR image to recover a better SR image (see Fig. 1(b)). In

the proposed network, there are three indispensable parts to

enforce our feedback scheme: (1) tying the loss at each it-

eration (to force the network to reconstruct an SR image at

each iteration and thus allow the hidden state to carry a no-

tion of high-level information), (2) using recurrent structure

(to achieve iterative process) and (3) providing an LR input

at each iteration (to ensure the availability of low-level in-

formation, which is needed to be refined). Any absence of

these three parts will fail the network to drive the feedback

flow.

3.1. Network structure

As shown in Fig. 2, our proposed SRFBN can be un-

folded to T iterations, in which each iteration t is tempo-

rally ordered from 1 to T . In order to make the hidden state

in SRFBN carry a notion of output, we tie the loss for every

iteration. The description of the loss function can be found

in Sec. 3.3. The sub-network placed in each iteration t con-

tains three parts: an LR feature extraction block (LRFB), a

feedback block (FB) and a reconstruction block (RB). The
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weights of each block are shared across time. The global

residual skip connection at each iteration t delivers an up-

sampled image to bypass the sub-network. Therefore, the

purpose of the sub-network at each iteration t is to recover

a residual image ItRes while input a low-resolution image

ILR. We denote Conv(s, n) and Deconv(s, n) as a con-

volutional layer and a deconvolutional layer respectively,

where s is the size of the filter and n is the number of filters.

The LR feature extraction block consists of

Conv(3, 4m) and Conv(3,m). m denotes the base

number of filters. We provide an LR input ILR for the LR

feature extraction block, from which we obtain the shallow

features F t
in containing the information of an LR image:

F t
in = fLRFB(ILR), (1)

where fLRFB denotes the operations of the LR feature ex-

traction block. F t
in are then used as the input to the FB. In

addition, F 1
in are regarded as the initial hidden state F 0

out.

The FB at the t-th iteration receives the hidden state from

previous iteration F t−1
out through a feedback connection and

shallow features F t
in. F t

out represents the output of the FB.

The mathematical formulation of the FB is:

F t
out = fFB(F

t−1
out , F

t
in), (2)

where fFB denotes the operations of the FB and actually

represents the feedback process as shown in Fig. 1(a). More

details of the FB can be found in Sec. 3.2.

The reconstruction block uses Deconv(k,m) to upscale

LR features F t
out to HR ones and Conv(3, cout) to generate

a residual image ItRes. The mathematical formulation of the

reconstruction block is:

ItRes = fRB(F
t
out), (3)

where fRB denotes the operations of the reconstruction

block.

The output image ItSR at the t-th iteration can be ob-

tained by:

ItSR = ItRes + fUP (ILR), (4)

where fUP denotes the operation of an upsample kernel.

The choice of the upsample kernel is arbitrary. We use a

bilinear upsample kernel here. After T iterations, we will

get totally T SR images (I1SR, I
2
SR, ..., I

T
SR).

3.2. Feedback block

As shown in Fig. 3, the FB at the t-th iteration re-

ceives the feedback information F t−1
out to correct low-level

representations F t
in, and then passes more powerful high-

level representations F t
out as its output to the next iteration

and the reconstruction block. The FB contains G projec-

tion groups sequentially with dense skip connections among

them. Each projection group, which can project HR features
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Figure 3. Feedback block (FB).

to LR ones, mainly includes an upsample operation and a

downsample operation.

At the beginning of the FB, F t
in and F t−1

out are concate-

nated and compressed by Conv(1,m) to refine input fea-

tures F t
in by feedback information F t−1

out , producing the re-

fined input features Lt
0:

Lt
0 = C0([F

t−1
out , F

t
in]), (5)

where C0 refers to the initial compression operation and

[F t−1
out , F

t
in] refers to the concatenation of F t−1

out and F t
in.

Let Ht
g and Lt

g be the HR and LR feature maps given by the

g-th projection group in the FB at the t-th iteration. Ht
g can

be obtained by:

Ht
g = C↑

g ([L
t
0, L

t
1, ..., L

t
g−1]), (6)

where C↑
g refers to the upsample operation using

Deconv(k,m) at the g-th projection group. Correspond-

ingly, Lt
g can be obtained by

Lt
g = C↓

g ([H
t
1, H

t
2, ..., H

t
g]), (7)

where C↓
g refers to the downsample operation using

Conv(k,m) at the g-th projection group. Except for the

first projection group, we add Conv(1,m) before C↑
g and

C↓
g for parameter and computation efficiency.

