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Abstract

We propose a high-quality photo-to-pencil translation

method with fine-grained control over the drawing style.

This is a challenging task due to multiple stroke types (e.g.,

outline and shading), structural complexity of pencil shad-

ing (e.g., hatching), and the lack of aligned training data

pairs. To address these challenges, we develop a two-

branch model that learns separate filters for generating

sketchy outlines and tonal shading from a collection of pen-

cil drawings. We create training data pairs by extracting

clean outlines and tonal illustrations from original pencil

drawings using image filtering techniques, and we manually

label the drawing styles. In addition, our model creates dif-

ferent pencil styles (e.g., line sketchiness and shading style)

in a user-controllable manner. Experimental results on dif-

ferent types of pencil drawings show that the proposed algo-

rithm performs favorably against existing methods in terms

of quality, diversity and user evaluations.

1. Introduction

Pencil is a popular drawing medium often used for quick

sketching or finely-worked depiction. Notably, two main

components are the outlines that define region boundaries,

and shading that reflects differences in the amount of light

falling on a region as well as its intensity or tone and even

texture. Each of these may be applied in various different

styles. For example, pencil outlines may be more or less

“sketchy” (Figure 1(a)). Shading may be also more or less

sketchy and use different types of hatching strategies (Fig-

ure 1(b)). Hence, we seek to accurately reproduce these

drawing styles and allow users to select based on personal

preferences.

We split the task into generating the outlines and shading

separately, and express each as an image-to-image trans-

lation problem, learning the mapping from a collection of

pencil drawings. Unfortunately, gathering paired training

data for any artistic stylization task is challenging, due to

the cost, as well as the spatial distortions in drawings [6].

To avoid the burden of gathering ground-truth paired data,
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(a) Pencil outlines (b) Pencil shading

Figure 1. Examples of real pencil drawings in the outline (L1 ∼
L2) and shading (S1 ∼ S4) styles that we train on.

we instead propose to create data pairs. In particular, we

filter each pencil drawing with procedures that extract out-

lines, tone, and edges. This produces two sets of paired data

that can be used for our two subtasks, learning the outlines

and shading drawing. These filters generate the same ab-

stractions (outlines, tone, and edges) when applied to input

photographs. Hence, at test-time, we filter an input photo-

graph and then apply the trained model to produce pencil

illustrations in a user-selected style.

We achieve control over different pencil styles (e.g.,

sketchiness and shading) by training the model with sev-

eral distinct styles, where the style label is provided as an

input selection unit. Moreover, the filtering modules con-

tain additional controllable parameters to generate different

abstracted inputs, which are then mapped to pencil draw-

ings with different characteristics. On the other hand, we

find that image translation architectures can often produce

undesirable hatching patterns. We describe these issues and

show how careful design of network architectures can ad-

dress these problems.

A long-term goal of this research direction is to provide

more fine-grained control to neural-network stylization al-

gorithms. Existing learning-based methods do not provide

much control over style except by changing the training in-

put. In contrast, classical procedural stylization algorithms

can provide many different styles (e.g., [1, 35]) but without

the same quality and generality that can come from learn-

ing from examples. Our method allows fine-grained stylis-

tic control as we focus on separating outline and shading

style, and learning several stylistic options for each.
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(a) Input (b) CycleGAN [48]

Style

(c) Gatys et al. [10] (d) Ours: L1 + S2

(e) Ours: L1 + S4 (f) Ours: L2 + S3

Figure 2. Synthesis results of our algorithm in different combina-

tions of outline and shading styles, compared with existing meth-

ods (zoom in for fine pencil strokes). See Section 4.1 for experi-

mental details.

The main contributions of this work are summarized as

follows:

• We propose a two-branch framework that learns one

model for generating sketchy outlines and one for tonal

shading, from a pencil drawing dataset.

• We show how to use abstraction procedures to generate

paired training data for learning to draw with pencils.

