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Abstract

Efficient neural network inference is important in a num-

ber of practical domains, such as deployment in mobile

settings. An effective method for increasing inference ef-

ficiency is to use low bitwidth arithmetic, which can sub-

sequently be accelerated using dedicated hardware. How-

ever, designing effective quantization schemes while main-

taining network accuracy is challenging. In particular, cur-

rent techniques face difficulty in performing fully end-to-

end quantization, making use of aggressively low bitwidth

regimes such as 4-bit, and applying quantized networks to

complex tasks such as object detection. In this paper, we

demonstrate that many of these difficulties arise because of

instability during the fine-tuning stage of the quantization

process, and propose several novel techniques to overcome

these instabilities. We apply our techniques to produce fully

quantized 4-bit detectors based on RetinaNet and Faster R-

CNN, and show that these achieve state-of-the-art perfor-

mance for quantized detectors. The mAP loss due to quan-

tization using our methods is more than 3.8× less than the

loss from existing methods.

1. Introduction

State-of-the-art object detectors are based on powerful

convolution neural network (CNN) architectures [26, 21,

23, 25]. While CNNs achieve remarkable accuracy, their

high computational cost during inference restricts their us-

age on resource-limited devices such as mobile phones,

smart cameras and drones.

To perform efficient inference on complex networks,

several techniques have been proposed. These include im-

proved network designs [12, 15, 32] and network search

[36], network pruning [9, 8] and network quantization. Cur-

rent research areas in network quantization include reducing

the bitwidth of network parameters to decrease model mem-
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ory usage [33, 11, 30], quantizing both network parameters

and activations to accelerate specific types of layers in the

network using bitwise operations [35, 31, 14, 4], and quan-

tizing network gradients to speed up distributed training [2].

Although promising results on tasks such as image clas-

sification have been reported [31, 4, 35, 33, 24] using the

aforementioned quantization techniques, using quantized

networks for more complex tasks such as object detection

remains a challenge. Issues faced by current methods in-

clude:

Hardware-friendly end-to-end quantization Many

current quantization techniques [14, 35] focus on specific

types of operations such as convolutions or matrix multipli-

cation, while leaving other operations and network layers in

full precision. This introduces two problems. The first is

that critical operations such as batch normalization are ei-

ther not handled [35] or ablated [29] during training, lead-

ing to a mismatch between training and evaluation behav-

iors, or causing training convergence difficulties. Another

problem is that when deployed on real hardware, both in-

teger and floating point arithmetic units are needed for per-

forming network inference. This causes data exchange be-

tween different arithmetic units that may sometimes negate

the speedups achieved by quantization.

Low bitwidth quantization on complex tasks Current

quantization research mostly falls into two categories. The

first focuses on performing aggressive bit-width compres-

sion, e.g. using ternary [19, 1] or even binary [13, 24] val-

ues, and applies this to relatively simple tasks such as classi-

fication, where high accuracy is not required. Another type

of research uses relatively conservative quantization, e.g. 8

bits, but can be applied to a broader range of more complex

tasks such as neural language processing [11], face attribute

extraction [17] and object detection [18]. Detection is com-

plex because given a candidate region, the detector needs to

not only classify whether this region contains a target object

class, but also accurately regress a bounding box if an object

is convincingly detected. There have been several works on

quantizing detectors to use 8 bits [17, 28]. However, as the

computational complexity of multiplication grows superlin-
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early in the bitwidth of the operands, 8 bit arithmetic is often

still too expensive for devices with very limited resources.

A natural question thus arises whether even stronger quan-

tization such as 4-bit can be applied to accelerate detection

and other complex tasks. To answer this question, we exam-

ined a carefully designed fully end-to-end quantized detec-

tor proposed in [17]. When quantizing this detector to lower

than 8 bits, we discovered that the quantization-aware fine

tuning process was unstable and had difficult converging.