In order to exploit useful information from each projec-

tion group and map the size of input LR features F t+1

in at the

next iteration, we conduct the feature fusion (green arrows

in Fig. 3) for LR features generated by projection groups to

generate the output of FB:

F t
out = CFF ([L

t
1, L

t
2, ..., L

t
G]), (8)

where CFF represents the function of Conv(1,m).

3.3. Curriculum learning strategy

We choose L1 loss to optimize our proposed net-

work. T target HR images (I1HR, I
2
HR, ..., I

T
HR) are

placed to fit in the multiple output in our proposed net-

work. (I1HR, I
2
HR, ..., I

T
HR) are identical for the single

degradation model. For complex degradation models,

(I1HR, I
2
HR, ..., I

T
HR) are ordered based on the difficulty of

tasks for T iterations to enforce a curriculum. The loss func-

tion in the network can be formulated as:

L(Θ) =
1

T

T
∑

t=1

W t
∥

∥ItHR − ItSR

∥

∥

1
, (9)
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where Θ denotes to the parameters of our network. W t is

a constant factor which demonstrates the worth of the out-

put at the t-th iterations. As [40] do, we set the value to 1

for each iteration, which represents each output has equal

contribution. Details about settings of target HR images for

complex degradation models will be revealed in Sec. 4.4.

3.4. Implementation details

We use PReLU[12] as the activation function following

all convolutional and deconvolutional layers except the last

layer in each sub-network. Same as [11], we set various k in

Conv(k,m) and Deconv(k,m) for different scale factors

to perform up- and down-sampling operations. For ×2 scale

factor, we set k in Conv(k,m) and Deconv(k,m) as 6 with

two striding and two padding. Then, for ×3 scale factor, we

set k = 7 with three striding and two padding. Finally, for

×4 scale factor, we set k = 8 with four striding and two

padding. We take the SR image ITSR at the last iteration

as our final SR result unless we specifically analysis every

output image at each iteration. Our network can process

both gray and color images, so cout can be 1 or 3 naturally.

4. Experimental Results

4.1. Settings

Datasets and metrics. We use DIV2K[1] and Flickr2K

as our training data. To make full use of data, we adopt

data augmentation as [23] do. We evaluate SR results under

PSNR and SSIM[39] metrics on five standard benchmark

datasets: Set5[3], Set14[41], B100[24], Urban100[15], and

Manga109[25]. To keep consistency with previous works,

quantitative results are only evaluated on luminance (Y)

channel.

Degradation models. In order to make fair comparison

with existing models, we regard bicubic downsampling as

our standard degradation model (denoted as BI) for gener-

ating LR images from ground truth HR images. To ver-

ify the effectiveness of our curriculum learning strategy, we

further conduct two experiments involving two other multi-

degradation models as [47] do in Sec. 4.4 and 4.5.3. We

define BD as a degradation model which applies Gaussian

blur followed by downsampling to HR images. In our ex-

periments, we use 7x7 sized Gaussian kernel with standard

deviation 1.6 for blurring. Apart from the BD degradation

model, DN degradation model is defined as bicubic down-

sampling followed by adding Gaussian noise, with noise

level of 30.

Scale factor ×2 ×3 ×4

Input patch size 60× 60 50× 50 40× 40

Table 1. The settings of input patch size.

Training settings. We train all networks with the batch-

size of 16. To fully exploit contextual information from LR

images, we feed RGB image patches with different patch

size based on the upscaling factor. The settings of input

patch size are listed in Tab. 1. The network parameters are

initialized using the method in [12]. Adam[20] is employed

to optimize the parameters of the network with initial learn-

ing rate 0.0001. The learning rate multiplies by 0.5 for ev-

ery 200 epochs. We implement our networks with Pytorch

framework and train them on NVIDIA 1080Ti GPUs.
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Figure 4. Convergence analysis of T and G on Set5 with scaling

factor ×4.