• We demonstrate the ability to synthesize images in

various different pencil drawing styles within a single

framework.

• We present an architecture that captures hatching tex-

ture well in the shading drawing, unlike existing base-

lines.

2. Related Work

Procedural line drawing. There is a rich literature on

procedural (non-learning) stylization in Non-Photorealistic

Rendering (NPR) [35, 1]. Early work focuses on interactive

pen-and-ink drawing and hatching of 2D inputs [36, 37] and

3D models [22, 45, 46]. Pencil drawing is similar to pen-

and-ink drawing, but it has more degrees-of-freedom since

individual pencil strokes may have varying tone, width, and

texture. For 2D images, several procedural image styliza-

tion approaches have simulated pencil drawings [24, 34].

These methods use hand-crafted algorithms and features for

outlines and a pre-defined set of pencil texture examples for

shading. While procedural approaches can be fast and in-

terpretable, accurately capturing a wide range of illustration

styles with purely procedural methods is still challenging.

Image-to-image translation. Due to the difficulty in au-

thoring stylization algorithms, numerous approaches have

been proposed to learn them from examples. The Image

Analogy approach uses texture synthesis applied to a sin-

gle training pair [15], requiring strict alignment between

the input photograph and the output drawing or painting.

For line drawing, the paired input images are created man-

ually by applying blurring and sharpening operators sepa-

rately to each input drawing. This method performs well

only for restricted classes of drawings, e.g., when most

hatching strokes have a consistent orientation. Although

neural image-translation methods have been recently devel-

oped [18, 49, 43], none of these has been demonstrated

for stylization, due to the difficulty of gathering aligned,

paired training data. Chen et al. [5] do learn stylization, but

trained on the results generated by an existing procedural

pencil rendering method [32]. However, the rendered draw-

ings exhibit limited sketching and shading styles. More re-

cently, several methods have been developed for learning

mappings from unpaired data [48, 23, 31, 17, 25] with two

conditional adversarial losses and cycle-consistency regu-

larization. However, as shown in Figure 2(b), these meth-

ods do not perform well at capturing hatching texture. Al-

though the Deep Image Analogy [30] method does not re-

quire paired data, it requires data where the exemplar and

target photo have very similar content. Several learning-

based algorithms have been developed solely for facial por-

traiture [44, 41, 2, 9].

Neural style transfer. A third approach is to transfer deep

texture statistics of a style exemplar, which does not em-

ploy paired training data. Since Gatys et al. [10] pro-

posed an algorithm for artistic stylization based on match-

ing the correlations (Gram matrix) between deep features,

numerous methods have been developed for improvements

in different aspects [20], e.g., efficiency [21, 42], general-

ity [5, 16, 28, 4, 27], quality [26, 30, 19], diversity [27],

high-resolution [38], and photorealism [33, 29]. However,

these methods do not perform well for pencil drawing. The

rendered results (Figure 2(c)) in the pencil style only cap-

ture the overall gray tones, but without capturing distinctive

hatching or outline styles well.

Style control. Procedural methods often provide fine-

grained style control, e.g., [13], but at the cost of consider-

able effort and difficulty in mastering certain styles. Image-

to-image translation [17, 25] and neural style transfer meth-
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Figure 3. Pipeline of the proposed algorithm. Left: the created paired training data generated by using an abstraction procedure on pencil

drawings for training. Right: the testing phase (including network details). Two branches will output an outline and shading drawing

result respectively, which can be combined together through pixel-wise multiplication as the third option of pencil drawing result. The

edge module in gray in the outline branch (top) is a boundary detector [7], which is optional at test-time. For highly-textured photos, it is

suggested to use this module to detect boundaries only. See Section 3 for technical details.

ods provide only high-level control, e.g., by selecting train-

ing inputs in a different style, interpolating between unre-

lated styles [8, 11], or selecting among high-level transfer

parameters [11]. In this work, we focus on developing a

method with fine-grained style control that allows subtle ad-

justments to pencil drawing.