Several best practices for 8-bit fine tuning led to very poor

final accuracy in the 4-bit setting. By monitoring the evolu-

tion of the model’s weights and gradients during fine tuning,

we found that the poor accuracy and convergence comes

from instability in several sensitive operations of the quan-

tized model. In particular, we observed that in batch nor-

malization layers, where batch statistics are computed us-

ing aggressively quantized activations, the very small batch

sizes used in detector fine tuning led to highly degraded es-

timates of statistical quantities. We also found that activa-

tions after batch normalization often contain outliers that

decrease quantization accuracy. Finally, we found that dif-

ferent channels of the model weights have large differences

in magnitude, so that performing layer-wise normalization

introduces large inaccuracies in certain channels.

To address these problems, we propose three effec-

tive improvements to current quantization-aware fine tuning

schemes:

1. Freeze batch norm statistics during quantization-aware

fine tuning, and always normalize activations by the

means and variances obtained after the training stage.

2. Use a small subset of the training set to calibrate ac-

tivation magnitudes. Discard outlier activation values

based on percentiles and clamp quantized activations

and gradients.

3. Use channel-wise quantization for all parameters to re-

duce quantization error, at the expense of a negligible

amount of additional computation.

We apply our techniques to build 4-bit versions of the

one-stage RetinaNet detector and two-stage Faster R-CNN

detector, using a variety of networks including ResNet-18,

ResNet-50 and MobileNetV2 as backbones. We performed

extensive experiments using the COCO benchmark, and de-

tailed ablation studies to identify the effectiveness of our

proposed improvements. Contributions of this work in-

clude:

1. We propose a hardware-friendly quantization scheme

which does not use any floating point arithmetic oper-

ations during inference.

2. We identify several difficulties faced by current low-

bitwidth detectors during fine tuning, and propose

techniques to stabilize fully quantized detector fine

tuning.

3. We construct and report on the performance of state-

of-the-art detectors quantized to 4 bits. To our knowl-

edge, these are the first fully quantized 4-bit object de-

tection models that achieve acceptable accuracy loss

and requires no special hardware design, and thus may

be used as a baseline for future end-to-end low-bit

quantization schemes on complex tasks.

2. Related works

2.1. Modern Detectors

In recent years, the dominant method for object detec-

tion has been anchor-based detection networks, including

single stage detectors such as SSD [23], YOLO [25] and

RetinaNet [21], and the two stage R-CNN series of detec-

tors [7, 6, 26, 20]. In the one stage method, the features of a

convolutional backbone network are fed to subnetworks for

object classification and bounding box regression. In two

stage methods, the first stage generates a set of object can-

didates with rough locations, then in the second stage these

candidates are classified according to target labels and their

bounding box locations are refined.

2.2. Network Quantization

Network quantization is an effective method for speed-

ing up neural networks. Most network quantization research

has focused on object classification, including BNN [13],

QNN [14], XNOR-Net [24], DoReFa-Net [35], INQ [33],

ELQ [34], LQ-Nets [31] etc.

In terms of quantization of object detector networks,

Google proposed an 8-bit quantization method [17], which

led to significant improvements in the latency-accuracy

tradeoff for MobileNets [12] on both ImageNet classifica-

tion [5] and COCO object detection [22]. Wei et al [28]

quantized activations in object detection models for the pur-

pose of knowledge transfer from large to small models.

3. Techniques for Fully Quantized Network

In this section, we introduce a set of quantization

schemes, fine tuning protocols and several specific enhance-

ments, which we together call Fully Quantized Network

(FQN), allowing quantization of an object detection net-

work which uses full precision arithmetic to one using 4-

bit arithmetic, while largely retaining the accuracy of the

original network. Network quantization typically consists

of three stages, full precision training, quantization and fine

tuning, and finally deployment of the quantized model. We

empirically observe that most quantization problems arise

during the fine tuning stage, and FQN focuses on this stage.
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Figure 1: Histograms of affine parameter β (left), batch average µb (middle) and variance σb (right) at the batch norm layer

“layer2.0.bn1” of a ResNet-18 RetinaNet detector during 4-bit fine tuning. Batch statistics become unstable due to small

batch size and aggressively quantized activations, and thus are not used in this work.