4.2. Study of T and G

In this subsection, we explore the influence of the num-

ber of iterations (denoted as T) and the number of pro-

jection groups in the feedback block (denoted as G). The

base number of filters m is set to 32 in subsequent exper-

iments. We first investigate the influence of T by fixing G

to 6. It can be observed from Fig. 4(a) that with the help

of feedback connection(s), the reconstruction performance

is significantly improved compared with the network with-

out feedback connections (T=1). Besides, as T continues to

increase, the reconstruction quality keeps rising. In other

words, our feedback block surely benefits the information

flow across time. We then study the influence of G by fix-

ing T to 4. Fig. 4(b) shows that larger G leads to higher ac-

curacy due to stronger representative ability of deeper net-

works. In conclusion, choosing larger T or G both con-

tribute to better results. It is worth noticing that small T and

G still outperform VDSR[18]. In the following discussions,

we use SRFBN-L (T=4, G=6) for analysis.

No. Prediction 1st 2nd 3rd 4th

SRFBN-L-FF 30.69 31.74 32.00 32.09

SRFBN-L 31.85 32.06 32.11 32.11

Table 2. The impact of feedback on Set5 with scale factor ×4.

4.3. Feedback vs. feedforward

To investigate the nature of the feedback mechanism in

our network, we compare the feedback network with feed-

forward one in this subsection.
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We first demonstrate the superiority of the feedback

mechanism over its feedforward counterpart. By simply

disconnecting the loss to all iterations except the last one,

the network is thus impossible to reroute a notion of out-

put to low-level representations and is then degenerated to

a feedforward one (however still retains its recurrent prop-

erty), denoted as SRFBN-L-FF. SRFBN-L and SRFBN-L-

FF both have four iterations, producing four intermediate

output. We then compare the PSNR values of all intermedi-

ate SR images from both networks. The results are shown in

Tab. 2. SRFBN-L outperforms SRFBN-L-FF at every iter-

ation, from which we conclude that the feedback network is

capable of producing high quality early predictions in con-

trast to feedforward network. The experiment also indicates

that our proposed SRFBN does benefit from the feedback

mechanism, instead of only rely on the power of the recur-

rent structure. Except for the above discussions about the

necessity of early losses, we also conduct two more abala-

tive experiments to verify other parts (discussed in Sec. 3)

which form our feedback system. By turning off weights

sharing across iterations, the PSNR value in the proposed

network is decreased from 32.11dB to 31.82dB on Set5 with

scale factor ×4. By disconnecting the LR input at each iter-

ation except the first iteration, the PSNR value is decreased

by 0.17dB.
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Figure 5. Average feature maps of feedforward and feedback net-

works.

To dig deeper into the difference between feedback and

feedforward networks, we visualize the average feature map

of every iteration in SRFBN-L and SRFBN-L-FF, illus-

trated in Fig. 5. Each average feature map is the mean

of F t
out in channel dimension, which roughly represents

the output of the feedback block at the t-th iteration. Our

network with global residual skip connections aims at re-

covering the residual image. In other words, the tasks of

our network are to suppress the smooth area of the orig-

inal input image[16] and to predict high-frequency com-

ponents (i.e. edges and contours). From Fig. 5, we have

two observations. First, compared with the feedforward

network at early iterations, feature maps acquired from the

feedback network contain more negative values, showing a

stronger effect of suppressing the smooth area of the input

image, which further leads to a more accurate residual im-

age. To some extent, this illustration reflects the reason why

the feedback network has more powerful early reconstruc-

tion ability than the feedforward one. The second obser-

vation is that the feedback network learns different repre-

sentations in contrast to feedforward one when handling the

same task. In the feedforward network, feature maps vary

significantly from the first iteration (t=1) to the last itera-

tion (t=4): the edges and contours are outlined at early iter-

ations and then the smooth areas of the original image are

suppressed at latter iterations. The distinct patterns demon-

strate that the feedforward network forms a hierarchy of in-

formation through layers, while the feedback network is al-

lowed to devote most of its efforts to take a self-correcting

process, since it can obtain well-developed feature repre-

sentations at the initial iteration. This further indicates that

F t
out containing high-level information at the t-th iteration

in the feedback network will urge previous layers at subse-

quent iterations to generate better representations.

Model
from scratch from pretrained

w/o CL with CL w/o CL with CL

BD 29.78 29.96 29.98 30.03

DN 26.92 26.93 26.96 26.98

Table 3. The investigation of curriculum learning (CL) on BD and

DN degradation models with scale factor ×4. The average PSNR

values are evaluated on Set5.
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Figure 6. Performance and number of parameters. Results are

evaluated on Set5 with scale factor ×4. Red points represent our

proposed networks.

