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Abstract

Low-rank matrix completion (LRMC) is a classical

model in both computer vision (CV) and machine learn-

ing, and has been successfully applied to various real ap-

plications. In the recent CV tasks, the completion is usually

employed on the variants of data, such as “non-local” or

filtered, rather than their original forms. This fact makes

that the theoretical analysis of the conventional LRMC is no

longer suitable in these applications. To tackle this prob-

lem, we propose a more general framework for LRMC, in

which the linear transformations of the data are taken into

account. We rigorously prove the identifiability of the pro-

posed model and show an upper bound of the reconstruc-

tion error. Furthermore, we derive an efficient completion

algorithm by using augmented Lagrangian multipliers and

the sketching trick. In the experiments, we apply the pro-

posed method to the classical image inpainting problem and

achieve the state-of-the-art results.

1. Introduction

Low-rank matrix completion (LRMC) is a classical

model to utlize the low-rank structure of the matrix to

recover the missing entries given a small number of ob-

servations [5], and has many applications in different

fields [17]. Especially in computer vision (CV), LRMC has

been widely applied to image/video inpainting [45], reflec-

tion removal [14] and occlusion removal [40] and so on.

Although the black-box methods like generative adversar-

ial nets (GANs) become popular recently and also achieve

good performance in these tasks [30, 42], one of the ad-

vantage of LRMC is that the completion precision is the-

oretically guaranteed, which is of importance in practical

applications.

*Q. Zhao is the corresponding author. This work is partially supported

by JSPS KAKENHI (Grant No. 17K00326) and NSFC China (Grant No.

61773129).

One well known LRMC method is to perform nuclear

norm minimization (NNM) on the incomplete matrix [32,

41]. Due to the fact that nuclear norm is the convex enve-

lope of the matrix rank [32], solving NNM is equivalent to

searching the optimal low-rank approximation of the obser-

vations. Furthermore, it has been proved that, under mild

conditions, the reconstruction error of NNM is bounded by

O

(√
n(p+2)

p
δ + 2δ

)
where p denotes a constant w.r.t. the

rank of the n × n matrix and δ denotes the strength of the

noise. Although there exist many studies on more efficient

algorithms for NNM [15, 34], NNM cannot give satisfac-

tory performance when the matrix is of high rank or several

whole rows or columns are missing, and such situations of-

ten happen in practice.

On the other hand, recent CV-driven studies show that

we can obtain better performance than NNM if exploit-

ing the low-rank structure on a “transformed” variant of

the matrix. For example, in low-level CV tasks, the “non-

local” methods are popularly used for image inpainting and

denoising [6, 8], in which the observations are split into

“non-local” groups, and the low-rank approximation is then

applied to each group. Likewise, in the problem of im-

age occlusion removal, the low-rank structure of the ob-

scured part of the images is used to regularize the regres-

sion model [40], implying that the low-rank approximation

is employed on the down-sampled data rather than the origi-

nal ones in the applications. In addition, the low-rank struc-

tures of the filtered or transformed data are also studied for

different problems [10, 26, 33, 43]. Although these meth-

ods have achieved the state-of-the-art performance in their

fields, the existing theoretical results for the conventional

LRMC are no longer suitable for them.

To fill the gap of the theoretical study on the aforemen-

tioned CV applications, we derive a new upper bound of the

reconstruction error for matrix completion by imposing the

linear transformations into the conventional NNM frame-

work. In contrast to the conventional NNM model, we min-

imize a sum of nuclear norms of the linearly transformed
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matrices. For different applications, we can specify the lin-

ear transformations as down-sampling or filtering, etc.. By

choosing some specific but simple linear transformations

(as shown in the experiment), the new framework can easily

handle the row/column missing situations. In summary, this

paper makes the following contributions:

• We rigorously prove the theoretical guarantee of the

proposed model, and give an upper bound of the re-

construction error influenced by noise.

• We propose an efficient algorithm to minimize the new

model, by which our model significantly outperforms

the state-of-the-art methods for image inpainting.