FQN uses asymmetric uniform quantization, making it eas-

ily deployable on real world devices.

3.1. Network Quantization Process

We first review the three main steps for network quanti-

zation.

Full-precision training is performed if no trained detec-

tor is provided. During training, weights, activations and

gradients are all processed in full-precision. In each batch

normalization layer, an average µb and variance σb is com-

puted for each feature channel, and then used to normal-

ize each feature within the current minibatch. In addition,

each batch normalization layer keeps track of exponential

moving average (EMA) statistics µEMA and σEMA, and

updates them at each forward step by µb and σb.

Quantization-aware fine tuning is performed once full-

precision training is done, or if a well trained detector is

initially provided. This stage consists of additional training

steps, but in which forward passes operate on weights and

activations that have been quantized to the same bitwidth as

that to be eventually used during inference. Note that full

precision copies of the weights are still maintained, and are

updated by full precision gradients throughout fine tuning.

In [17], batch normalization layers normalize input fea-

tures and update µEMA, σEMA with batch statistics µb and

σb during fine tuning. We empirically find this harms fi-

nal accuracy, and instead we propose to prevent these val-

ues from being updated during fine tuning, as discussed in

§3.5.1.

Fully-quantized inference can be performed on hardware

with integer arithmetic units, or simulated on GPUs using

floating point operations. Given a fine tuned detector from

the previous phase, batch normalization values µEMA and

σEMA and affine parameters are folded into each corre-

sponding layer’s weights, to eliminate explicit normaliza-

tion and scaling during inference. Activations from normal-

ized inputs to output predictions and all weights are quan-

tized to the target bitwidth, and no floating point operations

are performed.

3.2. Uniform Quantization

Modern neural networks store weights, activations and

gradients as tensors of floating point values. Quantization

rounds these to a smaller set of values to reduce the number

of bits used in their representation. Given a full precision

tensor XR = [xR
0,...n−1] and target bitwidth k, the quanti-

zation function Qk(·) maps xR
i to the nearest quantization

point qj :

XQ = Qk(X
R) ∈ {q0, q1, . . . q2k−1} (1)

We adopt a uniform quantization scheme in this work,

where distances between adjacent quantized points are

equal, so that XQ can be represented as

XQ = ∆(XI − z) (2)

where ∆ is distance between adjacent quantized points, XI

is a set of integer indices and z is the index for the bias. A

quantization range [lb, ub], for lb, rb ∈ R is used to deter-

mine qj and ∆:

lb = q0, ub = q2k−1 (3)

∆ =
ub− lb

2k − 1
(4)

Once ∆ computed, the indices tensor XI can be computed
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Figure 2: Histogram of channel-wise magnitude variations

in weights of a ResNet-50 RetinaNet detector. The x-axis is

the ratio of maximum to minimum magnitudes in different

weight channels, given in units of dB. The y-axis shows the

frequency of such log ratios. Note the bars on the right,

indicating channels with large weight variations.

by:

XR = clamp(XR, lb, ub) (5)

XI = ⌊
XR − lb

∆
⌉ (6)

where clamp(x, lb, ub) = max(min(x, ub), lb) restricts the

first argument to the interval spanned by the second and

third arguments, and where ⌊·⌉ is the round operator.

When both weights and activations are quantized during

inference, expensive floating point tensor arithmetic can be

replaced by efficient integer arithmetic 1:

y = Qk(W)Qk(x) = ∆W∆x(W
IxI) (7)

Since the mapping operation Qk(·) is not differentiable,

the straight though estimator (STE) [3] is used during net-

work training. Note that entries outside the quantization

boundaries receive no gradient:

∂y

∂xR
i

=







∂y

∂x
Q

i

if lb ≤ xR
i ≤ ub

0 otherwise
(8)

Unless noted, the following discussions are based on uni-

form quantization with bitwidth k = 4.

