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Abstract

We present an efficient 3D object detection framework

based on a single RGB image in the scenario of autonomous

driving. Our efforts are put on extracting the underlying

3D information in a 2D image and determining the accu-

rate 3D bounding box of the object without point cloud or

stereo data. Leveraging the off-the-shelf 2D object detector,

we propose an artful approach to efficiently obtain a coarse

cuboid for each predicted 2D box. The coarse cuboid has

enough accuracy to guide us to determine the 3D box of

the object by refinement. In contrast to previous state-of-

the-art methods that only use the features extracted from

the 2D bounding box for box refinement, we explore the 3D

structure information of the object by employing the visual

features of visible surfaces. The new features from surfaces

are utilized to eliminate the problem of representation am-

biguity brought by only using a 2D bounding box. More-

over, we investigate different methods of 3D box refinement

and discover that a classification formulation with quality

aware loss has much better performance than regression.

Evaluated on the KITTI benchmark, our approach outper-

forms current state-of-the-art methods for single RGB im-

age based 3D object detection.

1. Introduction

3D object detection is one of the key components of au-

tonomous driving. It has drawn increasing attention in the

recent computer vision community. With 3D LIDAR laser

scanners, discrete 3D location data of objects in the form

of point cloud can be fetched, but the equipment is quite

expensive. On the contrary, on-board color cameras are

cheaper and more flexible for most vehicles, whereas they

can only provide 2D photos. Thus 3D object detection with

a single RGB camera becomes important as well as chal-

lenging for economical autonomous driving systems. This

paper focuses on detecting complete 3D object content us-

ing only monocular RGB image.

This paper proposes an efficient framework based on

(a) (b) (c)
Figure 1. The key idea of our method: (a) We first predict reliable

2D box and its observation orientation. (b) Based on the predicted

2D information, we utilize artful techniques to efficiently deter-

mine a basic cuboid for the corresponding object, called guidance.

(c) Features extracted from the visible surfaces of projected guid-

ance as well as the tight 2D bounding box of it will be utilized

by our model to perform accurate refinement with classification

formulation and quality-aware loss.

3D guidance and using the surface feature for refinement

(GS3D) to detect complete 3D object content using only

monocular RGB image.

Typical single image 3D detection methods, e.g.

Mono3d [2], adopt the framework of traditional 2D detec-

tion, where exhaustive sliding windows in 3D space are uti-

lized as proposals and the task is to select those covering

the objects well. The problem is that the 3D space is much

larger than the 2D space, which costs much more computa-

tion and is not necessary.

Our first observation is that a 3D coarse structure can be

recovered from 2D detection and prior knowledge on the

scene. Since state-of-the-art 2D object detection methods

can provide 2D bounding boxes with quite a high accu-

racy, proper utilization of them can significantly reduce the

search space, which is already applied in several point cloud

based methods [20, 12]. Furthermore, with prior knowledge

of the auto-driving scenario (e.g. the projection matrix), we

can even obtain an approximate 3D bounding box (cuboid)

for the object in the 2D box despite the lack of point cloud.

Inspired by this, we design an algorithm to efficiently de-

termine a basic cuboid for the predicted object by a 2D de-

tector. Although coarse, the basic cuboid has acceptable

accuracy and can guide us to determine the 3D setting, size

(height, width, length) and orientation of the object. Thus

the basic coarse cuboid is called Guidance by us.
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Figure 2. An example of the feature representation ambiguity

caused by only using 2D bounding box. The 3D boxes vary largely

from each other and only the left one is correct, but their corre-

sponding 2D bounding box are exactly the same.

As our second observation, the underlying 3D informa-

tion can be utilized by investigating the visible surfaces of

the 3D box. Based on the guidance, a further classification

for eliminating false positives and appropriate refinement

for better localization are necessary in order to achieve high

accuracy. However, the information missing when using

only the 2D bounding box for feature extraction brings a

problem of representation ambiguity. As shown in Fig.2,

different 3D boxes varying largely from each other can just

have the same corresponding 2D bounding box. Therefore

the model will take the same feature as input, but the clas-

sifier is expected to predict different confidences for them

(high confidence for the left one and low confidences for

the others in Fig.2), which is conflict. And the residual

(∆x,∆y and etc.) prediction is also difficult. From only the

2D bounding box, the model can hardly know what the orig-

inal parameters (of the guidance) are, but it aims to predict

the residual based on them. So training is quite ineffective.