4.4. Study of curriculum learning

As mentioned in Sec. 4.1, we now present our results for

two experiments on two different degradation models, i.e.

BD and DN, to show the effectiveness of our curriculum

learning strategy.

We formulate the curriculum based on the recovery diffi-

culty. For example, to guide the network to learn recovering

a BD operator corrupted image step by step, we provide a

Gaussian blurred HR image as (intermediate) ground truth
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so that the network only needs to learn the inversion of a sin-

gle downsampling operator at early iterations. Original HR

image is provided at latter iterations as a senior challenge.

Specifically, we empirically provide blurred HR images at

first two iterations and original HR images at remaining two

iterations for experiments with the BD degradation model.

For experiments with the DN degradation model, we instead

use noisy HR images at first two iterations and HR images

without noise at last two iterations.

We also examine the compatibility of this strategy with

two common training processes, i.e. training from scratch

and fine-tuning on a network pretrained on the BI degrada-

tion model. The results shown in Tab. 3 infer that the cur-

riculum learning strategy well assists our proposed SRFBN

in handling BD and DN degradation models under both

circumstances. We also observe that fine-tuning on a net-

work pretrained on the BI degradation model leads to higher

PSNR values than training from scratch.

 img_092  from Urban100

Bicubic VDSRHR DRRN

MemNet EDSR D-DBPN SRFBN(Ours)

 BokuHaSitatakaKun  from Manga109

VDSRHR DRRNBicubic

EDSRMemNet D-DBPN SRFBN(Ours)

Figure 7. Visual results of BI degradation model with scale factor

×4.

4.5. Comparison with the state­of­the­arts

The SRFBN with a larger base number of filters (m=64),

which is derived from the SRFBN-L, is implemented for

comparison. A self-ensemble method[35] is also used to

further improve the performance of the SRFBN (denoted as

SRFBN+). A lightweight network SRFBN-S (T=4, G=3,

m=32) is provided to compare with the state-of-the-art

methods, which are carried only few parameters.

4.5.1 Network parameters

The state-of-the-art methods considered in this experiment

include SRCNN[7], VDSR[18], DRRN[31], MemNet[36],

EDSR[23], DBPN-S[11] and D-DBPN[11]. The com-

parison results are given in Fig. 6 in terms of the net-

work parameters and the reconstruction effects (PSNR).

The SRFBN-S can achieve the best SR results among the

networks with parameters fewer than 1000K. This demon-

strates our method can well balance the number of pa-

rameters and the reconstruction performance. Meanwhile,

in comparison with the networks with a large number of

parameters, such as D-DBPN and EDSR, our proposed

SRFBN and SRFBN+ can achieve competitive results,

while only needs the 35% and 8% parameters of D-DBPN

and EDSR, respectively. Thus, our network is lightweight

and more efficient in comparison with other state-of-the-art

methods.

4.5.2 Results with BI degradation model

For BI degradation model, we compare the SRFBN and

SRFBN+ with seven state-of-the-art image SR meth-

ods: SRCNN[7], VDSR[18], DRRN[31], SRDenseNet[36],

MemNet[36], EDSR[23], D-DBPN[11]. The quantitative

results in Tab. 4 are re-evaluated from the corresponding

public codes. Obviously, our proposed SRFBN can out-

perform almost all comparative methods. Compared with

our method, EDSR utilizes much more number of filters

(256 vs. 64), and D-DBPN employs more training im-

ages (DIV2K+Flickr2K+ImageNet vs. DIV2K+Flickr2K).

However, our SRFBN can earn competitive results in con-

trast to them. In addition, it also can be seen that our

SRFBN+ outperforms almost all comparative methods.

We show SR results with scale factor ×4 in Fig. 7. In

general, the proposed SRFBN can yield more convincing

results. For the SR results of the ‘BokuHaSitatakaKun’ im-

age from Manga109, DRRN and MemNet even split the ‘M’

letter. VDSR, EDSR and D-DBPN fail to recover the clear

image. The proposed SRFBN produces a clear image which

is very close to the ground truth. Besides, for the ‘img 092’

from Urban100, the texture direction of the SR images from

all comparative methods is wrong. However, our proposed

SRFBN makes full use of the high-level information to take

a self-correcting process, thus a more faithful SR image can

be obtained.