3. Stylization Approach

Our approach is based on the observation that pencil

drawings can be separated into two components: outlines,

and shading. The outlines delineate object boundaries and

other boundaries in the scene, and shading or tone uses tonal

techniques such as hatching to depict reflected lighting, tex-

ture, and materials. Hence, our method includes a separate

outline branch and a shading branch. These two models are

trained separately but can be combined at test-time to gen-

erate different combinations of illustration styles. Figure 3

shows the main modules of the proposed method.

For each network branch, paired training data is unavail-

able, and thus we need to create the input-output pairs from

line drawings directly. We generate training data by using

an abstraction procedure on pencil drawings, where the ab-

straction estimates outlines or edges and tones. These filters

are designed to produce similar abstractions from line draw-

ings as from photographs. Hence, at test-time, the same ab-

straction filters can be applied to an input photograph, to

produce an input in the same domain as the training inputs.

3.1. Outline branch

The goal of the outline branch is to produce pencil-like

outlines from photos. Since there is no paired training data

for this task, we use an outline extraction algorithm, both to

process the training data and test images at run-time.

Outline extraction. We use the Extended Difference-of-

Gaussians (XDoG) filter [47], which performs well whether

the input photo is a pencil drawing or a photograph. The

XDoG method takes an input image I , and convolves it

with two separate Gaussian filters, with standard deviations

σ and k · σ. A sigmoidal function is then applied to the

difference of these two images:

D(I;σ, k, τ) = Gσ(I)− τ ·Gk·σ(I), (1)

EX(D, ǫ, ϕ)=

{

1, if D ≥ ǫ

1 + tanh(ϕ · (D − ǫ)), otherwise
(2)

The behavior of the filter is determined by five parameters:

{σ, k, τ, ǫ, ϕ} for flexible control over detected edges. At

test-time, users can adjust any parameters to control the line

thickness and sketchiness as shown in Figure 10 and 11.

To demonstrate the effectiveness of XDoG, we compare

it with two alternative approaches for outline abstraction.

The first one is a boundary detector based on structured

random forests [7]. The results in Figure 4(b) show that

although it detects outlines in photos well, it generally does

not handle thick lines in pencil drawings well and generates

two strokes. The second one is a method designed specif-

ically for sketch simplification [39]. As shown on the top

of Figure 4(c), it obtains simplification results on main con-

tours but does not handle smooth non-outline regions well

(e.g., eyes). More importantly, this sketch simplification

method does not perform well on abstracting outlines of
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(a) Input (b) [7] (c) [39] (d) XDoG [47]

Figure 4. Comparisons of different outline abstraction results on

pencil drawings (top) and photos (bottom).

photo inputs (see the bottom row of Figure 4(c)). In con-

trast, the XDoG filter handles line thickness and smooth

non-outline regions well (Figure 4(d)). For some highly-

textured photos at test-time, the XDoG may produce far too

many edges (the second row of Figure 5(b)). In these cases,

we first use the boundary detector [7] to extract their con-

tours, which are then filtered by the XDoG.

Paired training data. In order to generate paired training

data, we first gather a set of pencil outline drawings with

very little shading, from online websites (e.g., Pinterest).

We annotate each drawing with one of two outline style

labels: “rough” or “clean” (Figure 1(a)). The data is col-

lected by searching the outline style as the main query on

web. We collected 30 images for each style. We use a 2-

bit one-hot vector as a selection unit to represent these two

styles, which serves as another network input to guide the

generation towards the selected style. Then for each draw-

ing, we manually select a set of XDoG parameters that pro-

duce good outlines. For example, for a sketchier input, we

use a bigger σ to produce one single thick line to cover all

sketchy lines along the same boundary. We crop patches of

size 256×256 on the created paired data and conduct vari-

ous augmentations (e.g., rotation, shift), resulting in about

1200 training pairs.