1.1. Related works

We first review the existing approaches for low-rank ma-

trix completion. One line of work focuses on low-rank de-

composition of the incomplete matrix [20, 27, 38, 39]. In

these methods, the observations are represented by the mul-

tiplication of latent factors. Although low-rank matrix de-

composition is a non-convex problem, in recent studies it

has been proved that the local minimum of the model is

also the global minimum in general cases [11]. However,

how to determine the optimal rank for the decomposition is

still a tough work in practice. The second line of work is

to directly estimate the optimal low-rank approximation of

the observation [5, 15, 19, 24]. As mentioned in Section 1,

NNM is the most well known method, in which the matrix

nuclear norm is minimized to find the optimal low-rank ap-

proximation. Recent studies along this line attempt to find

more suitable surrogate of the matrix rank than the nuclear

norm [13] or to impose additional regularization items on

the model [16]. In general, such modification can elimi-

nate the bias brought by the matrix nuclear norm, but it also

leads to the non-convex model and the completion perfor-

mance lacking of theoretical guarantee. Furthermore, all the

aforementioned LRMC methods only consider the low-rank

structure of the original matrix, but our work is to explore

the additional low-rank structures resulted by linear trans-

formations, even if the original matrix might be high-rank.

Next, we review the studies for the theoretical properties

of LRMC. The theory for LRMC can be seen as an exten-

sion of compressed sensing [3]. Based on the perspective of

the restricted isometry property (RIP) [7, 12], many stud-

ies proved the sample complexity of LRMC, and looked for

tighter bound of the essential number of the observations

for exact recovery. Instead of RIP, the approaches taken

in [2, 4, 31] are based on dual theory, by which the no-

tion of dual certificate is proposed as a condition to ensure

the exact recovery. However, all the works do not concern

how linear transformations influence the exact recovery of

LRMC. In this paper, we extend the existing theoretical

studies based on the dual theory, but we impose the linear

transformations in the proof. From the theoretical results,

we reveal how the characteristic of the linear transforma-

tions influences the completion performance.

Besides matrix completion, there also exist some meth-

ods which solve the similar problem. One example is ma-

trix sensing [29]. In contrast to LRMC, matrix sensing

uses Gaussian measure to obtain the observations instead

of down-sampling. As another example, tensor completion

is recently well studied using different decomposition mod-

els [9, 21, 25]. Especially, the convex tensor decomposition

(CTD), as an extension of NNM, exploits the multi-linear

low-rank structure to find the optimal low-rank approxima-

tion of a tensor [35, 36]. In the next section, we will discuss

the differences of our model with these methods, and show

that CTD is a special case of our model.

2. Preliminaries

2.1. Notation

Given a positive integer d, let [d] denote the set of in-

tegers from 1 to d. We denote the scalars and matrices by

Italic letters, e.g. a,K, and boldface capital letters, e.g. X,

respectively. For a matrix X, let X(i, j) denote the i-th row

and j-th column entry. Let ‖ · ‖2 and ‖ · ‖F respectively

denote the spectral norm the Frobenius norm. Let ‖ · ‖∗ de-

note the matrix nuclear norm, which equals the sum of the

singular values. We denote the linear functions on matrix

by calligraphic script letters, e.g. Q : Rm1×m2 → R
n1×n2 ,

and its conjugate by Q⋆. If we define the basis for both input

and output space of Q, then the linear function can be rep-

resented by a 4-th order tensor, e.g. Q ∈ R
m1×m2×n1×n2 .

Let [Q]〈i〉, i ∈ [3] denote unfolding the tensor Q along the

first i-orders [28]. By using the tensor form, we denote the

condition number of Q as cond(Q), which is defined as

Definition 1 (Condition number). The condition number of

a linear transformation with its tensor representation Q ∈
R

m1×m2×n1×n2 is defined as the ratio of the largest and

smallest non-zero singular values of [Q]〈2〉.

The condition number in Definition 1 is used to measure

how much error in the output results from an error in the

input for the linear function Q.

2.2. Nuclear norm minimization (NNM)

Assuming a perturbed low-rank matrix Y ∈ R
m1×m2 ,

the notion of NNM is formulized as:

min
X∈Rm1×m2

‖X‖∗ , s.t. ‖PΩ(X)− PΩ(Y)‖F < δ, (1)

where X denotes the recovered matrix, PΩ(·) is the down-

sampling operation under the index set of the missing pat-

tern Ω such that PΩ(Y) represents the observed entries.

Here we use the same notation for the linear functions and their tensor

representation without ambiguity.
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2.3. Generalization of LRMC

To leverage the additional low-rank structures of the

“transformed” matrix as mentioned in Section 1, we pro-

pose a generalization of LRMC called Matrix Comple-

tion under Multiple linear Transformations (MCMT). In

the model, we impose K linear transformations Qi :

R
m1×m2 → R

n
(i)
1 ×n

(i)
2 , i ∈ [K] and simultaneously con-

sider the low-rank structures of the transformed matrices.

Specifically, the model of MCMT is given by

min
X∈Rm1×m2

∑

i∈[K]

‖Qi (X)‖∗ ,

s.t. ‖PΩ(X)− PΩ(Y)‖F < δ.