4.5.3 Results with BD and DN degradation models

As aforementioned, the proposed SRFBN is trained us-

ing curriculum learning strategy for BD and DN degrada-

tion models, and fine-tuned based on BI degradation model

using DIV2K. The proposed SRFBN and SRFBN+ are

compared with SRCNN[7], VDSR[18], IRCNN G[43], IR-

CNN C[43], SRMD(NF)[44], and RDN[47]. Because of

degradation mismatch, SRCNN and VDSR are re-trained

for BD and DN degradation models. As shown in Tab. 5,

The proposed SRFBN and SRFBN+ achieve the best on al-

most all quantative results over other state-of-the-art meth-

ods.
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Dataset Scale Bicubic
SRCNN VDSR DRRN MemNet SRFBN-S EDSR D-DBPN SRFBN SRFBN+

[7] [18] [31] [32] (Ours) [23] [11] (Ours) (Ours)

Set5

×2 33.66/0.9299 36.66/0.9542 37.53/0.9590 37.74/0.9591 37.78/0.9597 37.78/0.9597 38.11/0.9602 38.09/0.9600 38.11/0.9609 38.18/0.9611

×3 30.39/0.8682 32.75/0.9090 33.67/0.9210 34.03/0.9244 34.09/0.9248 34.20/0.9255 34.65/0.9280 -/- 34.70/0.9292 34.77/0.9297

×4 28.42/0.8104 30.48/0.8628 31.35/0.8830 31.68/0.8888 31.74/0.8893 31.98/0.8923 32.46/0.8968 32.47/0.8980 32.47/0.8983 32.56/0.8992

Set14

×2 30.24/0.8688 32.45/0.9067 33.05/0.9130 33.23/0.9136 33.28/0.9142 33.35/0.9156 33.92/0.9195 33.85/0.9190 33.82/0.9196 33.90/0.9203

×3 27.55/0.7742 29.30/0.8215 29.78/0.8320 29.96/0.8349 30.00/0.8350 30.10/0.8372 30.52/0.8462 -/- 30.51/0.8461 30.61/0.8473

×4 26.00/0.7027 27.50/0.7513 28.02/0.7680 28.21/0.7721 28.26/0.7723 28.45/0.7779 28.80/0.7876 28.82/0.7860 28.81/0.7868 28.87/0.7881

B100

×2 29.56/0.8431 31.36/0.8879 31.90/0.8960 32.05/0.8973 32.08/0.8978 32.00/0.8970 32.32/0.9013 32.27/0.9000 32.29/0.9010 32.34/0.9015

×3 27.21/0.7385 28.41/0.7863 28.83/0.7990 28.95/0.8004 28.96/0.8001 28.96/0.8010 29.25/0.8093 -/- 29.24/0.8084 29.29/0.8093

×4 25.96/0.6675 26.90/0.7101 27.29/0.7260 27.38/0.7284 27.40/0.7281 27.44/0.7313 27.71/0.7420 27.72/0.7400 27.72/0.7409 27.77/0.7419

Urban100

×2 26.88/0.8403 29.50/0.8946 30.77/0.9140 31.23/0.9188 31.31/0.9195 31.41/0.9207 32.93/0.9351 32.55/0.9324 32.62/0.9328 32.80/0.9341

×3 24.46/0.7349 26.24/0.7989 27.14/0.8290 27.53/0.8378 27.56/0.8376 27.66/0.8415 28.80/0.8653 -/- 28.73/0.8641 28.89/0.8664

×4 23.14/0.6577 24.52/0.7221 25.18/0.7540 25.44/0.7638 25.50//0.7630 25.71/0.7719 26.64/0.8033 26.38/0.7946 26.60/0.8015 26.73/0.8043

Manga109

×2 30.30/0.9339 35.60/0.9663 37.22/0.9750 37.60/0.9736 37.72/0.9740 38.06/0.9757 39.10/0.9773 38.89/0.9775 39.08/0.9779 39.28/0.9784

×3 26.95/0.8556 30.48/0.9117 32.01/0.9340 32.42/0.9359 32.51/0.9369 33.02/0.9404 34.17/0.9476 -/- 34.18/0.9481 34.44/0.9494

×4 24.89/0.7866 27.58/0.8555 28.83/0.8870 29.18/0.8914 29.42/0.8942 29.91/0.9008 31.02/0.9148 30.91/0.9137 31.15/0.9160 31.40/0.9182

Table 4. Average PSNR/SSIM values for scale factors ×2, ×3 and ×4 with BI degradation model. The best performance is shown in red

and the second best performance is shown in blue.