3.3. Weight Quantization

CNN based detectors are usually formed by combin-

ing convolutional and fully connected layers. Convolu-

tional layer weights are represented by a tensor with shape

cout × cin × hk × wk, and fully connected layer weights

1We omit the bias term z for clarity.

have shape cout × cin. For both types of weight tensors

W ∈ R
cout

×∗ in FQN, quantization boundaries are com-

puted along each of the cout output channels:

lb = min
axis=1:W.dim

(W) (9)

ub = max
axis=1:W.dim

(W) (10)

Each output channel can have a different quantization

boundary. By quantizing each channel independently we

ensure channels with small weight ranges use finer quan-

tization and smaller ∆ values than channels with larger

weight ranges. We found empirically that different channels

can differ drastically in their weight ranges; for example, in

ResNet-50’s layer2.0.conv1 layer weight ranges var-

ied from 3.745 × 10−8 to 0.727. As shown in Figure 2, a

considerable number of weight channels in ResNet-50 have

significant magnitude variations. Using layer-wise quanti-

zation in this case would have introduced severe distortion

in some of the quantized values.

3.4. Activation Quantization

Unlike most of works, we quantize all activations in FQN

from the normalized input, to the final predictions feed-

ing into anchor regression and non-maximum suppression

(NMS). Activations are quantized in a layer-wise manner.

To determine quantization ranges lb and ub for activa-

tion xl on layer l, [17] used exponential moving averages

(EMA) with momentum M to record a smoothed minimum

lblEMA and maximum ublEMA for xl. During fully quan-

tized fine tuning, each activation’s lb and ub values are as-

signed with these EMA statistics.

We encountered several problems when fine tuning a 4-

bit detector using this method:

1. Hyperparameters such as EMA momentum M are dif-

ficult to set properly, and the final statistics lblEMA and

ublEMA are very sensitive to these hyperparameters.

2. Normalized activations are more likely to contain out-

lier values. If hyperparameters are not properly set,

the outliers will expand the quantization range, de-

crease quantization resolution and introduce quanti-

zation noise, especially on activation channels with

smaller magnitudes.

3.4.1 Reducing Activation Instability

To control this instability, we develop a simple yet effec-

tive method. We randomly sample ncal batches of training

data to build a small calibration set, then evaluate a trained

detector on the calibration set and record each layers acti-

vation values, between the γ’th and 1−γ’th percentiles, for

some 0 < γ < 1.
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Figure 3: Stabilized batch norm folding: BN statistics µ, σ

and affine parameters α, β are folded into parameters W

and b of the preceding Conv or FC layers. Note that statis-

tics µEMA and σEMA from trained full-precision BN layers

are used instead of per-bath statistics from quantized acti-

vations, to address the instability during quantization-aware

fine-tuning.

We empirically find using ncal = 20 and γ = 0.999
yield good performance on all our evaluated settings. In

addition, as shown in §4.2, quantization fine tuning results

are largely insensitive to γ selection.

3.5. Batch Normalization Folding

During training, the batch normalization [16] layers nor-

malize input xl in batch b using minibatch statistics µb and

σb to eliminate covariance shifting. µb and σb are also used

to update EMA statistics µEMA and σEMA, smoothed by a

momentum. During inference, EMA statistics and the batch

normalization affine parameters α and β are folded into the

previous layer’s weights and biases. Folded weights are

then quantized in the same way as normal weights and used

in subsequent computations.

In [17], the training computation graph is modified

to simulate noise introduced from the quantized folded

weights:

Wfold =
α

√

σ2

b + ǫ
W (11)

bfold =
α

√

σ2

b + ǫ
(b− µb) + β (12)

where σb and µb are full precision values.