(2)

We can see that (2) degenerates (1) when K = 1 and Q1

is the identical function. But the difference from NNM is

that MCMT seeks for the low-rank solution over the linear

transformations rather than the matrix itself. It implies that,

providing proper Qi’s, (2) can be used to complete the ma-

trix that has a high-rank structure.

Comparison with matrix sensing. Matrix sensing is to re-

cover the original matrix from the Gaussian measurements.

The model is formalized as

min
X∈Rm1×m2

‖X‖∗ , s.t. ‖Q(X)−Q(Y)‖F < δ, (3)

where the entries of Q follows the i.i.d. Gaussian distri-

bution. Compared to (2), the model (3) only considers the

linear transformation Q in the constraint term. Furthermore,

similar to NNM, matrix sensing exploits the low-rank struc-

ture of the original matrix, while MCMT takes into account

the additional low-rank structures under linear transforma-

tions.

Comparison with CTD. As mentioned in the related

works, CTD is to seek for the approximation of a tensor

with multi-linear low-rank structures. For a K-th order ten-

sor and its perturbed variant Y , CTD is given by [35]

min
X∈Rm1×m2

∑

i∈[K]

∥∥∥[X ](i)

∥∥∥
∗
,

s.t. ‖PΩ(X )− PΩ(Y)‖F < δ,

(4)

where [X ](i) denotes unfolding the tensor X along i-th or-

der [18]. Due to the fact that the unfolding operations are

linear functions, the model (4) is a special case of MCMT

when Qi(·) = [ · ](i). It is worthwhile to mention that tensor

unfolding only rearrange the tensor into different shapes,

but MCMT can exploit more general linear functions like

re-sampling, rotation and filtering in the linear space to dig

more structures of the matrix.

2.4. Examples of Qi in MCMT

In MCMT, the linear transformations Qi, ∀i can be used

to formulate various operations in various CV applications.

Below we show some examples.

Example 1 (“Non-local” image restoration). To exploit the

non-local similarity of the images, the methods usually split

the whole matrix into many “non-local groups”, and each

group is a concatenation of similar patches of the image.

We can see that such grouping operation is mathematically

a re-sampling (definitely linear) function from the image to

the non-local groups. Therefore, each Qi(X), i ∈ [K] in

(2) corresponds to K non-local groups, and solving (2) is

to find the optimal low-rank approximation for each non-

local group and then merge the approximations back to the

global image.

Example 2 (Occlusion removal). In the occlusion removal

problem, the original image is partially covered by other

objects, and the aim of this application is to recover the

hidden part of the image. To solve this problem, a previ-

ous study [40] assumes that both the original image and

the covered part have the low-rank structures. Under the

framework of MCMT, we can specify K = 2, set Q1 to be

the identical function to catch the low-rank structure of the

image, and set Q2 as down-sampling to obtain the covered

sub-image with the low-rank structures.

Besides these examples, we can also specify Qi as the

2-D wavelet filters to catch the short-term fluctuation of the

image under multiple resolutions or even random reshuf-

fling [22].

3. Identifiablity

One of the advantage of LRMC is that the completion

performance is theoretically guaranteed. In this section, we

theoretically analyze the reconstruction error for MCMT,

and reveal what conditions Qi, ∀i should satisfy for exact

recovery. In the rest of this section, we first establish an

upper bound of MCMT under a single linear transformation,

i.e. K = 1. After that, we extend the results to the case of

multiple transformations.

3.1. Single linear transformation

Assume that M0 ∈ R
m1×m2 denotes the “true” matrix

that we want to recover, and its rank equals R. The per-

turbed variant of M0 is generated by Y = M0 +H where

the entries of H obey the i.i.d. Gaussian distribution, i.e.

H(i, j) ∼ N(0, σ2) for all i ∈ [m1], j ∈ [m2]. With the

single linear transformation, we simplify (2) as

min
X∈Rm1×m2

‖Q(X)‖∗ s.t. ‖PΩ(X)− PΩ(Y)‖F ≤ δ,

(5)

where the subscript of Q ∈ R
m1×m2×n1×n2 is re-

moved for brevity. Let Q(M0) = UDV⊤ be the

truncated singular value decomposition (SVD), in which

only the singular vectors and non-zero singular values
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are kept. Furthermore, we define a linear space T ={
UX⊤ +YV⊤| ∀X ∈ R

n1×R, Y ∈ R
n2×R

}
, which re-

flects the properties of the neighborhood around M0. Let

T
⊥ denote the orthogonal complement to T. Based on the

dual theory, we define the dual certificate for the unique so-

lution to (5) as follow:

Definition 2 (Dual certificate). A matrix Λ ∈ R
m1×m2 is

defined as a dual certificate of (5), if PΩ(Λ) = Λ and Λ

can be decomposed as

Λ = Q⋆
(
UV⊤ +RΛ

)
, (6)

where RΛ = PT⊥ (Λ), PT⊥ denotes the projection to T
⊥

and ‖RΛ‖2 ≤ 1.