Translation model. As shown on the top row of Fig-

ure 3(right), the translation model is designed as an auto-

encoder with a few residual-based convolutional blocks in-

between. The selection unit is first mapped from a 2-bit

vector to a 2-channel map, which is then encoded as fea-

ture maps (through convolutions) and concatenated with the

features of the outline input. Before the translation mod-

ule, an XDoG filter is used to extract outlines from photos.

This module is not included during training, and the rest of

the model is trained on the outline/drawing pairs described

above. For highly-textured images, the boundary (edge) de-

tector may optionally be used prior to XDoG as well. As

described in Section 4.2, adjusting parameters to this XDoG

filter can be used to vary outline drawing styles, such as line

thickness and sketchiness.

(a) Input (b) XDoG [47] (c) Edge [7] (d) Tone

Figure 5. Examples of extracted edge and tone results for highly-

textured inputs.

3.2. Shading branch

The goal of our shading branch is to generate textures in

non-outline regions according to the tonal values of the in-

put. As no paired data is available for learning the shading

branch network, we apply an abstraction procedure to gen-

erate the training data and preprocess inputs at test-time.

The abstraction aims at extracting edges and tones, and re-

moving detailed textures. Then the model learns to apply

pencil shading according to these maps.

Edge and tone extraction. For the edge map, we use the

boundary detector by Dollár and Zitnick [7], which identi-

ties important edges, even in highly-textured images. We do

not use XDoG after boundary detection, because clean out-

lines are not necessary for shading generation. An example

comparison between XDoG and the boundary detector for

a highly-textured input is shown in Figure 5(b) and (c).

To extract the tone map, we apply the Guided Filter

(GF) [14] on the luminance channel of shading drawings or

photos to remove details and generate a smoothing output

as the tone extraction. Examples of extracted tone results

are shown in Figure 5(d).

Paired training data. We collect a set of pencil shading

drawings from online websites, and annotate each drawing

with one of our four style labels, i.e., hatching, crosshatch-

ing, blending, and stippling (Figure 1(b)). We searched the

data with each shading style as the main web query and col-

lected 20 shading drawings for each style. As in the outline

branch, we use a 4-bit one-hot vector as a selection unit.

For each drawing, we extract its edge map and tone map to

construct the paired data. We manually select the best pa-

rameters (e.g., the neighborhood size in GF [14]) for each

shading drawing to produce good abstraction results. By

cropping patches of size 256×256 and doing data augmen-

tations (e.g., rotation) on the paired data, we create about

3000 training pairs.
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(a) Tone (inset: photo patch) (b) Edge tangent field

(c) Single stream (d) Two-stream

tone→shading {edge, tone}→ shading

Figure 6. Comparisons of shading results on a photo patch (c)-

(d) obtained using different network architectures. The input is a

smooth photo patch (red inset). (a) Extracted tone map. (b) Edge

tangent field of (a). (c) Hatching result from single-stream archi-

tecture. Artificial patterns appear that are unlike normal hatching.

(d) Hatching result from two-stream architecture. Hatching-like

textures are produced and artificial patterns are suppressed.

Translation model. We find that the direct translation from

the extracted tone to the shading drawing generates signifi-

cant artifacts when applied to photos, especially in smooth

regions. In such regions, artists draw pencil textures with

varying orientations; these strokes typically approximate

the tone but not the specific gradients in the image. How-

ever, naive training produces results that attempt to follow

the input gradients too closely. Figure 6(a) shows a smooth

photo patch and its extracted tone. We visualize its gradi-

ent field in terms of edge tangent field which is perpendicu-

lar to the image gradients using the linear integral convolu-

tions [3]. When simply relying on the tonal input, the shad-

ing result in Figure 6(c) shows that the generated hatching

lines looks quite unnatural by following these small gradi-

ents.