To handle this problem, we explore the underlying 3D in-

formation in the 2D image and propose a new approach that

employs features parsed from visible surfaces of the projec-

tion of the 3D box. As shown in Figure.1 (c), features in the

visible surfaces are extracted respectively and then incorpo-

rated, so that structural information is utilized to distinguish

different forms of 3D boxes.

For 3D box refinement, we reformulate the conventional

regression form into a classification form, and a quality-

aware loss is designed for it, which significantly improves

the performance.

Our main contributions are as follows:

1. We propose a purely monocular data based approach

to efficiently obtain a coarse basic cuboid for the ob-

ject, based on reliable 2D detection results. The basic

cuboid provides a reliable approximation of the loca-

tion, size, and orientation of the object and works as

the guidance for further refinement.

2. We exploit the potential 3D structural information in

the visible surfaces of the projected 3D box on 2D im-

ages and propose to utilize the features extracted from

these surfaces to overcome the problem of feature am-

biguity in previous methods when only features from

the 2D box are used. With the fusion of surface fea-

tures, the model achieves the better ability of judgment

and the refinement accuracy is improved.

3. We design and investigate several methods for refine-

ment. And we draw a conclusion that discrete classifi-

cation based methods with quality aware loss perform

much better than direct regression approaches for the

task of 3D box refinement.

We evaluate our method on the KITTI object detection

benchmark [7]. Experiments show that our method sur-

passes current state-of-the-art methods using only a single

RGB image and is even comparable to those using stereo

data. To facilitate comparison with our works, we make our

results on val1 and val2 available1.

2. Related Work

As 3D understanding of object and scene is drawing

more and more attention. Early works [26, 6, 29, 9, 5] use

low-level feature or statistics analysis to tackle 3D recogni-

tion or recover tasks. While the 3D object detection task is

more challenging [7].

3D object detection methods can be divided into 3 cate-

gories by data, i.e. point cloud, multi-view images (video or

stereo data) and monocular image. Point cloud based meth-

ods, e.g. [4, 20, 28, 12, 22], can directly fetch the coordi-

nates of the points on the surfaces of objects in 3D space,

so they can easily achieve much higher accuracy than the

methods without point cloud. Multi-view based methods,

e.g. [3], can obtain a depth map using the disparity com-

puted from the images of different views. Although point

cloud and stereo methods have more accurate information

for 3D inference, the equipment of monocular RGB camera

is more convenient and much cheaper.

The works that most related to ours are those using a

single RGB image for 3D object detection in autonomous

driving scenes. This setting is most challenging for the lack

of 3D space information. Many recent works focus on this

setting because it is a fundamental problem with great im-

pact. Mono3d[2] addresses this problem through the usage

of 3D sliding windows. It exhaustively samples 3D propos-

als from several predefined 3D regions where the objects

may appear. Then it utilizes complex features of segmenta-

tion, shape, context, and location to filter out the impossible

proposals and finally select the best candidates by a classi-

fier. The complexity of Mono3d brings a serious problem of

inefficiency. Whereas we design a pure projective geometry

based method with a reasonable assumption, which can ef-

ficiently generate 3D candidate boxes with a much smaller

number but even higher accuracy.

Since state-of-the-art 2D detectors [21, 18, 13, 17, 16,

15] can provide reliable 2D bounding boxes for objects,

1https://drive.google.com/file/d/188BxA_

jlhHHpxCXk3SxPBA5qkmk53PIt/view?usp=sharing
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several works use 2D box as a prior to reduce the search

region of 3D box [1, 19]. [1] uses a CNN to predict the

parts coordinates, visibility and template similarity based

on the 2D box, and match the best corresponding 3D tem-

plate. While [19] first uses a CNN to predict the size and

orientation based on the cropped 2D box region, and then

determine the location coordinates by the constraint that the

3D box after projection should tightly fit in the 2D detec-

tion box. These methods just extract features from the 2D

bounding box, which brings the problem of representation

ambiguity. While we utilize surface features to eliminate

the problem.