The existence of the dual certificate was proved as a crit-

ical condition to ensure the exact recovery in the previous

work [4]. The following lemma shows how Definition 2

certifies that the M0 is one of the optimal solutions to (5).

Lemma 1. Assume that there exists a dual certificate Λ and

the perturbation H obeys PΩ(H) = 0. Then the inequality

‖Q(M0 +H)‖∗

≥ ‖Q(M0)‖∗ + (1− ‖RΛ‖2) ‖PT⊥Q(H)‖∗
(7)

holds.

The proof is given in the supplementary material.

Lemma 1 reflects how the perturbation H changes the

objective function in (5), and any perturbation around M0

cannot decrease the objective function. It means that M0 is

one of the solutions to (5). Furthermore, Lemma 1 degener-

ates to Lemma 4 in [4] if we specify Q to be the identity.

However, the imposed linear transformation Q leads

to a new problem compared to the conventional studies.

Lemma 1 cannot guarantee that M0 is the unique solution

to (5). It can be seen from the second term of the right side

of (7) that the perturbation H could vanish in the null space

of Q. To prove the theoretical guarantee for (5), we further

make the following assumption to restrict the relation of the

null space of Q and PΩ:

Assumption 1. Let NQ and NΩ denote the null spaces of

the linear transformations Q and PΩ, respectively. We as-

sume that the relation NQ ∩ NΩ = {0} obeys.

It can be inferred from Assumption 1 that Q (H) 6= 0
for all the perturbation H with PΩ(H) = 0. Assumption 1

can be also considered as the strong convexity assumption

of (5), which is illustrated by the following proposition:

Proposition 1. Assume that the null space of PΩ is not triv-

ial, i.e. NΩ 6= {0}, and M0 is the unique solution to (5),

then Assumption 1 should be satisfied.

Proof. For contradiction, assume that Assumption 1 is not

satisfied, then there exists a non-zero perturbation H ∈ NΩ

on the missing entries such that Q (H) = 0 holds. Thus the

objective function

‖Q(M0 +H)‖∗ = ‖Q(M0) +Q(H)‖∗ = ‖Q(M0)‖∗.
(8)

It implies that M̂ = M0 +H 6= M0 is also the solution of

(5), which violates the assumption in the proposition.

The strong convexity of (5) guarantees the uniqueness

of the solution. With the dual certificate and Assumption 1,

we propose the main result of our paper in the case of single

linear transformation.

Theorem 1 (Error bound for a single Q). With Assump-

tion 1, and suppose the additional assumptions:

i) There exists a dual certificate obeying ‖RΛ‖2 < 1;

ii) ∃p > 0, s.t.PTQPΩQ
⋆PT � pI

iii) The product [Q]〈2〉 · [Q]
⋆

〈2〉 is a diagonal matrix.

Then the solution of (5) M̂ obeys

‖M̂−M0‖F

≤ 2δ ·
cond(Q)

1− ‖RΛ‖2

√
min{n1, n2}(p+ ‖ [Q]〈2〉 ‖

2
2)

p
.

(9)

The proof is given in the supplemental material.

First, We consider the four assumptions given in Theo-

rem 1. As mentioned above, Assumption 1 and (i) guarantee

the uniqueness of the solution to (1). However, it is not en-

sured that the unique solution M̂ equals the “true” matrix

M0 because of the existence of projection PT⊥ in (7). To

constraint the structure of PT⊥ , we impose the assumption

(ii), which implies that a sequential product of the functions

PT, Q and PΩ is positive definite, and the constant p can

be considered as the “incoherence” level among these func-

tions. The assumption (iii) further constraints the rows of

[Q]〈2〉 to be orthogonal to each other, which is useful for

the proof procedure of the theorem.