To address the above-mentioned issue, we design a

two-stream translation model to generate the shading (Fig-

ure 3(right-bottom)). The main stream is from the edge map

of the input, where there is no indication of small image

gradients. We employ the tonal abstraction for weak guid-

ance of tone in a secondary input stream that is fused into

the main stream at a deeper layer. Figure 6(d) shows that

the shading output of our two-stream network architecture

significantly reduces the artifacts and exhibits more natural

and realistic strokes. In addition, the 4-bit selection unit is

fed to the network in the same way as in the outline branch

to guide the generation towards different shading styles.

3.3. Learning to draw

With the paired data, we train the model to learn to

translate from abstracted inputs to drawings. Our train-

(a) (b) (c) (d)

Lrec+Ladv Lper+Ladv Lrec+
∑

Li
adv Ours

Figure 7. Comparisons of pencil outline results obtained by models

trained with different loss functions. Inset image in red rectangle:

the XDoG input. Lrec: reconstruction loss. Ladv: adversarial loss

using single discriminator on patches of 256×256. Lper: percep-

tual loss.
∑

Li
adv: adversarial loss using three discriminators on

patches of 256×256, 128×128 and 64×64. Our final loss is the

combination of Lper and
∑

Li
adv .

ing is based on the existing translation frameworks, e.g.,

Pix2Pix [18]. However, we use different loss functions for

pencil drawing as the existing ones do not perform well for

our task. We now describe our loss functions used for both

branches of our model.

Perceptual loss. We use the perceptual loss [21] to min-

imize the difference between the network output and the

ground truth (GT) pencil drawing based on their deep fea-

tures:

Lper =
4

∑

i=1

|| Φi(G(x))− Φi(y) ||
2

2
, (3)

where x, y are the input and the GT pencil drawing, G is the

translation model, and Φi is the VGG-19 [40] network up to

the ReLU i 1 layer. The feature-based perceptual loss has

been shown to generate sharper results than the pixel-based

reconstruction loss Lrec.

Adversarial loss. In addition to the translation model G, we

use the discriminator network D to discriminate between

real samples from the pencil drawings and generated results.

The goal of G is to generate images that cannot be distin-

guished by D. This can be achieved by using an adversarial

loss [12]:

(4)
Ladv = min

G
max
D

Ey∼PY
[logD(y)]

+ Ex∼PX
[log(1−D(G(x)))],

where PY and PX represent the distributions of pencil

drawing samples y and their abstracted samples x.

To better capture both the global style and local strokes

of pencil drawings, we propose to discriminate between

real data and fake generations at multiple scales during

the training. Specifically, given the generated output of

size 256×256, we use three discriminators to discriminate

patches on three scales (256×256, 128×128, 64×64). Each

discriminator is designed as the PatchGAN used in [18].
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Style

Style Style

(a) Input (b) Gatys et al. [10] (c) CycleGAN [48] (d) Lu et al. [32] (e) Ours

Figure 8. Visual comparisons of different methods for rendering pencil drawing effects (zoom in for details). The exemplars used for [10,

32] are shown in the pink rectangle. Top: to directly show pencil effects for the outline, we select a simple line input which is only filtered

by the XDoG (no need to detect boundaries first). Bottom: pencil shading effects on a real photo example.

The overall loss function is defined by:

L = Lper + β

3
∑

i=1

Li
adv, (5)

where β is the weight to balance different losses, and Li
adv

is the adversarial loss of the ith discriminator. We set β =
100 in all experiments. When learning with multiple styles,

in each iteration, all examples in the batch are limited to be

of the same style. Meanwhile, we set the corresponding bit

that represents the selected style as 1 and leave other bits as

0 in the selection unit.

Figure 7 shows the outline results from models trained

with different losses. It is observed that the perceptual loss

encourages better sharpness for a single line drawn along

the silhouette compared with the reconstruction loss. Mean-

while, using multiple discriminators helps synthesize better

pencil strokes with more sketchy details than employing just

one discriminator. Figure 7(d) shows that outline results ob-

tained by the proposed method using the loss function in (5)

look more like a real drawing.