State-of-the-art monocular based methods pay more at-

tention to the extra 3D information in order to facilitate the

detection. [25, 1, 14] try to utilize more 3D information by

learning sub-categories or 3D key-points or parts in their in-

termediate stages. [1, 14] use 2D-3D matching to determine

the 3D coordinate of objects. They both need CAD mod-

els with extra labels of structure or key-points. [27] uses

the depth information generated from disparity prediction

to obtain approximate point cloud, and then use the fusion

of 2D box feature and point cloud to determine the 3D box.

Although only the monocular image is used in prediction,

the training of the disparity model requires stereo data. In

contrast to these methods, our work takes advantage of 3D

structural information in the monocular image without extra

data or labels.

3. Problem Formulation

We adopt the 3D coordinate system from KITTI data set:

the origin of the coordinate is on the camera center; x axis

points to right on the 2D image plane; y axis points down;

and z axis points to the inner direction orthogonal to the im-

age plane and stands for depth. 3D bounding box is repre-

sented as B = (w, h, l, x, y, z, θ, φ, ψ). Here w, h, l are the

size of the box (width, height, and length respectively) and

x, y, z are the coordinates of the bottom center, which is

following the KITTI annotation. The size and center coor-

dinate are measured in meter. θ, φ, ψ are the rotation around

y axis, x axis and z axis respectively. Since our target ob-

jects are all on the ground, we only consider the θ rotation

as all previous works do. 2D bounding box is noted with

a specified mark, i.e. B2d = (x2d, y2d, w2d, h2d), where

(x2d, y2d) is the center of box.

4. GS3D

4.1. Overview

Fig.5 shows an overview of the proposed framework.

This framework takes a single RGB image as input and con-

sists of the following steps: 1) A CNN based detector is

leveraged to obtain reliable 2D bounding boxes and obser-

vation orientations of objects. This sub-network is referred

as 2D+O subnet. 2) The obtained 2D bounding box and

orientation are utilized together with the prior knowledge

on the driving scenario to generate a basic cuboid called

guidance. 3) The guidance is projected on the image plane.

Features are extracted from its 2D bounding box and visi-

ble surfaces. These features are fused as the distinguishable

structural information for eliminating feature ambiguity. 4)

The fused features are used by another CNN called 3D sub-

net to refine the guidance. The 3D detection is considered

as a classification problem and quality aware classification

loss is used for learning the classifiers and the CNN fea-

tures.

4.2. 2D Detection and Orientation Prediction

For 2D detection, we modify the faster R-CNN frame-

work by adding a new branch of orientation prediction. The

details is illustrated in Fig.3.

RoI 
feature

class

offset

orientation

FC6 
feature

angle
feature

box 
feature

Figure 3. Details of the head of 2D+O subnet. All line connections

represent fully connected layers here.

Specifically, a CNN called 2D+O subnet is used for ex-

tracting features from the image, then the region proposal

net generates candidate 2D box proposals. From these pro-

posals, ROI-pooling is used for extracting the RoI features,

which are then used for classification, bounding box regres-

sion, and orientation estimation. The orientation estimated

in the 2D+O subnet is the observation angle of the object

which is directly related to the appearance of the object. We

denote the observation angle as α in order to distinguish it

from the global rotation, θ. Both α and θ are annotated in

the KITTI data set and their geometry relationship is shown

in Fig.4.

x

z

α
θ

Camera

Figure 4. Top view of observation angle α and global rotation an-

gle θ. The blue arrows represent the observation axes and the red

arrow indicates the heading of the car. Since it is a right-handed

coordinate system, the positive direction of rotation is clockwise.
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2D+O 
subnet

3D 
subnet 

2D box & orientation feature extraction3D guidanceRGB image refined 3D box
Figure 5. Overview of the proposed 3D object detection paradigm. A CNN based model (2D+O subnet) is used to obtain a 2D bounding

box and observation orientation of the object. The guidance is then generated by our proposed algorithm using the obtained 2D box and

orientation with the projection matrix. And features extracted from visible surfaces as well as the 2D bounding box of the projected guid-

ance are utilized by the refinement model (3D subnet). Instead of direct regression, the refinement model adopts classification formulation

with the quality-aware loss for a more accurate result.