Second, we consider the upper bound given in (9). We

can find that the reconstruction error of (5) is upper bounded

by not only the noise strength δ but also the properties of the

linear transformation Q. If Q is a well-posed linear func-

tion, then the upper bound from (9) tends to be zero when

decreasing δ. It implies that the missing entries can be ex-

actly recovered if there is no noise.
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3.2. Extension to multiple Q’s

Compared to the case using a single Q, the model (2)

exploits the multiple low-rank structures under different

linear transformations. To bound the reconstruction er-

ror of (2), we construct a block diagonal tensor Q̃ by

which we have ‖Q̃(X)‖∗ =
∑

i∈[K] ‖Qi(X)‖∗. Math-

ematically, the entries of the constructed 4th-order tensor

Q̃ ∈ R
m1×m2×

∏
i∈[K] n

(i)
1 ×

∏
j∈[K] n

(j)
2 obey the following

equation:

Q̃(:, :,
∏

k∈[i−1]

N
(i)
1 :

∏

k∈[i]

N
(i)
1 ,

∏

k∈[i−1]

N
(i)
2 :

∏

k∈[i]

N
(i)
2 )

= Qi, i ∈ [K],

(10)

where we use the Matlab syntax to denote a sub-block of a

tensor. Using Q̃, it is easy to find that Q̃(X) is a block diag-

onal matrix of which each block equals Qi(X). Due to the

block diagonal structure of Q̃(X), the following equation

holds

‖Q̃(X)‖∗ =
∑

i∈[K]

‖Qi(X)‖∗, ∀X ∈ R
m1×m2 . (11)

Using (11), the model (2) under multiple linear transforma-

tions Qi, i ∈ [K] can be converted to the model (5) under a

single transformation Q̃. Hence Theorem 1 can be directly

extended to bound the reconstruction of (2).

Corollary 1 (Error bound for multiple Qi’s). Let Q̃ be a

concatenation of Qi, i ∈ [K] by using (10), and Q̃ obeys the

assumptions given in Theorem 1. Then the reconstruction

error of the solution to (2) obeys

‖M̂−M0‖F

≤ 2δ ·
cond(Q̃)

1− ‖RΛ‖2

√√√√min{n1, n2}(p+ ‖
[
Q̃
]

〈2〉
‖22)

p
.

(12)

Although MCMT under multiple Qi’s can be converted

to the case under the single Q̃, we find that imposing more

linear transformations could result in easier conditions to

exactly recover the missing entries. This statement can be

partially supported by the following proposition:

Proposition 2. Let NQi
and NQ̃ be the null space of

Qi, i ∈ [K] and Q̃, respectively. Then it yields that

NQ̃ =
⋂

i∈[K] NQi
.

The proof is trivial. It can be inferred from Proposition

2 that the null space of Q̃ is “smaller” than the one of any

https://www.mathworks.com/products/matlab.html

single linear transformation Qi. It means that Assumption

1 can be still held by Q̃ even if each Qi cannot satisfy As-

sumption 1. Therefore, it might be easier for MCMT to

exactly reconstruct the missing entries if we impose more

Qi’s.

To develop an efficient algorithm for MCMT, it would

be better to consider the following optimization model, in

which the constraint in (2) is absorbed into the objective

function such that solving MCMT becomes a unconstrained

problem.

min
X∈Rm1×m2

1

2
‖PΩ(X)− PΩ(Y)‖2F +

∑

i∈[K]

λi‖Qi(X)‖∗.

(13)

Besides the constraint term, we also impose a set of tuning

parameters λi, i ∈ [K] for each Qi to trade-off the influ-

ences on the objective function by different linear transfor-

mations. To analyze the performance of (13), we assume

λ = λi, ∀i for brevity. The error bound of (13) is derived

by the following theorem:

Theorem 2. With the assumptions in Theorem 1 for the con-

catenation Q̃, and further assume that the tuning parame-

ter satisfies λ > ‖PΩ (H) ‖2/
√
min{m1,m2}. Then the

reconstruction error of (13) is bounded by

‖M̂−M0‖F

≤ 8λ


min{m1,m2}+

∑

i∈[K]

√
min{n

(i)
1 , n

(i)
2 }‖ [Qi]〈2〉 ‖2




·
cond(Q̃) ·min{

∏
n
(i)
1 ,

∏
n
(i)
2 }(p+ ‖

[
Q̃
]

<2>
‖2)

p(1− ‖RΛ‖2)2
.

(14)

Note that λ can be an arbitrarily small number if the

strength of the perturbation matrix H is weak enough.

Therefore the performance of (13) is theoretically guaran-

teed under above conditions.

4. Algorithm

In this section, we present an efficient algorithm to solve

the optimization problem (13).

Due to the convexity of the model, we use the augmented

Lagrangian multipliers to search the minimum of the model.