3.5.1 Reducing Batch Normalization Instability

As shown in Figure 1, the batch normalization parameters

and batch statistics are both unstable during fine tuning.

This introduces significant quantization noise when the pa-

rameters are folded into the previous layer, and this effect

is magnified when using aggressive 4 bit quantization. In

practice, this is one of the main obstacles to fine tuning sta-

bility.

We propose a simple solution to address this problem.

Since the EMA statistics of µ and σ from a well trained

model should match that of the input data, during fine tun-

ing we replace the unstable σb, µb in (11) and (12) by the

EMA statistics σEMA and µEMA, obtained during the full-

precision training stage. Furthermore, we do not update the

σEMA, µEMA values during fine tuning; we call this freez-

ing the batch normalization values. This procedure is illus-

trated in Figure 3.

Wfold =
α

√

σ2
EMA + ǫ

W (13)

bfold =
α

√

σ2
EMA + ǫ

(b− µEMA) + β (14)

We show in experiments that freezing batch normalization

values improves fine tuning stability and yields improved

accuracy. Another benefit is that no additional computations

are needed during fine tuning to calculate σb and µb. A

similar technique is also used in [18], but they only freeze

the batch normalization values during the last few thousand

steps of training.

3.6. Implementation Details

Zero-point alignment As a standard practice when de-

ploying quantized networks to hardware, the zero point in

XR should be accurately mapped to XQ. This alignment

is critical to maintaining the quantized network’s accuracy,

because misalignment of the zero-point will introduce sig-

nificant errors in operations such as zero-padding. We do

this alignment by nudging quantization boundaries with re-

spect to quantization resolution.

Upsampling and element-wise operations Feature pyra-

mid networks (FPN) [20] are commonly used in modern

detectors. To eliminate float point operations in evaluating

FPN, we adopt two modifications: 1. All upsamplings are

performed by nearest interpolation. 2. Element-wise addi-

tion is performed using the same scheme as [17] to elimi-

nate floating point rescaling, i.e. rescaling of operands ∆ is

performed by higher precision fix-point multiplication fol-

lowed by bit-shifting. Qk(·) is added to addition inputs and

outputs to model this behavior during fine tuning.

4. Experiments

To evaluate the proposed FQN detectors, we perform

a series of experiments on the COCO detection bench-

mark [22]. COCO is one of the most popular object detec-

tion dataset. It is widely used to benchmark state-of-the-art
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Model Input
mAP mAR