4.3. Guidance Generation

Based on reliable 2D detection results, we can estimate

a 3D box for each 2D bounding box. Specifically, our target

is to obtain the guidance Bg = (wg, hg, lg, xg, yg, zg, θg),
given the 2D box B2d = (x2d, y2d, h2d, w2d), the observa-

tion angle α and the camera intrinsic matrix K.

4.3.1 Obtaining Guidance Size (wg, hg, lg)

In the auto-driving scenario, the distribution of the object

sizes for instances of the same category is low-variance and

unimodal. Since the object class is predicted by 2D subnet,

we simply use the guidance size (w̄, h̄, l̄) of a certain class

calculated on the training data for the guidances with the

same class. So we have (wg, hg, lg) = (w̄, h̄, l̄), which is

class dependent (class does not appear in the equation for

convenient notation).

4.3.2 Estimating Guidance Location (xg, yg, zg)

As formulated in Section.3, (xg, yg, zg) is the bottom sur-

face center of the guidance, denoted as Cb. So we study

the characteristic of the bottom center and propose a well-

worked approaches.

Our estimation approach is based on the discovery in the

auto-driving settings. The top center of the object 3D box

has a stable projection on the 2D plane that is very close

to the top midpoint of the 2D bounding box, and the 3D

bottom center has a similar stable projection that is above

and close to the 2D bounding box. This discovery can be

explained by the fact that the top positions of most objects

have the projection that are very close to the vanishing line

of the 2D image since the camera is set on the top of the data

collecting vehicle and other objects in the driving scenario

have similar height to it.

With the predicted 2D box (x2d, y2d, w2d, h2d), where

(x2d, y2d) is the box center, we have the top midpoint

M2d
t = (x2d, y2d − h2d/2) and bottom midpoint M2d

b =
(x2d, y2d + h2d/2). Then we approximately have the ho-

mogeneous form of projected top centerC2d
t = (M2d

t , 1) =

(x2d, y2d−h2d/2, 1) and bottom center C2d
b = (M2d

b , 1)−
(0, λh2d, 0) = (x2d, y2d + ( 1

2
− λ)h2d, 1), where λ is from

the statistics on training data. With the known camera in-

trinsic matrix K, we can obtain the normalized 3D coordi-

nates C̃b = (x̃b, ỹb, 1) for the guidance bottom center Cb

and C̃t = (x̃t, ỹt, 1) for the top center Ct as follows:

C̃b = K−1C2d
b , C̃t = K−1C2d

t . (1)

If the depth d is known, Cb can be obtained by:

Cb = dC̃b. (2)

So our target now is to obtain d. We can calculate the

normalized 3D coordinate of top center C̃t = (x̃t, ỹt, 1)
by Equation (1). With both the bottom center and the top

center, we have the normalized height h̃ = ỹb − ỹt. Since

the guidance height hg = h̄ is already obtained, we have

d = hg/h̃. And finally we have (xg, yg, zg) = Cb =
(dx̃b, dỹb, d).

4.3.3 Calculating Guidance Orientation θ

From Fig.4 we can see that the relationship between the ob-

served angle α and global rotation angle θ is

θ = α+ arctan
x

z
(3)

Since xg, zg and α are available through previous estima-

tion, we can obtain θg by Equation.3 now.

4.4. Surface Feature Extraction

We use the projected surface regions of the given 3D

box (guidance) to extract 3D structure specified features for

more accurate determination. An example is illustrated in

Fig.6, the visible projected surfaces correspond to the top,

left side and back of the object shown in light red, green and

blue respectively.

Since all the target objects are on the ground, the bottom

surface is always invisible, we use the top surface to extract

features. For the other 4 surfaces, the visibility of them can
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Deep 
ConvNet

Pespective 
Projection 

Figure 6. Visualization of feature extraction from the projected

surfaces of 3D box by perspective transformation.

be determined by the observation orientation α of the ob-

ject. In the KITTI coordinate system illustrated in Fig.4, we

have α ∈ (−π, π] with the right-hand direction of observer

as zero angle (α = 0) and the clockwise direction as posi-

tive rotation. So when α > 0 the front surface is visible and

when α < 0 the back surface is visible. The right side is

visible when −π
2
< α < π

2
, and otherwise the left side is

visible.