Inspired by the existing tensor nuclear norm minimization

methods [25], we also impose auxiliary variables to get a

simple algorithm. Specifically, we rewrite (13) as:

min
X,Wi, i∈[K]

1

2
‖PΩ(X)− PΩ(Y)‖2F +

∑

i∈[K]

λi‖Wi‖∗

s.t.Wi = Qi (X) , i ∈ [K]

,

(15)
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where Wi, i ∈ [K] denote the auxiliary matrices to decom-

pose the objective function of (13) into several parts with

independent variables. But it is easy to find that (15) is with

the same solution to (13). The corresponding augmented

Lagrangian function of (15) is given by

L(X,Wi,Zi, ∀i ∈ [K], σ)

=
1

2
‖PΩ(X)− PΩ(Y)‖2F +

∑

i∈[K]

λi‖Wi‖∗

+
∑

i∈[K]

〈Zi,Qi(X)−Wi〉+
σ

2

∑

i∈[K]

‖Qi(X)−Wi‖
2
F

,

(16)

where Zi denotes the Lagrangian multipliers for all i ∈ [K]
and σ > 0. In the algorithm, we alternatively update each

variable in (16) until convergence, and the updating order is

given by

1)Wi, i ∈ [K] ⇒ 2)X ⇒ 3)Zi, i ∈ [K] ⇒ 4)σ.

Updating Wi. We treat all variables except Wi as con-

stants during updating. In this case, (16) can be rewritten

as

L̂(Wi) =

λi‖Wi‖∗ + 〈Zi,Qi(X)−Wi〉+
σ

2
‖Q(X)−Wi‖

2
F ,

(17)

where we omit the constant terms. It is known from [1] that

minimizing (17) has a closed-form solution, which is given

by

W+
i := Dλi

σ

(
Qi(X) +

1

σ
Zi

)
, (18)

where Dλi
σ

(·) denotes the soft-thresholding operation [23].

If X = UDV⊤ is the SVD of X, then Dλ(X) = UD̄V⊤,

where the entries D̄(i, j), ∀i, j satisfies

D̄(i, j) =

{
D(i, j)− λ D(i, j) > 0

0 otherwise
. (19)

Updating X. Likewise, we treat all the variables except

X as the constants during updating. In this case, (16) is

rewritten as

L̂(X) =
1

2
‖PΩ(X)− PΩ(Y)‖2F

+
∑

i∈[K]

〈Zi,Qi(X)−Wi〉+
σ

2

∑

i∈[K]

‖Qi(X)−Wi‖
2
F

.

(20)

We can see that solving (20) is a least squares problem, and

its solutions is given by

X+ :=


P⋆

ΩPΩ + σ
∑

i∈[K]

Q⋆
iQi




−1

·


(P⋆

ΩPΩ)Y −
∑

i∈[K]

Q⋆
i (Zi −Wi)




. (21)

Updating Zi and σ. We update the Lagrangian multi-

plers Zi, i ∈ [K] and σ by using

Z+
i := Zi + σ(Qi(X)−Wi) (22)

and

σ+ := ρσ, (23)

where ρ > 1 is a constant. The details of the algorithm are

given by Algorithm 1.

Algorithm 1 Matrix completion under multiple linear trans-

formations (MCMT)

Input: Observation PΩ(Y) and its corresponding down-

sampling projection PΩ. The linear transformations

Qi, and tuning parameters λi > 0, i ∈ [K]
Output: Reconstructed matrix X.

1: Initialize X0 by PΩ(X
0) = PΩ(Y), and fill unob-

served entries by zero. Let W0
i equal Qi(X

0) for all

i ∈ [K]. Initialize Z0
i = sgn(W0

i ), where sgn(·) de-

notes elementwisely choosing the sign of the entries.

Let σ = 1, ρ = 1.01.

2: Repeat

3: Update Wi, ∀i by (18)

4: Update X by (21)

5: Update Zi, ∀i by (22)

6: Update σ by (23)

7: Until convergence

4.1. The sketching trick

We can see one computational bottleneck in Algorithm

1 is the numerous SVD operations when updating Wi. To

speed up our method, we utilize the sketching trick to re-

duce the computational complexity. Specifically, we gener-

ate the Gaussian random projection matrix Pi ∈ R
n
(i)
2 ×l(i)

w.r.t. each Qi. By using the random projections, we esti-

mate the left singular vectors of Qi(X) by using QR de-

composition, i.e. [Ûi,∼] = qr (Qi (X) ·Pi). When ob-

taining Ûi’s, the SVD operation on Qi(X) in Algorithm 1

can be replaced by Qi(X) = ÛiDtmpV
⊤
tmp, where Dtmp

and Vtmp respectively denote the matrices which contain

the singular values and right singular vectors of Û⊤
i Qi(X).