AP AP0.5 AP0.75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

R50-FP32 800 0.356 0.551 0.382 0.203 0.393 0.465 0.308 0.498 0.529 0.335 0.569 0.680

R50-INT4 800 0.325 0.515 0.347 0.173 0.356 0.426 0.286 0.463 0.493 0.298 0.530 0.643

R34-FP32 800 0.348 0.538 0.371 0.192 0.381 0.460 0.306 0.493 0.523 0.319 0.564 0.686

R34-INT4 800 0.313 0.504 0.333 0.161 0.344 0.416 0.284 0.457 0.487 0.284 0.524 0.647

R18-FP32 800 0.317 0.503 0.337 0.164 0.346 0.424 0.288 0.464 0.495 0.297 0.529 0.652

R18-INT4 800 0.286 0.469 0.299 0.149 0.312 0.387 0.268 0.433 0.461 0.269 0.491 0.621

MN2-FP32 600 0.275 0.448 0.290 0.154 0.289 0.365 0.267 0.441 0.470 0.283 0.492 0.615

MN2-INT4 600 0.255 0.425 0.269 0.134 0.271 0.345 0.253 0.417 0.445 0.256 0.468 0.596

(a) RetinaNet results on COCO

Model Input
mAP mAR

AP AP0.5 AP0.75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

R50-FP32 800 0.377 0.593 0.409 0.220 0.415 0.489 0.316 0.513 0.541 0.364 0.580 0.678

R50-INT4 800 0.331 0.540 0.355 0.182 0.362 0.436 0.291 0.468 0.494 0.320 0.529 0.629

R34-FP32 800 0.358 0.576 0.384 0.211 0.390 0.461 0.307 0.496 0.526 0.348 0.564 0.611

R34-INT4 800 0.318 0.529 0.339 0.176 0.344 0.422 0.284 0.460 0.486 0.306 0.520 0.634

R18-FP32 800 0.322 0.538 0.340 0.180 0.347 0.419 0.286 0.466 0.494 0.326 0.524 0.630

R18-INT4 800 0.281 0.484 0.293 0.145 0.304 0.381 0.263 0.429 0.454 0.281 0.480 0.594

MN2-FP32 600 0.290 0.497 0.295 0.160 0.307 0.390 0.272 0.439 0.465 0.280 0.502 0.610

MN2-INT4 600 0.255 0.453 0.257 0.127 0.275 0.352 0.250 0.402 0.426 0.236 0.465 0.573

(b) Faster R-CNN results on COCO

Table 1: Performance of FQN detectors on the COCO benchmark. Standard metrics including mean average precision

(mAP) and mean average recall (mAR) on coco-2017-val are reported. Models with “-INT4” suffix are fine-tuned and

evaluated in 4-bits precision. Note that models with MobileNetV2 backbone use an input size of 600 pixels due to GPU

memory limitation.

object detectors because of its rich annotations and chal-

lenging scenarios. In all our experiments, results are evalu-

ated by standard COCO metrics including average precision

and average recall on the bounding box detection task. To

analyze the sources of the improvements produced by our

approach, we also conduct a series of ablation studies on

detection tasks using as backbones ResNet [10] and Mo-

bileNets [27] in 4-bit and 8-bit settings.

Training protocol Detectors are trained on COCO

the data-set coco-2017-train partition using full-

precision before quantization. Backbones are initialized

with classification models pre-trained on the ImageNet

dataset. Training is performed with synchronized SGD

across 16 workers. The batch size on each worker is 2. The

learning rate is warmed up to 0.04, then scaled by a factor

of 0.1 at 30K and 80K steps.

Quantization-aware fine-tuning is performed on the same

dataset, with detector weights and activations quantized

to 4-bits. This procedure uses identical settings as full-

precision training, except that the learning rate is fixed to

0.004. Activation ranges are measured at the 99.9% and

0.1% percentiles on 20 randomly sampled data batches

from the training set. Finetuning stops after 40K steps, and

results on checkpoints with the highest mAP0.5:0.95 on the

coco-2017-val partition are reported.

All training and evaluation images are resized so that

their shorter edges are 800 pixels. Images are augmented

by random horizontal flipping during training, and no eval-

uation augmentations are performed. Note that FQN with

MobileNetV2 backbone uses an input size of 600 pixels due

to GPU memory limitations.

4.1. Main Results on COCO

We apply our proposed finetuning scheme to both one

stage RetinaNet detectors and two stage Faster R-CNN

detectors. ResNet-18, ResNet-32, ResNet-50, and the

compact MobileNetV2 are used as backbones. Results

of both full-precision baselines and 4-bit FQN on the

coco-2017-val partition are listed in Table 1.

As shown, FQN can achieve acceptable accuracy loss on

different detection frameworks and backbones. The 4-bit

RetinaNet detector with MobileNetV2 backbone only suf-

fers a 2.0% mAP loss compared to its full-precision base-
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# F P C AP AP0.5 AP0.75