Features in visible surface regions are warped to a regu-

lar shape (e.g. 5x5 feature map) by perspective transforma-

tion. Specifically, for a visible surface F , we first use the

camera projection matrix to obtain the quadrilateral F 2d in

the image plane and then calculate the scaled quadrilateral

F 2d
s on the feature map according to the stride of the net-

work. With the coordinates of the 4 corners of F 2d
s and

the target 4 corners of the 5x5 map, we can obtain the per-

spective transformation matrix P . Let X, Y represents the

feature maps before and after the perspective transformation

respectively. The value of the element on Y with coordinate

(i,j) is computed by the following equations:

Yi,j = Xu,v

(u, v, 1) = P−1(i, j, 1)
(4)

Usually (u,v) is not an integer coordinate and we use the

4 nearest integer coordinates with bi-linear interpolation to

obtain the value Xu,v .

The extracted features of visible surfaces are concate-

nated and we use convolution layers to compress the num-

ber of channels and fuse the information on different sur-

faces. As shown in Fig.7, we also extract features from 2D

bounding box to provide context information. The 2D box

features are concatenated with fused surface features, and

they are finally used for refinement.

convsRoI
Pooling overall 

features 
fusion
2048

fc

global 
feature 

map

visible 
surface 
regions

2D bbox bbox 
feature
7x7
x1024

bbox 
feature
7x7
x2048

concat

ave

Perspective 
Transform

convs ave

surface 
features
5x5

x(1024x3)

surface 
features
fusion
5x5
x2048

fc class 
based 
refine

3d box

Figure 7. Details of the head of 3D subnet.

4.5. Refinement Methods

4.5.1 Residual Regression

With the candidate box (w, h, l, x, y, z, θ) and target ground

truth (w∗, h∗, l∗, x∗, y∗, z∗, θ∗), the residuals are encoded

as:

∆x =
x∗ − x√
l2 + w2

,∆y =
y∗ − y√
l2 + w2

,∆z =
z∗ − z

h
,

∆l = log(
l∗

l
),∆w = log(

w∗

w
),∆h = log(

h∗

h
),

∆θ = θ∗ − θ

(5)

And the commonly used method is to predict the encoded

residuals by regression model.

4.5.2 Classification Formulation

Regression in a large scope usually performs no better than

discrete classification, so we transform the residual regres-

sion into a classification formulation for 3D box refinement.

The main idea is to divide the residual range into several in-

tervals and classify the residual value into one interval.

Denote ∆di = dgti −dgdi as the difference of the ith guid-

ance and its corresponding ground-truth 3D setting descrip-

tor d where d ∈ {w, h, l, x, y, z, θ}. The standard deviation

σ(d) of ∆d on the training data is calculated. Then we as-

sign (0,±σ(d),±2σ(d), ...,±N(d)σ(d)) as the center for

the intervals of descriptor d and each interval has a length

of σ(d). N(d) is chosen according to the range of ∆d.

Since the guidance may come from a false positive 2D

box, we treat the intervals as multiple binary classifica-

tion problems. During training, if the 2D bounding box of

the guidance cannot be matched with any ground-truth, the

probability for all the intervals will be close to 0. In this

way, we can consider the guidance to be a background and

reject it during inference if the confidences of all classes are

very low.

4.5.3 Classification after Shift

Since mapping 2D regions to 3D space is an under-

determined problem, we further consider starting from de-

viations directly in the 3D coordinate. Specifically, each

class (residual interval) uses the most correlated region (the

projection of guidance after corresponding residual shift) to

extract individual features for itself. And all the classifiers

of residual intervals can share parameters.

4.5.4 Quality Aware Loss

We expect the confidence predicted in classification to re-

flect the quality of the target box of corresponding class, so

that the more accurate target box gets the higher score. This
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is important because AP (average precision) is computed

by sorting the candidates with respect to their scores. How-

ever, the common used 0/1 label is improper for the purpose

because the model is forced to predict 1 for all positive can-

didates regardless of their variation in quality. Inspired by

loss in 2D detection [11], we change the 0/1 label to a qual-

ity aware form:

q =











1 if ov > 0.75

0 if ov < 0.25

2ov − 0.5 otherwise

(6)

where ov is the 3D overlap between the target box and

ground-truth. And we use BCE as the loss function:

Lquality = −[q log(p) + (1− q) log(1− p)]. (7)

5. Experiments

We evaluate our framework on KITTI object detection

benchmark [7]. It consists of 7,481 training and 7,518 test

images. We follow [1] to use two train/val splits. Among

the previous works, [24, 19] use val1, and [2, 3] use val2,

and [1, 27] use them both. Our experiments are focused on

the car category like most previous works do.