4. Experimental Results

In this section, we present extensive experimental results

to demonstrate the effectiveness of our algorithm. We com-

pare with methods from both NPR and deep neural network-

based stylization. We experiment with synthesizing pencil

drawings in various outline and shading styles in a user-

controllable manner. More results and comparisons are

shown in the supplementary material1.

1http://bit.ly/cvpr19-im2pencil-supp

Table 1. User preference towards different methods (%). Each row

represents one user study, comparing three stylization algorithms.

The top row is applied to the input image directly, and the bottom

row uses the tonal adjustment of [32] as a preprocess.

Methods CycleGAN [48] Lu et al. [32] Ours

Original tone 10.3 11.4 78.3

Adjusted tone 7.1 32.6 60.3

4.1. Comparisons

We compare with three algorithms [10, 48, 32] that rep-

resent neural style transfer, unpaired image-to-image trans-

lation, and NPR respectively. As the method of Gatys et

al. [10] is example-based, we select a representative pen-

cil outline example (the pink inset in Figure 8(b)) from

our dataset to obtain their style transfer results. For Cy-

cleGAN [48], in order to train a model for pencil drawing,

we collect a photo dataset that consists of 100 images from

online websites. Together with our pencil dataset, they con-

struct an unpaired dataset that is used to train CycleGAN for

translation between the two domains. Note that since Cycle-

GAN only supports transferring a certain kind of style, one

needs to train different CycleGAN model for each outline

and shading styles. The NPR method of Lu et al. [32] has

a two-phase design as well, treating the outline and shad-

ing drawing separately. The shading drawing phase also

requires a real pencil shading example. Since Lu et al. [32]

do not release the shading example used for their results, we

select a representative pencil shading example (the pink in-

set in Figure 8(d)) from our dataset to generate their results.

Figure 8 shows the visual comparison of three meth-
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(a) Input (b) [32] w/ tone adjust

(c) Ours w/o tone adjust (d) Ours w/ tone adjust

Figure 9. Comparisons of shading results between w/ and w/o ad-

justing the tone of input.

ods on outline drawing (top) and shading drawing (bottom).

The results by Gatys et al. [10] in (b) only exhibit some

global gray-like feel of pencil drawing. The lines are un-

natural and shading is not correctly positioned to reflect the

contrast in the input. CycleGAN [48] generates a few ran-

dom textures around outlines and inside regions, leading

to results that look like the gray image of the input with-

out clear pencil strokes, as shown in Figure 8(c). Without

a paired correspondence, simply relying on the cycle con-

straint and adversarial training is still limited in capturing

the real distribution of the pencil drawing domain, with re-

alistic strokes. The shading results of Lu et al. [32] in the

second row of Figure 8(d) show shading lines and crossings

that have no correlation with the underlying lines, struc-

tures and “natural” orientations of some content (e.g., the

water flow). The shading lines come from a real drawing

but the overall result does not look like one. In addition,

their gradient-based features also result in detecting the two

sides of thick lines in the first row of Figure 8(d), which

is uncommon in drawing strokes. In contrast, our results

in Figure 8(e) present more realistic pencil strokes in rea-

sonable drawing directions and contain better shading that

corresponds to the contrast in the input.

User study. We resort to user studies for the quantitative

evaluation of [48, 32] and our method as pencil drawing

synthesis is originally a highly subjective task. The method

of Gatys et al. [10] is not included in the user study because

it was clearly inferior to the others in our early experiments

(Figure 8(b)). We use 30 natural images provided in [32]

and randomly select 15 images for each subject. We dis-

play the results by all three methods side-by-side in random

order and ask each subject to vote for one result that looks

the most like a pencil drawing. We finally collect the feed-

back from 50 subjects of totally 750 votes and show the

(a) Input (b) Boundary [7] (c) Clean: base

(d) Clean: σ=3 (e) Rough: σ=3 (f) Clean: τ=0.97

Figure 10. Outline results for a highly-textured photo. (b) is the

boundary map of input (a), which is then filtered by the XDoG

with different parameters. We set σ = 2.0,τ = 0.99, k = 1.6,

ǫ = 0.1, ϕ = 200 in XDoG and show the base pencil outlines

in (c). (d)-(f) show the results by adjusting one parameter while

keeping others fixed.