0 0.317 0.503 0.337

1 0.197 0.348 0.198

2 X 0.235 0.402 0.245

3 X 0.222 0.381 0.228

4 X 0.250 0.419 0.260

5 X X 0.254 0.426 0.265

6 X X 0.268 0.442 0.280

7 X X 0.273 0.449 0.288

8 X X X 0.286 0.469 0.299

(a) Ablations on 4-bits ResNet-18 RetinaNet

# F P C AP AP0.5 AP0.75

0 0.317 0.503 0.337

1 0.296 0.475 0.312

2 X 0.299 0.481 0.314

3 X 0.313 0.499 0.344

4 X 0.293 0.473 0.308

5 X X 0.312 0.495 0.311

6 X X 0.302 0.482 0.319

7 X X 0.312 0.497 0.311

8 X X X 0.314 0.498 0.332

(b) Ablations on 8-bits ResNet-18 RetinaNet

Table 2: Ablation studies on the COCO benchmark. In all subtables, row 0 is the FP32 baseline, row 1 is finetuned by

methods in [17], and row 8 is our proposed FQN. F indicates batch norm freezing, P indicates using percentiles for activation

statistics, and C indicates using channel-wise quantization.

Precision F AP AP0.5 AP0.75

4 bits 0.226 0.384 0.235

4 bits X 0.236 0.400 0.245

8 bits 0.299 0.479 0.316

8 bits X 0.300 0.480 0.318

Table 3: Comparisons on FreezeBN strategy on different

bit-width. Checking F means freezing BN in the entire fine-

tuning process, otherwise only freezing BN in the final 10k

steps as in [18].

line. 4-bit ResNet-50 incurs 3.1% mAP loss when used in

the RetinaNet detector, and 4.6% mAP loss when used in

the Faster R-CNN detector. Considering ResNet and Mo-

bileNets are compact and widely used, these experiments

indicates the robustness and generality of FQN.

Note that for all backbones, two stage Faster R-CNN de-

tectors always incur higher mAP loss than one stage Reti-

naNet detectors. One possible reason is that the number

of parameters in the region proposal network (RPN) and

final prediction sub-nets of Faster R-CNN is smaller than

the number of parameters in the classification and bounding

box regression sub-nets of RetinaNet. Another possibility

is the fully connected layers in Faster R-CNN detectors are

more sensitive to quantization.

4.2. Ablation Studies

We also analyzed FQN by performing a number of abla-

tion studies using ResNet-18 with a RetinaNet detector on

COCO’s coco-2017-val partition. We choose ResNet-

18 as the backbone because it is a relatively small net-

works, and hence more sensitive to quantization, and be-

cause ResNet-18 has received great interest from the net-

work compression community.

FQN shares many features with [17], which is designed

for 8-bit networks. We therefore also report our reproduced

γ AP AP0.5 AP0.75

0.9990 0.286 0.469 0.299

0.9973 0.289 0.469 0.308

0.9545 0.275 0.449 0.287

Table 4: Comparison of varying percentile γ durning cali-

brating activation ranges.

4 and 8-bit results based on [17]’s method.

Results are listed in Table 2. In both subtables in Table

2, row 0 is the FP32 full precision baseline, row 1 is our re-

produced results for [17]. A check in the F column indicates

batch normalization statistics were frozen during the entire

fine tuning process, as described in §3.5.1. A check in the P

column indicates activation ranges used percentiles instead

of EMA statistics, as described in §3.4.1. Finally, a check

in the C column indicates network weights were quantized

on a per channel basis, as described in §3.3.

Freezing BarchNorm statistics As shown in rows 1 and

2 in Table 2a and Table 2b, freezing batch normalization

statistics leads to a significant increase of 3.8% on 4-bit

mAP, and a small improvement of 0.3% in 8-bit. This indi-

cates that batch normalization in low bitwidth detectors are

more likely to suffer instability from low quality activation

statistics.