5.1. Implementation Details

5.1.1 Network Setup:

Both our 2D sub-net and 3D sub-net are based on the VGG-

16 [23] network architecture. The 2D sub-net takes a classi-

fication model pre-trained on ImageNet data set to initialize

its parameters. And the trained model of 2D sub-net is used

to initialize the parameters of 3D sub-net in training.

5.1.2 Optimization

We use the Caffe deep learning framework [10] for training

and evaluation. During training, we upscale the image by a

factor of 2, and use 4 GPUs with one image on each. We

run SGD solver with a base learning rate of 0.001 for the

first 30K iterations and reduce it to 0.0001 for another 10K

iterations.

5.2. Ablation Study

5.2.1 2D Detection and Orientation

Since our efforts are focused on 3D detection, we spare no

time for tunning the hyper-parameters (e.g. loss weight, an-

chor size) for best performance of the 2D model and just

train the 2D subnet without bells and whistles. We evaluate

the Average Precision (AP) and Average Orientation Simi-

larity (AOS) of our 2D model, following the standard KITTI

setup. The results are shown and compared with other state-

of-the-art works in Table.1. Despite Deep3DBox [19] with

much higher AP, our result is better than or comparable to

other works. Moreover, although Deep3DBox use better 2D

box for 3D box estimation, our 3D results surpasses theirs

by a large margin (Table.5), which highlights the strength

of our 3D box determination method.

Method AP2D AOS

Mono3D [2] - /88.67 - /86.28

3DOP [3] - /88.07 - /85.80

Deep3DBox [19] 97.20/ - 96.68/

DeepMANTA [1] 91.01/90.89 90.66/90.66

Ours 90.02/88.85 89.13/87.52

Table 1. Comparison of 2D detection and orientation results for

car category evaluated on val1 / val2 of KITTI data set. Only the

results under the moderate criteria, the primal metric of KITTI, are

shown for convenient size of table.

5.2.2 Guidance Generation

Based on the statistics on training data, we set w̄ = 1.62,

h̄ = 1.53, l̄ = 3.89 as the size of guidance and λ = 0.07
for the shift of the projected bottom center.

To better evaluate the accuracy of the guidance, we use

the metric of Recallloc as well as Recall3D. For Recallloc,

the Euclidean distance between box centers of candidates

and ground truths is calculated, and the ground-truth box

is recalled if there is an candidate whose distance from it

is within a threshold. While Recall3D is similar with the

criteria changed from distance to 3D overlap.

As shown in Table.2, we also compare our guidance re-

call with the proposals recall of Mono3D [2] for their sim-

ilar roles in the 3D detection framework. The evaluation is

performed on val2. more efficient than the complex method

of proposal generating of Mono3D.

Note that the number of guidance is just equals to the

number of 2D detected boxes, which is of the same order of

magnitude as ground-truth. So the Recall3D of guidance is

similar to AP3D, and our refined 3D boxes can achieve an

AP that surpasses the value of guidance Recall.

Method
Recallloc Recall3D@IoU=0.5

thr=2m thr=1m Easy Moderate Hard

Mono3D [2] 79.10 70.24 29.55 27.72 27.23

Ours 89.80 85.78 35.52 28.74 25.02

Table 2. Recallloc and Recall3D of our results compared with

Mono3D. The IoU threshold of Recall3D is 0.5. These are eval-

uated on val2 set.

5.2.3 Refinement

The ablation study of the contribution of surface feature,

classification formulation and quality aware loss are shown

in Table.4.

We first train a baseline model using direct residual re-

gression following previous works e.g. [3, 27]. And the
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baseline only uses guidance region (bounding box) features

pooled from the feature map of the image.