By using the sketching trick, the computational complexity

in the SVD procudure can be reduced from O(n3) to O(n2)

if n = n
(i)
1 = n

(i)
2 and l(i) ≪ n.
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Table 1. Performance comparison for image inpainting by using different methods. In the experiment, we utilize PSNR(dB) to quantify the

reconstruction. Furthermore, we consider various missing patterns, including Uniformly random missing (U), Row missing (R), Column

missing (C), and their combinations.

Missing Observation
FBCP SPC TRALS FaLRTC MCMT NNM

MCMT

pattern ratio (sketching)

U

0.1 19.18± 1.06 17.68 ±1.01 17.70 ±1.68 11.50 ±1.24 22.08±1.58 14.29±1.47 22.06±1.57

0.3 22.62 ±1.27 21.05 ±0.99 23.03± 1.34 18.25 ±1.05 26.39±2.10 22.05±1.53 26.78±2.10

0.5 25.06± 1.41 23.36 ± 1.02 24.93 ±1.33 21.93 ±0.99 29.03±2.25 25.61±1.53 28.75±2.30

0.7 27.78± 1.46 26.05 ±1.04 27.29 ±1.33 26.27 ±1.18 31.20±2.28 28.48±1.46 30.69±2.39

0.9 32.88 ±1.47 31.15 ±1.06 32.13 ±1.33 33.43±1.52 33.22±2.24 31.40±1.19 32.37±2.42

R

0.1 1.01 ±7.73 12.37± 1.80 - 5.59 ±1.14 17.51±1.45 6.23±0.96 17.51±1.45

0.3 12.70 ±3.23 18.17± 1.00 - 9.86 ±0.98 22.38±1.75 9.10±0.95 22.38±1.75

0.5 19.86±1.96 21.15± 0.85 11.95 ±5.45 16.14 ±1.01 25.54±1.80 10.67±1.78 25.49±1.79

0.7 25.21± 1.86 24.47 ±0.82 24.14 ±2.32 21.60 ±0.89 28.67±2.22 9.68±1.84 28.47±2.22

0.9 31.36± 1.48 30.02 ±0.95 30.72 ±1.82 29.22 ±1.15 31.97±2.25 12.55±1.93 31.78±2.33

C

0.1 2.92 ±3.35 2.27± 1.86 - 5.58 ±1.14 17.30±1.37 7.74±0.86 17.30±1.37

0.3 12.70 ±3.29 18.14±1.20 - 9.88 ±1.10 22.13±1.33 5.08±1.68 22.13±1.32

0.5 19.74 ±1.50 21.20± 1.01 15.20 ±2.64 16.23 ±1.12 25.40±1.42 0.38±1.45 25.36±1.42

0.7 24.86± 1.20 24.45 ±0.94 24.12 ±1.42 21.59 ±1.11 28.42±1.74 -0.80±1.43 28.26±1.76

0.9 31.00± 1.57 29.93 ±1.00 30.19 ±1.60 28.94 ±1.08 32.03±2.16 2.42±1.59 31.52±2.27

RC

0.1 6.73± 1.24 5.20 ±1.11 - 4.91 ±1.15 15.01±1.23 5.18±0.99 15.01±1.23

0.3 13.93 ±1.84 15.44± 1.22 - 6.45 ±1.10 19.69±1.24 7.45±0.64 19.69±1.24

0.5 18.14 ±1.13 18.52± 0.96 9.24±5.94 12.43 ±0.97 22.94±1.54 9.97±1.74 22.93±1.54

0.7 22.35± 1.17 21.59 ±0.85 21.52 ±1.79 18.43 ±0.97 26.30±1.76 2.08±1.66 26.24±1.76

0.9 28.74± 1.34 26.88 ±0.86 27.51 ±1.55 25.84 ±0.95 30.61±2.18 1.43± 1.64 30.27±2.22

URC

0.1 4.85± 1.15 4.84 ±1.15 - 4.84 ±1.15 12.68±1.24 5.15±0.99 12.68±1.23

0.3 14.89± 1.61 13.01 ± 1.30 - 5.21 ±1.14 18.11±0.94 5.63±0.96 18.10±0.93

0.5 17.94± 0.99 17.31 ±1.04 11.59 ±5.94 10.18 ±0.99 21.74±1.23 7.87±0.74 21.75±1.23

0.7 21.57± 0.97 20.38 ±0.92 20.67±1.57 16.92 ±1.02 25.31±1.70 14.74±0.84 25.27±1.70

0.9 27.09± 1.34 25.56 ±0.89 26.42 ± 1.26 24.56 ±1.01 29.90±2.07 13.90±1.83 29.59±2.10

5. Experiments

In this section, we employ the proposed method on the

classical grayscale image inpainting problem to demon-

strate the effectiveness of our method.