Recent work in [18] also indicated freezing batch nor-

malization statistics helps quantized fine tuning. However,

[18] suggested freezing statistics only in the last few thou-

sand steps of training. We compared our method with theirs

on both 4 and 8-bit settings. As shown in Table 3, freez-

ing statistics during the entire fine tuning process leads to

better performance, at least in detection tasks. One possi-

ble reason for this is that detectors are fine tuned in smaller

mini-batches, so quantization noise introduced in detection

models batch statistics are relatively strong.
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# Method Act. calibration mAP

0 FP32 baseline – 0.317

1 Integer-only [17] Moving average 0.197

2 Quant whitepaper [18] Moving average 0.226

3 DoReFa-Net [35] foldBN Clip to [{−1, 0},+1] 0.039

4
XNOR-Net [24] foldBN

Moving average 0.244

5 Percentile 0.267

6 Ours Percentile 0.286

Table 5: Baseline comparisons on 4-bit ResNet-18 Reti-

naNet.

Percentile based activation clamping Comparing rows 1

with 3 in Table 2a and Table 2b, we find that using percentile

statistics to clamp activation values improves performance

in both the 4 and 8-bit settings. The mAP gains are 2.5%
and 1.7%, respectively.

To analyze the efficiency and robustness of percentile

based statistics, we evaluate our model (shown in row #8 in

Table 2a) by varying γ. We compared the default γ = 0.999
with γ = 0.9973 and γ = 0.9545. The latter two γ val-

ues represent clamping activation values within a range of

±2σ and ±3σ, respectively. They lie around the mean

activation value, assuming activation values are stochastic

and follow a Gaussian distribution. As shown in Table 4,

γ = 0.9973 yields slightly better performance, though the

effect is small.

Channel-wise quantization scheme Comparing rows 1

with 4 in Table 2a and Table 2b, we see that using channel-

wise quantization produces a 5.3% mAP gain in 4-bit set-

tings. This significant improvement indicates the magnitude

the variation between weights is an important factor for ac-

curacy loss in low bitwidth scenarios.

4.3. Comparison with Previous Methods

We now compare our proposed FQN method with sev-

eral existing methods, including integer-only detection [17],

the quantization whitepaper [18], XNOR-Net [24] and

DoReFa-Net [35], applied to ResNet-18 RetinaNet in 4-bit

precision. We note that XNOR-Net and DoReFa-Net per-

form certain operations in floating point (e.g. batch normal-

ization), while all operations in FQN are quantized. Thus,

for a proper comparison we quantized all operations in

XNOR-Net and DoReFa-Net. We also note that [24] only

specified a calibration method for 1-bit activations. In our

results we report on two 4-bit calibration methods using

a moving average and our proposed percentile method, as

shown in rows 4 and 5 of Table 5, respectively. As can be

seen, the detection accuracy (mAP) of FQN is significantly

better than all the baselines.

0 5000 10000 15000 20000 25000 30000 35000 40000
iteration

0.0

0.1

0.2

0.3

m
AP integer_only

whitepaper
xnor_ema
xnor_percentile
ours

Figure 4: Fine-tuning curve for 4-bit ResNet-18 RetinaNet.

The x-axis is the number of fine-tuning iterations. Note that

methods which calibrate activation ranges using moving av-

erage delay activation quantization for 10K iterations, caus-

ing a trough. Also, methods using channel-wise quantiza-

tion have higher starting accuracy.

FQN also improves the convergence speed compared

to previous methods during quantization-aware fine-tuning.

As shown in Figure 4, FQN converges much faster, the mAP

of FQN nearly recovers to 0.27 after only 1K steps of fine-

tuning, and is stable during the entire fine-tuning process.

5. Conclusion

In this paper, we propose FQN, a general quantization

approach for low-precision, integer-only arithmetic infer-

ence. FQN supports end-to-end fully quantized training

of complex object detection tasks. Compared to previous

quantization methods, our approach produces a 4-bit model

with performance very close to the 32-bit floating-point ver-

sion, even on mobile friendly networks. We hope this ap-

proach and the observations in our experimental analysis

can facilitate future quantization research and industrial vi-

sion applications on resource constrained devices.
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