Then we adopt the network architecture in Fig.7 and train

a surface feature aware model. With the surface feature pro-

viding 3D structurally distinguishable information, the re-

gression accuracy is improved (seen in the line of “+surf”).

For the classification formulated refinement, the distri-

butions of ∆d for each dimension on the training set are an-

alyzed as shown in Table.3. As stated in Section.4.5.2, we

set the interval length for each dimension as the σd. And we

choose Nd = 5 for d ∈ {w, h, l, y, θ} and Nx = Nz = 10,

mainly according to the range over std ratio.

Dimension w h l x y z θ

std 0.10 0.13 0.41 0.48 0.10 1.65 0.05

range
-0.49, -0.44, -1.74, -10.89, -0.52, -12.78, -0.27,

0.40 0.90 1.27 6.22 0.69 27.06 0.31

Table 3. Distribution analysis of ∆d on training data.

With the parameters for classes settled, we perform ex-

periments with the classification formulation instead of the

direct regression. Comparison experiments using the fea-

tures after shift for classification are also conducted. In Ta-

ble.4, “+cls” and “+scls” represent these two methods re-

spectively. We can see the two class formulated methods

both surpass the regression method. The fixed feature based

method performs better in AP@0.5, while the shift feature

based one performs better in AP@0.7.

Finally we change the 0-1 label based loss to the quality

aware form introduced in Section.4.5.4. Significant gain is

achieved in both classification based methods (seen in the

line “+qua” of Table.4).

Method
AP3D@IoU=0.5 AP3D@IoU=0.7

Easy Modr Hard Easy Modr Hard

Baseline 21.66 15.47 14.75 2.75 1.99 1.86

+surf 25.81 20.41 17.70 3.75 2.99 2.86

+surf +cls 30.87 23.39 19.86 5.09 3.76 3.63

+surf +scls 28.57 18.81 17.63 7.41 4.51 4.51

+surf +cls +qua 33.11 27.16 23.57 8.71 6.64 6.11

+surf +scls +qua 30.60 26.40 22.89 11.63 10.51 10.51

Table 4. Ablation study of 3D detection results for car category

on KITTI val2 set. “Modr” means moderate here. And “+surf”,

“+cls”, “+scls”, “+qua” represent the usage of surface feature,

class formulation, shift based class formulation and quality aware

loss respectively.

5.3. Comparison with Other Methods

We compare our work with state-of-the-art RGB im-

age based 3D object detection methods: Mono3D [2],

Deep3DBox [19], DeepManta [1], MF3D [27] and 3DOP

[3].

Most of these methods requires extra data or label in ad-

dition to single RGB image and the KITTI official anno-

tation for training. 3DOP is a stereo data based method.

Mono3D need segmentation data for the mask prediction.

DeepManta need 3D CAD data and vertices for their 3D

model prediction. MF3D adopts the model in MonoDepth

[8] for their disparity prediction, which is actually trained

on stereo data. Whereas only Deep3DBox, as well as our

work, requires no extra data or label.

AP3D: The major metric for our 3D detection evaluation

is the KITTI official 3D Average Precision (AP3D): a de-

tection box is considered as true positive if it has a overlap

(IoU) with the ground truth box larger than the threshold

IoU=0.7. We also show result comparison with IoU=0.5.

As we can see in Table.5, our method surpasses other works

by a large margin in the official metric (IoU=0.7), while

3DOP has a better performance evaluated with IoU=0.5.

This indicates that our method can achieve fine refinement

result for certain good guidances but is not good at correct-

ing the largely deviated guidances. The inference time is

also shown in this table, which demonstrates the efficiency

of our method.

ALP: Since DeepMANTA only provides their results

evaluated in Average Localization Precision (ALP) metric

[1], we also preform results comparison in this metric. As

shown in Table.6, our method is outstanding among current

state of the art works, except that 3DOP outperforms us in

this metric. Since ALP focus only on the location accuracy

and the size and rotation is not taken into consideration, its

ability of reflecting the true quality of the 3D box may be

not as good as 3D overlap.

Results on Test Set: Among all published monocular

3D detection works, only MF3D [27] shows the results eval-

uated on the official test set. The comparison between their

results and ours is shown in Table.7.