Although there exist many methods proposed for the im-

age inpainting problem, it is still a challenging problem to

complete a grayscale image with missing entries. Com-

pared to the RGB images, there is no additional similarity

from RGB channels in the grayscale images, which can be

utilized to improve the completion performance.

In the experiment, we choose 12 benchmark images

(256 × 256) to evaluate the performance of the proposed

method. To generate the test dataset, we employ 5 differ-

ent missing patterns to remove the entries including Uni-

formly random missing (U), random Row-missing (R), ran-

dom Column-missing (C) and their combinations (RC and

URC). In addition, we set 5 different observation ratios

{0.1, 0.3, 0.5, 0.7, 0.9} for each type of the missing pattern.

To achieve more reliable experimental results, we i.i.d. gen-

erate 20 samples for each image with the given missing pat-

tern and observation ratio.

The experimental results are shown in Table 1 and Fig. 1,

in which the mean and the standard deviation of the PSNR

The benchmark images include cameraman, house, jetplane, lake,

lena, livingroom, mandril, peppers, pirate, walkbridge and blonde. All

these images are shown in the supplementary material.

is calculated using all images and samples under each miss-

ing pattern and observation ratio. For comparison, we also

employ the current state-of-the-art methods in the exper-

iment, including three tensor decomposition based meth-

ods (FBCP [46], FaLRTC [25] and TRALS [37]), a spa-

tial smoothness based method (SPC) [44], and NNM as the

baseline.

For our method, we specify the number of the linear

transformation to be equal to K = 1 and λ = 1 for brevity,

and simply set the transformation Q to be a two dimensional

(2D) differential filtering by using the taps

T =

[
1 −1
−1 1

]
, (24)

and the tensor representation of Q is given by the circu-

lar form of the 2D filter T. Furthermore, we also consider

using sketching to speed up our method, by which the di-

mension is decreased to 100 after random projection (the

original dimension equals 256).

As shown in Table 1, MCMT outperforms other meth-

ods in all cases. Especially when the observation ratio is

low, the performance gap between our method and others

is significant. For example, the PSNR of MCMT is av-

eragely 4dB higher than the state-or-the-art methods for

all the missing pattern when the observation ratio equals

0.5. Furthermore, the performance of MCMT is about 5dB

higher than the baseline method NNM in the uniformly ran-
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Observation FBCP SPC TRALS FaLRTC MCMT NNM
MCMT 

(Sketching)

U

R

C

RC

URC

Figure 1. Examples of the completion results by using different methods, in which the rows correspond different missing patterns with the

obervation ratio equals 0.7, and the columns correspond different methods. It can be easily seen that MCMT and its sketching version

obtain higher qualified results.

dom missing pattern (U), and has more than 10dB perfor-

mance improvement in other missing patterns. Comparing

the performance between MCMT and its sketching version,

we can find the sketching trick does not decease the perfor-

mance of MCMT with a appropriate projection dimensions.

The performance improvement by MCMT can be ex-

pected because the existence of Q can enhance the incoher-

ence between low-rank structure of the (transformed) ma-

trix and its missing pattern. For example, NNM fails to

recover the whole row/column missing because minimiz-

ing the rank of the original matrix tends to fill the miss-

ing rows/columns with zeros, which is definitely incorrect

for completion. However, imposing the linear transforma-

tions can make the method take into account the dependence

of the entries in different rows and columns to recover the

missing entries.

6. Conclusion

Although there exist lots of methods for the data com-

pletion problem, matrix completion is still a basic but im-

portant issue for the further development of more sophis-

ticated methods like tensor completion. Furthermore, it is

also a challenging task to develop a theoretical framework

to analyze the performance of the completion methods. In

this paper, inspired by the existing studies on the CV appli-

cations, we proposed a new framework to leverage the ad-

ditional low-rank structures of the data for the completion

problem. In contrast to the conventional matrix completion

methods, we impose multiple linear transformations into the

model. As the theoretical result, we rigorously prove an up-

per bound for the reconstruction error of our method, and

it implies that our model can get theoretically guaranteed

performance under some conditions. Besides the theoreti-

cal works, we also developed an efficient algorithm by us-

ing the augmented Lagrangian multipliers. The experimen-

tal results show that the proposed method significantly im-

proves the performance for image inpainting compared with

the state-of-the-art methods.
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