(a) Input (b) Rough: base (c) Rough: σ=4.5

(d) Clean: σ=4.5 (e) Rough: τ=0.98 (f) Rough: ǫ=1.6

Figure 11. Outline results for a simple cartoon image. The input

in (a) is directly filtered by the XDoG. We set σ = 2.5,τ = 0.96,

k = 1.6, ǫ = 0.1, ϕ = 200 and show the base pencil outlines in

(b). (c)-(f) show diverse outline results by controlling parameters.

percentage of votes each method received in the top row of

Table 1. The study shows that our method receives the most

votes for better pencil effects, nearly seven times as much

as those of other two methods.

Lu et al. [32] observed that pencil drawings often ex-

hibit global tonal changes from the input, and described a

histogram-based tone adjustment step to model this obser-

vation. In order to fairly compare with this step, we per-

form a second user study where the input is preprocessed

by this step. The user study results with tone adjustment

are shown in the bottom row of Table 1. Again, our method

obtains substantially more votes than the previous methods.

We show our results with and without tone adjustment in
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Input Hatching Crosshatching Blending Stippling

Figure 12. Four types of shading results of the proposed algorithm by switching bits in the selection unit (zoom in for details).

Figure 9(c) and (d) as well as the corresponding result of

Lu et al. [32] in (b). The tone adjustment step provides an

additional user control for our method as well.

4.2. User control

Our translation model provides fine-grained control over

different pencil drawing styles. Figure 10 and 11 show

that users could either switch between clean and rough out-

line style through the selection unit, or adjust parameters

in XDoG to obtain different outline results. The photo ex-

ample in Figure 10(a) is highly-textured in the clothes and

background, so we first use the boundary detector [7] to de-

tect its boundary map, which is then filtered by the XDoG.

As the most sensitive and important parameter in XDoG,

the σ defines the line thickness and sketchiness. Gener-

ally, when a clean style is selected, increasing the value of

σ leads to thicker lines (Figure 10(c)-(d)). When a rough

style is selected, increasing the value of σ results in increase

in repetitive lines (Figure 10(e)). In addition, by adjusting

other parameters (e.g., τ ), the XDoG filter is able to con-

trol the sensitivity on detected edges, which allows users to

draw both strong and weak edges (Figure 10(f)). In Fig-

ure 11, we show the outline results for a simple cartoon im-

age without heavy textures. Figure 12 shows shading results

of two examples, i.e., a still life and a portrait – two popular

reference choices for a pencil drawing. By controlling the

selection unit, users get results in different shading styles.

Color pencil drawings. The extension of our algorithm to

color pencil drawing is quite straightforward, following the

method of [15, 11]. We first convert the input image from

RGB to LAB color space, then replace the L channel with

that of our generated gray-scale pencil drawing result, and

finally map back to RGB space. Figure 13 shows two color

(a) Input (b) Ours: L1 + S2 (c) Ours: L2 + S4

Figure 13. Extension of our algorithm to color pencils in differ-

ent outline and shading styles (zoom in for fine details). Pencil

outlines of all examples are generated by applying the XDoG and

learned model on their boundary maps.

pencil results in different outline and shading styles.

5. Conclusions

In this work, we propose a photo-to-pencil translation

method with flexible control over different drawing styles.

We design a two-branch network that learns separate filters

for outline and shading generation respectively. To facili-

tate the network training, we introduce filtering/abstraction

techniques into deep models that avoid the heavy burden of

collecting paired data. Our model enables multi-style syn-

thesis in a single network to produce diverse results. We

demonstrate the effectiveness and flexibility of the proposed

algorithm on different pencil outline and shading styles.
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