We only submit once so there is no trick of hyper-

parameter search. But even so, our method outperforms the

other work. Note that both the results of MF3D and ours

on test set have a gap compared with those on validation

set (Table.5). And this is most probably caused by the gap

of data distribution between training and testing set, since

KITTI training set is really small.

5.4. Qualitative Results

Fig.8 shows some qualitative results of our approach.

Our method can handle different scenes. It is robust to ob-

ject in different distances from the camera. And when the

scene is crowded, our method still performs well in most

cases. The red box in the two images in the last row shows

a typical failure cases of our work. In the left image, the

location of the box (in red) of the car on the bottom right

corner has an obvious deviation from the true car. In the

right image, the red dashed box is mistaken for negative

box by our model. Our approach is not good at handling the

objects on the boundary of the image (usually with occlu-
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Method Extra Time
AP3D (IoU=0.5) AP3D (IoU=0.7)

Easy Moderate Hard Easy Moderate Hard

Deep3DBox [19] None - 27.04/ - 20.55/ - 15.88/ - 5.85 / - 4.10 / - 3.84 / -

Mono3D [2] Mask 4.2 s - /25.19 - /18.20 - /15.52 - / 2.53 - / 2.31 - / 2.31

3DOP [3] Stereo 3 s - /46.04 - /34.63 - /30.09 - / 6.55 - / 5.07 - / 4.10

MF3D [27] Stereo - 47.88/44.57 29.48/30.03 26.44/23.95 10.53/ 7.85 5.69 / 5.39 5.39 / 4.73

Ours None 2.3 s 34.72/33.11 30.06/27.16 24.78/23.57 9.12 / 8.71 6.71 / 6.64 6.31 / 6.11

Ours (scls) None 2.3 s 32.15/30.60 29.89/26.40 26.19/22.89 13.46/11.63 10.97/10.51 10.38/10.51

Table 5. 3D detection accuracy on KITTI for car category evaluated using the metric of AP3D . Results on the two validation sets val1 /

val2. “Extra” means the extra data or label used in training. “scls” represents the method using shift feature for classification.

Figure 8. Qualitative illustration of our 3D detection results.

Method Extra
ALP1m

Easy Moderate Hard

3DVP [24] None 45.61/ - 34.28/ - 27.72/ -

Deep3DBox [19] None 35.71/ - 25.35/ - 23.03/ -

Mono3D [2] Mask - /48.31 - /38.98 - /34.25

DeepMANTA [1] CAD 70.90/65.71 58.05/53.79 49.00/47.21

3DOP [3] Stereo - /81.97 - /68.15 - /59.85

Ours None 71.09/66.23 63.77/58.01 50.97/47.43

Ours (scls) None 67.87/62.56 60.66/53.85 53.53/49.54

Table 6. 3D detection for car category evaluated using the metric

of ALP . Results on the two validation sets val1 / val2. “Extra”

means the extra data or label used in training.

Method
AP3D(IoU=0.7)

Easy Moderate Hard

MF3D [27] 7.08 5.18 4.68

GS3D (Ours) 7.69 6.29 6.16

Table 7. Our 3D detection results on official test set.

sion or truncation). Further efforts is in need to solve this

problem.

6. Conclusions

In this paper, we have proposed a monocular 3D object

detection framework for autonomous driving. We utilize the

mature 2D detection technology and projection knowledge

to efficiently generate basic 3D box called guidance. Based

on the guidance, further refinement is performed to achieve

high accuracy. We take advantage of potential 3D struc-

ture information in surface feature that eliminate the rep-

resentation ambiguity brought by only using 2D bounding

box. And we reformulate the hard residual regression prob-

lem into classification, which is easier to be well-trained.

And we use a quality aware loss to enhance the discrimina-

tive ability of model. Experiment shows that our framework

achieves new state-of-the-art as a method using single RGB

image without any extra data or label for training.

7. Acknowledgment

This work is supported in part by SenseTime Group

Limited, in part by the General Research Fund through

the Research Grants Council of Hong Kong under Grants

CUHK14202217, CUHK14203118, CUHK14205615,

CUHK14207814, CUHK14213616.

1026



References

[1] Florian Chabot, Mohamed Chaouch, Jaonary Rabarisoa,
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