Dataset Model Bicubic
SRCNN VDSR IRCNN G IRCNN C SRMD(NF) RDN SRFBN SRFBN+

[7] [18] [43] [43] [44] [47] (Ours) (Ours)

Set5
BD 28.34/0.8161 31.63/0.8888 33.30/0.9159 33.38/0.9182 29.55/0.8246 34.09/0.9242 34.57/0.9280 34.66/0.9283 34.77/0.9290

DN 24.14/0.5445 27.16/0.7672 27.72/0.7872 24.85/0.7205 26.18/0.7430 27.74/0.8026 28.46/0.8151 28.53/0.8182 28.59/0.8198

Set14
BD 26.12/0.7106 28.52/0.7924 29.67/0.8269 29.73/0.8292 27.33/0.7135 30.11/0.8364 30.53/0.8447 30.48/0.8439 30.64/0.8458

DN 23.14/0.4828 25.49/0.6580 25.92/0.6786 23.84/0.6091 24.68/0.6300 26.13/0.6974 26.60/0.7101 26.60/0.7144 26.67/0.7159

B100
BD 26.02/0.6733 27.76/0.7526 28.63/0.7903 28.65/0.7922 26.46/0.6572 28.98/0.8009 29.23/0.8079 29.21/0.8069 29.28/0.8080

DN 22.94/0.4461 25.11/0.6151 25.52/0.6345 23.89/0.5688 24.52/0.5850 25.64/0.6495 25.93/0.6573 25.95/0.6625 25.99/0.6636

Urban100
BD 23.20/0.6661 25.31/0.7612 26.75/0.8145 26.77/0.8154 24.89/0.7172 27.50/0.8370 28.46/0.8581 28.48/0.8581 28.68/0.8613

DN 21.63/0.4701 23.32/0.6500 23.83/0.6797 21.96/0.6018 22.63/0.6205 24.28/0.7092 24.92/0.7362 24.99/0.7424 25.10/0.7458

Manga109
BD 25.03/0.7987 28.79/0.8851 31.66/0.9260 31.15/0.9245 28.68/0.8574 32.97/0.9391 33.97/0.9465 34.07/0.9466 34.43/0.9483

DN 23.08/0.5448 25.78/0.7889 26.41/0.8130 23.18/0.7466 24.74/0.7701 26.72/0.8424 28.00/0.8590 28.02/0.8618 28.17/0.8643

Table 5. Average PSNR/SSIM values for scale factor ×3 with BD and DN degradation models. The best performance is shown in red and

the second best performance is shown in blue.

HR Bicubic SRCNN VDSR

IRCNN_C SRMD RDN SRFBN (Ours) img_044 from Urban100

 butterfly from Set5

HR Bicubic SRCNN VDSR

IRCNN_G SRMDNF RDN SRFBN (Ours)

Figure 8. Visual results of BD and DN degradation models with

scale factor ×3. The first set of images shows the results obtained

from BD degradation model. The second set of images shows the

results from DN degradation model.

In Fig. 8, we also show two sets of visual results with

BD and DN degradation models from the standard bench-

mark datasets. Compared with other methods, the pro-

posed SRFBN could alleviate the distortions and generate

more accurate details in SR images. From above compar-

isions, we further indicate the robustness and effectiveness

of SRFBN in handling BD and DN degradation models.

5. Conclusion

In this paper, we propose a novel network for image

SR called super-resolution feedback network (SRFBN) to

faithfully reconstruct a SR image by enhancing low-level

representations with high-level ones. The feedback block

(FB) in the network can effectively handle the feedback

information flow as well as the feature reuse. In addition,

a curriculum learning strategy is proposed to enable the

network to well suitable for more complicated tasks, where

the low-resolution images are corrupted by complex degra-

dation models. The comprehensive experimental results

have demonstrated that the proposed SRFBN could deliver

the comparative or better performance in comparison with

the state-of-the-art methods by using very fewer parameters.
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